
Erik Lindahl

HPC Software Engineering

XSEDE/PRACE/RIKEN/Compute Canada HPC Summer School Boulder, CO 2017

“The application of a systematic, disciplined, quantifiable
approach to the development, operation and maintenance of

software, and the study of these approaches, that is, the
application of engineering to software.”

Open Source & Free Software 
Development Models

Tools & Recommendations for HPC
software engineering

How do you get a successful career in HPC?
How can you improve software quality?

How do you engage in a community?

Software maintenance
Handling cultural differences

Experiences from 20 years of
GROMACS development

• Simulation hardware project, turned software
• Early development based on our own needs
• Turned GPL in 2001, LGPL in 2012
• Organic growth of development

• Roughly 10-15 core developers
• Another 15-20 active contributors

• Currently 3,076,420 lines of C++11 code (“C++11”)
• Over the years we have used Fortran, C, Assembly

• Lots of old code. Lots of new code. Lots of
complicated (read: bad) code written by scientists

Scientist Software
engineer

• Trained in physics, 
chemistry, etc.

• Care about their problem
• Care about short-term  

deadlines
• New code = asset
• Writes more code than  

she reads

• Trained in CS/software 

• Care about their code
• Care about long-term 

maintenance
• New code = liability
• Reads much more code  

than she writes

Without proper software engineering, we are building  
a technical debt that sooner or later will have to be paid.

“Technical Debt is a wonderful metaphor developed by Ward
Cunningham to help us think about this problem. In this metaphor,
doing things the quick and dirty way sets us up with a technical debt,
which is similar to a financial debt. Like a financial debt, the technical
debt incurs interest payments, which come in the form of the extra
effort that we have to do in future development because of the quick and
dirty design choice. We can choose to continue paying the interest, or
we can pay down the principal by refactoring the quick and dirty
design into the better design. Although it costs to pay down the
principal, we gain by reduced interest payments in the future.”

[Martin Fowler]

The Picture until early 2011

Source code repository:
CVS
Build Chain:
Automake/Autoconf/libtool
Bug Tracking:
Bugzilla
Testing:

Professional modern
development tools

957 commits
4163 files changed
393,488 line insertions
373,227 line deletions

What changed in our code between IHPCSS 2015 & 2016?
(Basically the difference between GROMACS-5.1 and GROMACS 2016)

How would you start debugging if the new version crashes?

You have probably all seen this: Your program worked an
hour ago, but with the latest edits there is something wrong

What if it crashes with “-O3”, but when you try to debug it works fine?

Source code
revision control

The CVS/SVN limitation

SVN

Problem: Berk has worked
12 months on a GPU branch, but
100 other commits has happened
in the mean time. How to commit?

-> Lots of tedious manual work!

Better source control: GIT

GIT
GIT

(Free energy repo)

GIT (AVX2 repo) GIT

GIT

GIT (GPU repo)
GIT (Verlet kernel repo)

GIT

Local branches
Several repositories, but public & private
Easy to have separate branches for patches

No real “master” repository
Enable both push and pull patches

http://git-scm.com

Start your free repo on
github.com or atlassian.com

http://git-scm.com
http://github.com
http://atlassian.com

What git will give you
• Handles multiple developers beautifully
• Handles multiple feature branches in

parallel with a stable production-quality one
• Develop based on features, not source files
• Pull/push patches between branches
• Revert a specific stupid thing I did 6

months ago, without changing subsequent
patches

• Bisect changes to find which one of (say)
1,500 patches caused a bug

Drawback: Git is a VERY
powerful tool, but the  
advanced features can be
difficult to understand

Good git commits are

• Small (think 10-100 lines, not 1000)

• Decomposed as far as possible

• Limited to address a single issue

• Well documented

• Tested to work

Is your code portable?
Does your code compile on

windows (MSVC)?
PGI Compilers? Pathscale?

Blue Gene?
K computer (Fujitsu compilers)?

ARM? AArch64?
PowerPC (big endian)?
Google NativeClient?

OpenPower (little endian?)

What is a build chain?

• Issue compiler commands manually

• Start using Makefiles, edit Makefiles, give up

• Automate the generation of makefiles

The typical user progression:

Friends don’t let friends use GNU autotools…

Configuration
• “Where is the X11 library? MKL? LibXML?”
• “What version is the FFTW library?”
• “Is the Intel Math Kernel Library installed?”
• “Do we use that buggy gcc version?”
• “Does this compiler understand Xeon Phi AVX512?”
• “Which C++11 flags should be used for this compiler?”
• “Is this a big or small endian system?”
• “Is a long integer 4 or 8 bytes on this host?”
• “How do we build a shared library here?”
• “What library should I like with for gettimeofday()?”
• “What C backend compiler is used with CUDA-8.0?”
• “What underscore naming standard does this Fortran compiler use?”

