\({ \partial_t f_s(\mathbf x,\mathbf v, t) + \mathbf{v}\cdot \nabla_{\mathbf{x}}f_s + \frac{q_s}{m_s}\big(\mathbf{E} + \mathbf{v} \times \mathbf{B} \big)\cdot \nabla_{\mathbf{v}}f_s = 0 }\\\)
Solved with semi-lagrangian PFC scheme (Filbet et al. (2001)):
Solved on GPUs
Closure (Wang et al. (2015)): \({ {\color{red}{\nabla \cdot \mathbb{Q}_s}} = \frac{1}{\sqrt{2}}v_{\text{th},s}|k_0|(\mathbb{P}_s - p_s\mathbb 1) }\)
Solved with CWENO
![]() |
![]() |
![]() |
![]() |
Created by Simon Lautenbach.