o T Ry

OCH KONST

%xﬁ

On data-locality issues of
task-based programming models

Dana Akhmetova
Supervisor: Professor Orjan Ekeberg
KTH Royal Institute of Technology
Stockholm/Sweden

Outline

. Introduction into task-based programming
models (TBPMs)

. Interplay between task granularity and
scheduling overhead in many-core shared-
memory systems

. Data locality issues in TBPMs

Task-based programming models

A task-based program is formulated in terms of “tasks” (work to be
done).

A task is the set of instructions that occur between two interactions
with the runtime system.

Tasks are dynamically created, and then - assigned by a task scheduler
to CPUs for their execution.

A promising way to program Exascale applications:
— applications are divided into a myriad of small tasks;
— the system is overprovisioned with tasks (Ntasks >> Ncores).

TBPMs: Intel TBB, Cilk/Cilk++/Intel Cilk Plus, OpenMP 3.0 and others.

Example of task-based code
fib(int n)
{

if (n < 2)
return n;

a = spawn fib(n-1);

b

spawn fib(n-2);
sync;

return a + b;

}

Example of task-based code

fib(int n)
{
if (n < 2)
return n;

a = spawn fib(n-1);

b

spawn fib(n-2);

sync;

return a + b;

}

Example of task-based code
fib(int n)
{

if (n < 2)
return n;

a = |spawn fib(n-1);

b

spawn fib(n-2);
sync;

return a + b;

}

Example of task-based code

fib(int n)
{
if (n < 2)
return n;

a = |spawn fib(n-1);

b

spawn fib(n-2);

sync;

return a + b;

Example of task-based code
fib(int n)
{

if (n < 2)
return n;

a = spawn fib(n-1);

b

spawn fib(n-2);
sync;

return a + b;

}

DAG representation

e Execution of a task-based program is a sequence of
tasks being relayed:
— task A is completed -> task B is triggered;
— both task B and task C are done -> task D is triggered.

* |t can be viewed as a directed acyclic graph (DAG).

* Each node in the DAG represents a specific task
while edges represent dependencies between tasks.

DAG for Fib(4)

fib(int n)
{
if (n < 2) fib(4)

return n;
@ o

a = spawn fib(n-1);
p () Y fj_b(Z) 6 fib(2)

b = spawn fib(n-2); fib(l) G fib‘” e i
sync; B oﬁe

return a + b;
}
)

Work-stealing scheduling

There are different
scheduling
algorithms on how
to map tasks to
CPUs.

We focused on the
work-stealing
approach (which is
implemented in
the Cilk runtime
system).

Queue 1

™\ (
Queue 2 Queue P

POOOO

IIIII

DOOOO
POOOOS
POOOOS
POOOOS

IIIIIIIIII

http://actor-framework.readthedocs.io/en/stable/Scheduler.html

Work-stealing scheduling

Unsuccessful stealing Successful stealing Task in the deque

_—

/

No task in the deque

No more tasks

Scheduling overhead

* Local + remote

N\ 4 N\ 4
Queue 1 Queue 2 Queue P

e Remote overhead:

— Unsucc. stealing cost \

(the latency of A
checking if a victim .
thread has a task that
can be stolen); .

— Succ. stealing cost
(+ the cost of moving
a continuation task
from the victim to the
local thread).

S /)
P00 QO ¢

POOOO
POOOO
POOOOS
POOOO
POOOO
DOOOOS

)00 Q0¢ 0000 Q¢ 000 Q06

http://actor-framework.readthedocs.io/en/stable/Scheduler.html

Scheduling overhead

* Local + remote

N\ 4 N\ 4
Queue 1 Queue 2 Queue P

e Remote overhead:

— Unsucc. stealing cost
(the latency of
checking if a victim
thread has a task that
can be stolen);

— Succ. stealing cost

(+ the cost of moving
a continuation task
from the victim to the
local thread).

P00 @ Q¢ P00 QO ¢ P00 QO ¢

POOOO
POOOO
POOOOS
POOOO
POOOO
DOOOOS

P00 QO¢ P00 QO ¢ P00 QO¢

http://actor-framework.readthedocs.io/en/stable/Scheduler.html

Task granularity

Execution time of a single task between interactions with the runtime
system (e.g., spawning a new task).

