

Robert Burns Woodward — 1965 Nobel Prize in Chemistry

for his outstanding achievements in the art of organic synthesis

Reaction occurs

1981

for their theories, developed independently, concerning the course of chemical reactions

Nobel Prize in Chemistry

Roald Hoffmann

Kenichi <mark>Fuku</mark>i

Woodward-Hoffmann rule ← Cited Fukui's paper

Reaction NOT occurs

Different phase

Fukui got a phone call on October 18, from Nobel committee

Transparent Why polycarbonates get **UV** photo-degradation

Typical Software for Electronic states calculations

Molecules by basis sets (Quantum chemistry)

Gaussian:	http://www.gaussian.com/
GAMESS:	http://www.msg.ameslab.gov/gamess/
NWChem:	http://www.nwchem-sw.org/index.php/Main_Page
NTChem:	https://www.rccs.riken.jp/software_center/jp/success/ntchem/
TURBOMOLE:	http://www.turbomole-gmbh.com/
otc	•

Solids by	Plane waves (Periodic boundary condition	on)
Crystal:	http://www.crystal.unito.it/index.php	
VASP:	https://www.vasp.at/	
WIEN2k:	http://www.wien2k.at/	
siesta :	http://www.icmab.es/sieasta/index.php	
CPMD :	http://www.cpmd.org/	
ABINIT :	http://www.abinit.org/	
PWscf:	http://www.quantum-espresso.org/	
Phase :	http://www.ciss.iis.u-tokyo.ac.jp/dl/	
etc		6

<u>Parallelization in material science computations</u> were established under plane wave basis but limited

Basic formula in quantum chemistry (QC) based on basis functions

Schrödinger equation

$$\hat{H}_{\rm elec}\Psi=E_{\rm elec}\Psi$$

Hamiltonian \widehat{H}_{elec} , Wavefunction Ψ and Energy $E_{\rm elec}$

$$\hat{H}_{elec} = -\frac{1}{2} \sum_{i}^{n} \nabla_{i}^{2} - \sum_{i}^{n} \sum_{A}^{N} \frac{Z_{A}}{|\mathbf{r}_{i} - \mathbf{R}_{A}|} + \sum_{i}^{n} \sum_{j < i}^{n} \frac{1}{|\mathbf{r}_{i} - \mathbf{r}_{j}|}$$

Hartree-Fock-Roothaan (HFR) approximation

$$\hat{H}_{elec}\tilde{\Psi}^{HF} = E_{elec}^{HF}\tilde{\Psi}^{HF} \qquad \psi_{i}(\mathbf{r}) = \sum_{\mu=1}^{n} C_{i\mu}\varphi_{\mu}(\mathbf{r})$$

$$\tilde{\Psi}^{HF} = \frac{1}{\sqrt{n!}} \begin{vmatrix} \psi_{1}(\mathbf{r}_{1}) & \psi_{2}(\mathbf{r}_{1}) & \cdots \end{pmatrix} & \psi_{n}(\mathbf{r}_{1}) \\ \psi_{1}(\mathbf{r}_{2}) & \psi_{2}(\mathbf{r}_{2}) & \cdots & \psi_{n}(\mathbf{r}_{2}) \\ \vdots & \vdots & \ddots & \vdots \\ \psi_{1}(\mathbf{r}_{n}) & \psi_{2}(\mathbf{r}_{n}) & \cdots & \psi_{n}(\mathbf{r}_{n}) \end{vmatrix}$$

$$\int d\mathbf{r} \psi_{i}^{*}(\mathbf{r}) \psi_{j}(\mathbf{r}) = \delta_{ij}$$

Schrödinger

Roothaan, C. C. J. New Developments in Molecular Orbital Theory. Rev. Mod. Phys.1951, 23, 69-89

Slater determinant

11

Hartree-Fock-Roothaan equation

$$\mathbf{F} = \mathbf{F} \mathbf{C} = \mathbf{S} \mathbf{C} \mathbf{\varepsilon} \Rightarrow$$

