
On	data-locality	issues	of	
task-based	programming	models	

Dana	Akhmetova	
Supervisor:	Professor	Örjan	Ekeberg	
KTH	Royal	InsFtute	of	Technology	

Stockholm/Sweden	



Outline	

1.  IntroducFon	into	task-based	programming	
models	(TBPMs)	

2.  Interplay	between	task	granularity	and	
scheduling	overhead	in	many-core	shared-
memory	systems	

3.  Data	locality	issues	in	TBPMs	



Task-based	programming	models	
•  A	task-based	program	is	formulated	in	terms	of	“tasks”	(work	to	be	

done).	

•  A	task	is	the	set	of	instrucFons	that	occur	between	two	interacFons	
with	the	runFme	system.	

•  Tasks	are	dynamically	created,	and	then	-	assigned	by	a	task	scheduler	
to	CPUs	for	their	execuFon.	

•  A	promising	way	to	program	Exascale	applicaFons:	
–  applicaFons	are	divided	into	a	myriad	of	small	tasks;	
–  the	system	is	overprovisioned	with	tasks	(Ntasks	>>	Ncores).	

•  TBPMs:	Intel	TBB,	Cilk/Cilk++/Intel	Cilk	Plus,	OpenMP	3.0	and	others.	



Example	of	task-based	code	
fib(int n)
{

if (n < 2)
return n;

a = spawn fib(n-1);

b = spawn fib(n-2);

sync;

return a + b;
}



Example	of	task-based	code	
fib(int n)
{

if (n < 2)
return n;

a = spawn fib(n-1);

b = spawn fib(n-2);

sync;

return a + b;
}



Example	of	task-based	code	
fib(int n)
{

if (n < 2)
return n;

a = spawn fib(n-1);

b = spawn fib(n-2);

sync;

return a + b;
}



Example	of	task-based	code	
fib(int n)
{

if (n < 2)
return n;

a = spawn fib(n-1);

b = spawn fib(n-2);

sync;

return a + b;
}



Example	of	task-based	code	
fib(int n)
{

if (n < 2)
return n;

a = spawn fib(n-1);

b = spawn fib(n-2);

sync;

return a + b;
}



DAG	representaFon	

•  ExecuFon	of	a	task-based	program	is	a	sequence	of	
tasks	being	relayed:	
–  task	A	is	completed	->	task	B	is	triggered;		
–  both	task	B	and	task	C	are	done	->	task	D	is	triggered.	

•  It	can	be	viewed	as	a	directed	acyclic	graph	(DAG).	

•  Each	node	in	the	DAG	represents	a	specific	task	
while	edges	represent	dependencies	between	tasks.	



fib(int n)
{

if (n < 2)
return n;

a = spawn fib(n-1);

b = spawn fib(n-2);

sync;

return a + b;
}

fib(4)

fib(3)

fib(2)

fib(1)

fib(0)

fib(1) fib(1)

fib(0)

fib(2)

S

S

S

S

C

C

C

C C

C

C

C

T

T

T

T

T

T

T

T

T

DAG	for	Fib(4)	



Work-stealing	scheduling	
•  There	are	different	
scheduling	
algorithms	on	how	
to	map	tasks	to	
CPUs.	

•  We	focused	on	the	
work-stealing	
approach	(which	is	
implemented	in	
the	Cilk	runFme	
system).	

hcp://actor-framework.readthedocs.io/en/stable/Scheduler.html	



Work-stealing	scheduling	



Scheduling	overhead	
•  Local	+	remote	

•  Remote	overhead:	
–  Unsucc.	stealing	cost	

(the	latency	of	
checking	if	a	vicFm	
thread	has	a	task	that	
can	be	stolen);	

–  Succ.	stealing	cost					
(	+	the	cost	of	moving	
a	conFnuaFon	task	
from	the	vicFm	to	the	
local	thread).	

hcp://actor-framework.readthedocs.io/en/stable/Scheduler.html	



Scheduling	overhead	
•  Local	+	remote	

•  Remote	overhead:	
–  Unsucc.	stealing	cost	

(the	latency	of	
checking	if	a	vicFm	
thread	has	a	task	that	
can	be	stolen);	

–  Succ.	stealing	cost					
(	+	the	cost	of	moving	
a	conFnuaFon	task	
from	the	vicFm	to	the	
local	thread).	

hcp://actor-framework.readthedocs.io/en/stable/Scheduler.html	



Task	granularity	
•  ExecuFon	Fme	of	a	single	task	between	interacFons	with	the	runFme	

system	(e.g.,	spawning	a	new	task).	
•  Size	of	leaf	tasks	(inner	most	tasks)	=	granularity	of	computaFon.	