Size of leaf tasks (inner most tasks) = granularity of computation.
ave_task_size = sum_exec_time_tasks / total num_tasks

Fine-grain -> large number of tasks
Coarse-grain -> small number of tasks

Example (dense matrix-vector multiplication Ab =)
— fine-grain: each task represents an elementiny;
— coarse-grain: each task represents 3 elementsiny.

Performance of task-based applications

* Performance of task-based applications = A ;
f (# available tasks, task granularity, runtime
scheduler algorithm and overhead). 8

* Fine-grained tasks: increase of system g 0
load balance and utilization, but larger £
a.

runtime overhead.
* Coarse-grained tasks: smaller runtime

overhead, but system becomes System Scheduling

] . . utilization | overhead

imbalanced, utilization decreases. : —
Optimal Task size

size

 To achieve high efficiency and scalability, one
needs to find the balance between task
granularity, system utilization and task
scheduler.
There is an optimal task size at which the
relative impact of the scheduling overhead is
minimal while the system utilization and

L balance are still high.

Methodology

Task-based Task Execution
applications aggregation emulation

(JWe focused on “spawn/sync” task-based applications on
systems that do not yet exist (exascale machines — nodes with
1000s cores).

(JdWe worked with DAGs of the Fib, Integrate, Heat and Jacobi
applications from the Cilk benchmark suite.

Methodology

Task-based Task Execution
applications aggregation emulation

(dWe aggregated tasks into coarser-grained with our algorithm
that analyzes an application’s DAG and automatically aggregates

tasks without re-writing the application:
no complex code transformation;
no dealing with different task prog. model implementations
and keywords;
study of parallel characteristics of apps;
maintains the application semantics and workload.

Methodology

Task-based Task Execution
applications aggregation emulation

(JWe emulated the execution of the applications with different
task granularities with Prometheus, a system emulator for task-
based applications.

JWe emulated the work of 9 different task schedulers.

Methodology

Task-based Task Execution
applications aggregation emulation

(JWe analyzed the impact of changing task granularity and
scheduling algorithm on performance of task-based applications.

Task granularity analysis

Speedup as function of ave. task size (logarithmic scale on the X-axis):

1000~ 1000 e
i
800" ',p"’ 2 i i 1 800}]
X F< * A
a 600 1 o 600 1
=] =)
© ©
[0 [0
o]
Q. o
@ 4007 1 9 400 1
== BL 2R
2L 3R
2008 3L wen 5R | 2001 1
== 5L == 10R
o . . == 10L) 0 . .
102 103 104 .105 106 102 103 4 . 105
Average task size Average task size
(a) Fib (b) Integrate
> I | | | . /..'_.-ﬁ—“"“""‘f
160} 320t v o
/ ...o--u--.a-w---*“""“ R ‘“""'m
o
L Lttt By |
g 120r o 240 /) st WO
o °
(0] [0
(0] (0]
Q. o
O got 9 160"
40r 80r
0 L L L L 0 L 3 L yy L =
30000 40000 60000 100000 10 10" 10
Average task size

Average task size

(c) Heat (d) Jacobi

Performance

Task granularity analysis

Speedup as function of ave. task size (logarithmic scale on the X-axis):

1000
i
i 800f
1
i
i o 600r
| =
1 ©
1 (]
1 (O]
1 Q.
| @ 400¢
1
i = BL 2R
: 2001 2L 3R |
i 3L nien 5R
System ! Scheduling -5 10R
utilization | overhead 10L
:) 0 l 2 I 3 l 4 ‘ S ‘ 6
Optimal Task size 10 10 10 10 10
size Average task size

(a) Fib

Speedup

Task granularity analysis

1000

800

200

T

Average task size

(a) Fib

Our 9 schedulers
== B uite 2R
I == 2L 3R _
~ 3L un 5R
—tt= 5| =w= 10R|
- =0l _
107 10° 10 10° 10°

Task granularity analysis

1000
800f .
I cheduler: |
600 the largest speedup - 944x
at aggregation level 22
with ave. task size of 34,053 cycles.
400r i
== B 2R
2L 3R
200r 3L uetn 5R
== 5 «w= 10R
Ol ey m=qOL
10° 10° 10* 10° 10°

Average task size

(a) Fib

Results

The interplay between the task granularity and the scheduling
overhead has considerable consequences on the application
scalability and efficiency.