CMake: Cross-platform replacement for
Autoconf, Automake, Libtool
(instead of ./configure; make; make install)

~100 CMake tests for
features/bugs/libraries/compilers

Optional components (FFT libs) and
extensive regressiontests can be
downloaded automatically

Generators: Makefiles, Eclipse,
Xcode, VisualStudio, nmake,
CodeBlocks, KDevelop3, etc.

Out-of-source builds
Don’t put the build objects inside the source code directory!

/home/lindahl/code/Gromacs-2017

source code

MacOS mixed precision build

Mac mixed precision installation

Linux AVX2 double build

Linux AVX2 double install

Linux SSE4.1 mixed build

Linux SSE4.1 mixed install

Make a small change, run “make” in three build directories, done.

Living with your code for years:  
Documentation

Direct source code documentation should stay in the source!

Doxygen example - our SIMD module:
[gromacs/src/gromacs/simd/]

The best comments don’t explain what your code
does, they explain WHY you do it this way!

For a humorous set of counter-examples, Google for
“how to write unmaintainable code pdf”

Non-source-code documentation: SPHINX (from Python)

Finding & 
Preventing Bugs

Modularization
• Avoid code inter-dependencies

• Have modules doing clearly separate tasks

• Make sure all code is thread-safe!

• Have a clear (documented) API for each module

• Write unit tests, not only regression tests

• Write unit test first, then the code implementation

Controversial (?): Move to C++

Languages?
• “REAL PROGRAMMERS CAN WRITE FORTRAN IN ANY LANGUAGE”

• "C combines the flexibility and power of assembly language with the
user-friendliness of assembly language."

• “C makes it easy to shoot yourself in the foot; C++ makes it harder, but
when you do it blows your whole leg off.”

• The actual C++ nightmare: You accidentally create a dozen instances
of yourself and shoot them all in the foot. Providing emergency medical
care is impossible since you can't tell which are bitwise copies and
which are just pointing at others and saying, "That's me over there."

The Case for C++
Modern: Threads, atomics, etc. part of C++11
Very powerful library with containers, algorithms
Strongly typed language
Still a low-level language - you control data exactly

Templates avoid code duplication

Surprise: C++ can be faster than FORTRAN or C!

Some very advanced parallelization libraries: Intel TBB

Modern C++ has gotten rid of pointers, memory errors

Rapidly developing language, large ISO committee
Negative: It is a VERY complex language to master

int
myFunc(obj_t obj, int choiceA, int choice B)
{
 for(int i=0;i<obj.N;i++)
 {
 if(choiceA==1)
 {
 if(choiceB==1)
 {
 kernelcode1;
 }
 else if(choiceB==2)
 {
 kernelcode2;
 }
 }
 else if(choiceA==2)
 {
 if(choiceB==1)
 {
 kernelcode3;
 }
 else if(choiceB==2)
 {
 kernelcode4;
 }
 }
 }
}

calling code in different translation unit:

myFunc(obj,2,3);

template <int choiceA, int choice B>
int
myFunc(obj_t obj)
{
 for(int i=0;i<obj.N;i++)
 {
 if(choiceA==1)
 {
 if(choiceB==1)
 {
 kernelcode1;
 }
 else if(choiceB==2)
 {
 kernelcode2;
 }
 }
 else if(choiceA==2)
 {
 if(choiceB==1)
 {
 kernelcode3;
 }
 else if(choiceB==2)
 {
 kernelcode4;
 }
 }
 }
}

calling code in different translation unit:

extern template int myFunc<2,3>(obj_t obj)
myFunc<2,3>(obj);

C/FORTRAN C++11

“It has been discovered that C++ provides a remarkable facility for concealing
the trivial details of a program - such as where its bugs are.” (David Keppel)

Circular dependencies are bad. If a test fails, where is the bug here?

Modularization: Just say ‘no’ to circular dependencies
Classes

Headers

For GROMACS, our code management system will not allow any
developer to submit a file with a circular dependency.

This is hard, but Doxygen helps you detect it!

Google Test

Aggressive unit testing: “Trust, but verify”

Example Gromacs unit tests:
The idea is that you should test everything

Do you think it’s overkill to test that hardware rounding works? In
March 2014, this very test caught that IBM Power7 VMX uses
different rounding modes for SIMD and normal floating-point to
integer conversions…

Good unit tests should isolate bugs to tiny parts of your code

Test that a simple call to a normal distribution random generator
returns the expected 10 numbers.