•  ave_task_size	=	sum_exec_Fme_tasks	/	total_num_tasks	

•  Fine-grain	->	large	number	of	tasks	
•  Coarse-grain	->	small	number	of	tasks	

•  Example	(dense	matrix-vector	mulFplicaFon	Ab	=	y)	
–  fine-grain:	each	task	represents	an	element	in	y;	
–  coarse-grain:	each	task	represents	3	elements	in	y.	



•  Performance	of	task-based	applica4ons	=													
f	(#	available	tasks,	task	granularity,	runFme	
scheduler	algorithm	and	overhead).	
•  Fine-grained	tasks:	increase	of	system	

load	balance	and	uFlizaFon,	but	larger	
runFme	overhead.	

•  Coarse-grained	tasks:	smaller	runFme	
overhead,	but	system	becomes	
imbalanced,	uFlizaFon	decreases.	

•  To	achieve	high	efficiency	and	scalability,	one	
needs	to	find	the	balance	between	task	
granularity,	system	u4liza4on	and	task	
scheduler.	

Performance	of	task-based	applicaFons		

There	 is	 an	 op4mal	 task	 size	 at	 which	 the	
relaFve	 impact	 of	 the	 scheduling	 overhead	 is	
minimal	 while	 the	 system	 uFlizaFon	 and	
balance	are	sFll	high.	



q We	focused	on	“spawn/sync”	task-based	applica4ons	on	
systems	that	do	not	yet	exist	(exascale	machines	–	nodes	with	
1000s	cores).	

q We	worked	with	DAGs	of	the	Fib,	Integrate,	Heat	and	Jacobi	
applica4ons	from	the	Cilk	benchmark	suite.	

Task-based	
applicaFons	

Task	
aggregaFon	

ExecuFon	
emulaFon	

SensiFvity	
study	

Methodology	



Task-based	
applicaFons	

Task	
aggregaFon	

ExecuFon	
emulaFon	

SensiFvity	
study	

q We	aggregated	tasks	into	coarser-grained	with	our	algorithm	
that	analyzes	an	applica4on’s	DAG	and	automa4cally	aggregates	
tasks	without	re-wri4ng	the	applica4on:	
§  no	complex	code	transforma4on;	
§  no	dealing	with	different	task	prog.	model	implementa4ons	
and	keywords;	

§  study	of	parallel	characteris4cs	of	apps;		
§  maintains	the	applica4on	seman4cs	and	workload.	

Methodology	



Task-based	
applicaFons	

Task	
aggregaFon	

ExecuFon	
emulaFon	

SensiFvity	
study	

q We	emulated	the	execu4on	of	the	applica4ons	with	different	
task	granulari4es	with	Prometheus,	a	system	emulator	for	task-
based	applica4ons.	

q We	emulated	the	work	of	9	different	task	schedulers.	

Methodology	



Task-based	
applicaFons	

Task	
aggregaFon	

ExecuFon	
emulaFon	

SensiFvity	
study	

q We	analyzed	the	impact	of	changing	task	granularity	and	
scheduling	algorithm	on	performance	of	task-based	applica4ons.	

Methodology	



Speedup	as	funcFon	of	ave.	task	size	(logarithmic	scale	on	the	X-axis):	

Task	granularity	analysis	



Speedup	as	funcFon	of	ave.	task	size	(logarithmic	scale	on	the	X-axis):	

Task	granularity	analysis	



Speedup	as	funcFon	of	ave.	task	size	(logarithmic	scale	on	the	X-axis):	

Task	granularity	analysis	

Our	9	schedulers	



Speedup	as	funcFon	of	ave.	task	size	(logarithmic	scale	on	the	X-axis):	

Task	granularity	analysis	

The	“sweet”	spot	for	the	baseline	
scheduler:	
the	largest	speedup	-	944x	
at	aggregaFon	level	22	
with	ave.	task	size	of	34,053	cycles.	



The	 interplay	 between	 the	 task	 granularity	 and	 the	 scheduling	
overhead	 has	 considerable	 consequences	 on	 the	 applicaFon	
scalability	and	efficiency.	

OpFmal	 task	granularity	 is	between	12,000	and	100,000	cycles	 for	
representaFve	schedulers.	