Fock matrix Overlap matrix
$$\mathbf{F} = \mathbf{H}^{\text{core}} + \mathbf{T} + \mathbf{V} + \mathbf{G}$$

$$T_{\mu\nu} = \int d\mathbf{r}_{1} \varphi_{\mu}(\mathbf{r}_{1}) \left(-\frac{1}{2} \nabla_{1}^{2} \right) \varphi_{\nu}(\mathbf{r}_{1})$$

$$V_{\mu\nu} = \int d\mathbf{r}_{1} \varphi_{\mu}(\mathbf{r}_{1}) \left(\sum_{A}^{N} \frac{-Z_{A}}{|\mathbf{r}_{1} - \mathbf{R}_{A}|} \right) \varphi_{\nu}(\mathbf{r}_{1})$$

$$G_{\mu\nu} = \sum_{\sigma}^{N} \sum_{A} \underline{D}_{\sigma\lambda} \{ 2(\mu\nu | \sigma\lambda) - (\mu\lambda | \sigma\nu) \}$$

$$(\mu\nu | \sigma\lambda) = \int d\mathbf{r}_{1} \int d\mathbf{r}_{2} \varphi_{\mu}(\mathbf{r}_{1}) \varphi_{\nu}(\mathbf{r}_{1}) \xrightarrow{1} \varphi_{\sigma}(\mathbf{r}_{2}) \varphi_{\lambda}(\mathbf{r}_{2})$$

$$D_{\mu\nu} = \sum_{i}^{N/2} C_{\mui} C_{\nui}$$

$$\mathbf{F} = \mathbf{C} = \mathbf{C} \mathbf{\varepsilon}$$

Non-linear Equation
$$\psi_{i} = \sum_{\mu=1}^{N} C_{\mu i} \varphi_{\mu}(\mathbf{r})$$

Electron-electron repulsion
Self Consistent Field
(SCF) method

Difficulty in making G matrix

$$(\operatorname{rs} | \operatorname{tu}) = \int d\mathbf{r}_{1} \int d\mathbf{r}_{2} \, \varphi_{r}(\mathbf{r}_{1}) \varphi_{s}(\mathbf{r}_{1}) \frac{1}{|\mathbf{r}_{1} - \mathbf{r}_{2}|} \varphi_{t}(\mathbf{r}_{2}) \varphi_{u}(\mathbf{r}_{2})$$

$$G_{rs} = \sum_{t}^{N} \sum_{u}^{N} D_{tu} \left\{ 2 (\operatorname{rs} | \operatorname{tu}) - (\operatorname{ru} | \operatorname{ts}) \right\}$$

$$For \text{ large systems} \\ Number of Basis functions} \\ N = 1000 \sim 10000$$

$$Density matrix \quad 2e\text{-integrals}$$

$$N = 5000 \rightarrow G, D \qquad \sim 120 \text{ MB} (10^{8}) \qquad \qquad One Sity Functional \\ (\sim 500 \text{ atoms}) \quad \langle \varphi_{i} \varphi_{j} | \varphi_{k} \varphi_{i} \rangle \quad \sim 600 \text{ TB} (10^{15}) \qquad \qquad One Sity Functional \\ Theory (DFT)$$

• G is composed of double summations of enormous number of 2e-integrals

Kyushu University RESEARCH INSTITUTE FOR INFOMATION TECHNOLOGY Dr. Hiroaki Honda

Dr. Ishimura at IMS is developing "SMASH" --- Linear scaling at 10,000 cores ~ OK (Scalable Molecular Analysis Solver for High performance computing systems)

Hybrid of OpenMP and MPI

Solid catalysis---Quantum chemistry is

Ziegler-Natta catalytic reaction on the plane wave bases

Toward large systems by QC approach for finite size

Elongation Method [O(N)] ($\leftarrow N^4$) with only one-core

(Theoretical Synthesis of Random Polymers)

25000 200000 **Elongation** 15000 method **O**[N] 4 5 6 7 8 9 101 11 21 31 41 51 61 71 81 9202 1222 32 42 52 62 72 82 9

こおける電子

Efficiency and accuracy of ELG method

Three Dimensional(3D)-ELG method

The Best NLO functional automatic search

Combination between ELG – Machine Learning

How can you recognize the color of materials ?

Polyacetylene block polymer, Photo-absorption property Neural network (NN) ELG- method

Excitation energies by neural network Landscape

ML: Thousands possibility for molecular designs QM: Scientific analysis for WHY ?

33

General Parallelization Concept

<u>Summary</u>

• How to use plenty of cores by QC material science ? (Most of O(N) method depends on hardware of parallel computer)

- Each job is independent using full cores → 100% scalability (independent from ability of middleware and number of cores)
- Plenty of samples in parallel are possible \rightarrow Big data analysis

Messages to young researchers in material sciences

• Even quantum computer will be developed, one can catch only numerical numbers in each material and don't know sustainable guiding principles in material science. Please don't forget the thinking way using your head even HPC can calculate efficitently.

• Please find some scientific purpose even in the field of computer science, otherwise no meaningful applications found even though you produced HPC technology.

• Please study basic science (mathematics, quantum mechanics, biophysics, earth science, environment chemistry, ... etc.), when you are young, then your future in computer science will also be more fruitful for applications.

38