Why? Because we found that libstdc++ and libcxx do not use the
same algorithm, so code will not produce the same results.
We need to use our own algorithm - make sure it keeps working.

In C++, each method in a class should have exhaustive unit tests

Commits - how code
makes it into Gromacs

Who is allowed to write to your code repository?

Problems with developers
who submit bad code

Such as this
one

Gerrit Code Review

Nobody can commit directly to our central Git repo anymore
... which means we can allow anybody to commit in gerrit!

Roland has approved
Mark’s patch. Anybody can
add comments. When two
trusted developers say OK,
the patch is committed.

Multiple patches in-flight
Gerrit/git do dependency tracking, patches can
be rebased onto others by hitting a rebase
button, or even edited on-the-fly in the window

Extensive comments on
code during review

Maintaining quality &
avoiding breaking stuff

How do I make sure that *I* don’t make mistakes?

Jenkins Continuous Integration

Every single
commit is tested
automatically on
our build farm,
including both
builds and
regression tests.

Results are
integrated into the
gerrit review

• Catches Cmake build errors
• Catches Google test unit test failures

https://jenkins.io

https://jenkins.io

CI tests - for every commit
• Unit Tests: Do modules reproduce reference values?
• Regression tests: Are previous simulation results identical?
• Clang AddressSanitizer: Catch simple memory errors
• Clang MemorySanitizer: Like Valgrind - memory debugging
• Clang/GCC ThreadSanitizer: Thread synchronization errors
• Clang Static Analyzer: Logical execution dependency errors
• Cppcheck: Another static analyzer
• Uncrustify: Proper code formatting, no tabs, brace standards?
• Doxygen: All classes/methods/arguments/variables documented?
• Coming: Performance regression testing

Book-keeping
Bugtracking

Feature tracking
Developer discussions

Redmine issue tracking

Automatic referencing 
in commit messages!

• Version 1.2.3 has bug X!
• Windows builds broke
• How is the work going on  

refactoring module Y?
• Should we improve  

scaling by method Z or W? 

• Why did we decide to modify
that loop in file F in git change
Icfca5a?

License Considerations
GPLv2
GPLv3

LGPLv2.1
BSD

Exceptions/encryption?
Dual license?

Business-friendly?
EU-friendly?

Academia-friendly?

Licenses are tools - decide what you want
to achieve, and pick one that helps you!

Communities & Cultures
• Engaging in a larger community is a great way to boost your scientific career
• You learn much better by working with others
• Picking up these skills provides a good-job-guarantee
• Open software is critical for open science
• Ultimate meritocracy: We have accepted code from unknown undergraduates,

and rejected mine
• Internal culture can be tough/blunt, and politically incorrect. Many scientists

and programmers work insanely hard and are passionate about their art.
• Hard to demand respect, but you earn it -  

the currency that builds your karma is high quality code, but when you start out
you can also build a good reputation by helping with code review!

• Working effectively with legacy code [Michael Feathers]
• Large-scale C++ software design [John Lakos]
• Design Patterns - Elements of Reusable Object-oriented software [Gamma, Helm,

Johnson, Vlissides] “Gang of four”
• Refactoring to Patterns [Joshua Kerievsky]
• Refactoring - improving the design of existing code [Martin Fowler]
• Effective C++ - 55 specific ways to improve your programs and design [Scott Meyers]
• Patterns for concurrent, parallel, and distributed systems:  

http://www.cs.wustl.edu/~schmidt/patterns-ace.html
• What everybody should know about floating-point math:  

http://randomascii.wordpress.com/category/floating-point/

Some good reading

http://www.cs.wustl.edu/~schmidt/patterns-ace.html
http://randomascii.wordpress.com/category/floating-point/

http://randomascii.wordpress.com/category/floating-point/
Series of blog posts by
Bruce Dawson about
IEEE754 floating point

You should read this if
you are working with

scientific codes using
floating-point!

More worthwhile reading:
“What every computer scientist should  
 know about floating-point arithmetic”

[David Goldberg]

http://randomascii.wordpress.com/category/floating-point/

Use the source, Luke
http://www.gromacs.org

git://git.gromacs.org
http://gerrit.gromacs.org

http://redmine.gromacs.org
http://jenkins.gromacs.org

There are lots of other open programs out there too.
If you too are free software it is usually OK to reuse

their code in your project (if licenses match)!

http://www.gromacs.org
http://gerrit.gromacs.org
http://redmine.gromacs.org
http://jenkins.gromacs.org