The	speedup	with	1,024	cores	can	improve	from	681x	to	984x	 (for	
Integrate)	 when	 decomposing	 an	 applicaFon	 into	 tasks	 of	 opFmal	
granularity.	

A	promising	approach	for	future	Exascale	programming	models:	
to	employ	a	best-effort	local	scheduler	and	

a	sophisFcated	(data-locality/workload-aware)	remote	scheduler.	

Results	



NUMA	architecture	

hcp://www.iue.tuwien.ac.at/phd/weinbub/dissertaFonsu16.html	

•  A	NUMA	architecture	
connects	different	NUMA	
nodes	(Nodes	1-4)	-	typically	
mulF-core	CPUs	(C1-C4)	-	via	
interconnect	links	(Link),	to	
enable	a	single	logically	
shared	global	memory.	

•  However,	memory	access	
Fmes	(latency)	-	and	possibly	
throughput	as	well	-	are	
reduced	when,	for	instance,	
Node	1	accesses	memory	
associated	with	Node	3,	due	
to	overhead	introduced	by	
the	link.	This	effect	is	
typically	referred	to	as	
NUMA	effect.	



Data	locality	

•  The	probability	of	a	memory	reference	being	
“local”	to	prior	memory	accesses.	

•  Task	stealing	olen	results	in	data	migraFon:	
when	threads	steal	tasks,	they	also	olen	take	
a	working	set	of	these	tasks.	

•  Task	size	affects	locality	as	larger	tasks	also	
have	larger	memory	footprints,	so	task	
granularity	should	be	tuned	for	efficient	use	of	
the	memory	hierarchy.	



Data-locality	aware	TBPMs	

•  Classical	random	work-stealing	TBPMs	(Cilk	
and	OpenMP)	don’t	support	it.	

•  Hierarchical	work-stealing	policies:	checking	a	
task	to	be	stolen	firstly	among	cores	in	a	local	
NUMA	domain	and	only	then	among	remote	
domains	(Qthreads).	



Data-locality	sensiFvity	study	

•  Cilk,	OpenMP,	Qthreads	+	serial	versions	

•  Same	algorithmic	structure	

•  Hardware	performance	counters	(approx.	20)	



Task-based	applicaFons	
•  FFT:	an	implementaFon	of	the	basic	Cooley-Tukey	algorithm	of	a	recursive	

complex	Fast	Fourier	TransformaFon	on	the	n	complex	components	of	the	
array.	

•  HPCCG:	a	conjugate	gradient	solver	approximaFon	to	an	unstructured	
implicit	finite	element	or	finite	volume	applicaFon.	

•  LUD:	a	divide-and-conquer	LU	decomposiFon	of	NxN	matrix,	where	N	is	at	
least	16	and	a	power	of	2.	

•  Madness:	a	real	applicaFon	kernel	from	the	computaFonal	chemistry	
domain,	it	projects	a	3D	analyFc	funcFon	into	its	numerical	representaFon	
through	adapFve	spaFal	decomposiFon	over	the	[0..1]	interval.	

•  MxM:	a	matrix-matrix	mulFplicaFon	kernel.	



Methodology	
•  6	scenarios	to	run	applicaFons	on	different	NUMA	domains	

of	a	Tegnér	node.	
•  Binding	execuFon	and	memory	on	different	NUMA	nodes.	



Experimental	results:	execuFon	Fme	



Experimental	results	for	HPCCG	

InstrucFons	per	cycle	for	
HPCCG		

All	demand	data	reads	that	
hit	in	the	LLC	 Page	faults	



Results	

•  There	are	data-locality	sensiFve	and	data-
locality	non-sensiFve	applicaFons.	

•  An	applicaFon	wricen	in	one	programming	
model	can	be	slower	than	in	other	models.	

•  For	our	test	applicaFons,	the	Cilk	versions	
have	the	best	performance	rather	than	the	
Qthreads	and	the	OpenMP	versions.	



Conclusions	and	future	steps	
•  The	studied	models	should	be	aware	of	the	data	
placement,	e.g.	by	providing	mechanism	to	
schedule	tasks	in	a	way	that	minimizes	data	
movement.	

•  Other	applicaFons	will	be	studied	on	data-locality	
sensiFvity.	

•  Energy	and	power	measurements	studies	by	
accessing	the	RAPL	counters	as	data	movement	
induces	energy	costs.	



Thank	you!	