Optimal task granularity is between 12,000 and 100,000 cycles for
representative schedulers.

The speedup with 1,024 cores can improve from 681x to 984x (for

Integrate) when decomposing an application into tasks of optimal
granularity.

A promising approach for future Exascale programming models:
to employ a best-effort local scheduler and
a sophisticated (data-locality/workload-aware) remote scheduler.

NUMA architecture

A NUMA architecture
connects different NUMA
nodes (Nodes 1-4) - typically
multi-core CPUs (C1-C4) - via
interconnect links (Link), to
enable a single logically
shared global memory.

However, memory access
times (latency) - and possibly
throughput as well - are
reduced when, for instance,
Node 1 accesses memory
associated with Node 3, due
to overhead introduced by
the link. This effect is
typically referred to as
NUMA effect.

NUMA Node 1 NUMA Node 2

NUMA Node 3 NUMA Node 4

http://www.iue.tuwien.ac.at/phd/weinbub/dissertationsu16.html

Data locality

 The probability of a memory reference being
“local” to prior memory accesses.

e Task stealing often results in data migration:
when threads steal tasks, they also often take
a working set of these tasks.

* Task size affects locality as larger tasks also
have larger memory footprints, so task
granularity should be tuned for efficient use of
the memory hierarchy.

Data-locality aware TBPMs

e Classical random work-stealing TBPMs (Cilk
and OpenMP) don’t support it.

* Hierarchical work-stealing policies: checking a
task to be stolen firstly among cores in a local
NUMA domain and only then among remote
domains (Qthreads).

Data-locality sensitivity study

* Cilk, OpenMP, Qthreads + serial versions
 Same algorithmic structure

 Hardware performance counters (approx. 20)

Task-based applications

FFT: an implementation of the basic Cooley-Tukey algorithm of a recursive
complex Fast Fourier Transformation on the n complex components of the
array.

HPCCG: a conjugate gradient solver approximation to an unstructured
implicit finite element or finite volume application.

LUD: a divide-and-conquer LU decomposition of NxN matrix, where N is at
least 16 and a power of 2.

Madness: a real application kernel from the computational chemistry
domain, it projects a 3D analytic function into its numerical representation
through adaptive spatial decomposition over the [0..1] interval.

MxM: a matrix-matrix multiplication kernel.

Methodology

* 6 scenarios to run applications on different NUMA domains
of a Tegnér node.

* Binding execution and memory on different NUMA nodes.

Test case Computation Memory
n0 NUMA 0 (CPUs 0-11) NUMA 0
nl NUMA 0 (CPUs 0-11) NUMA 1
n2 NUMA 0 (CPUs 0-11) NUMA 2
n3 NUMA 0 (CPUs 0-11) NUMA 3
nn NUMA 0 (CPUs 0-11) no pinning

no pinning no pinning no pinning

4 EnolIn1[n2[n3@nn[no pinning
3 N
= e WO = WS

Experimental results: execution time

Cilk

OpenMP

(a) FFT

Qth rme_ads

Execution time (secs)

H

10

Eno[n1[n2[in3@nn[no pinning

Cilk

OpenMP

b) HPCCG

Qth rme_ads

Instructions per cycle

Experimental results for HPCCG

En0[In1[On2[In3@nn[no pinning

—
3}

o
[3)]

—
!

Cilk OpenMP Qthreads

Instructions per cycle for
HPCCG

10° lInOI]n1 |:|n2|:|n3:lnnno pinningl

_x 10 'ln0|]n1|:|n2|]n3llnnno pinninq

[6)}

H

[\S] w

Data reads that hit in LLC

o

Cilk OpenMP Qthreads

All demand data reads that
hit in the LLC

Page faults

By

wW

N

-

Cilk OpenMP Qthreads

Page faults

Results

* There are data-locality sensitive and data-
locality non-sensitive applications.

* An application written in one programming
model can be slower than in other models.

* For our test applications, the Cilk versions
have the best performance rather than the
Qthreads and the OpenMP versions.

Conclusions and future steps

* The studied models should be aware of the data
placement, e.g. by providing mechanism to

schedule tasks in a way t
movement.

sensitivity.

nat minimizes data

Other applications will be studied on data-locality

Energy and power measurements studies by

accessing the RAPL counters as data movement

induces energy costs.

Thank you!

