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Randomized Singular Value Decomposition (SVD)!"l is gaining attention in
finding structure in scientific data. However, processing large-scale data is not
easy due to the limited capacity of GPU memory. To deal with this issue, we
propose RLAGPU, an out-of-core process method accelerating large-scale
randomized SVD on GPU.

The contribution of our method is as follows:

® Out-of-core implementation that overcomes the GPU memory capacity limit.

® High-performance. In-core and out-of-core routines switched automatically
according to data size and available GPU memory.

We found that our proposed method outperforms the existing cuBLAS-XT by a

margin up to 50%.

« Low-rank matrix approximation exists in a lot of problems like data
mining, information retrieval, machine learning, bioinformatics, etc.
SVD is a common matrix decomposition method for finding singular
values in low-rank matrix.
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« Decomposing a low-rank matrix by randomized SVD (rSVD)!l is an
emerging approach for reducing the time complexity of a full SVD.

Random sampling matrix

* In order to utilize fast BLAS computation on GPUs, an out-of-core

method is necessary for processing large matrices on a limited GPU
memory.

Related Work

« Yamazaki, et al. ¥l proposed randomized SVD on a hybrid CPU/GPU cluster.
Their work shows random sampling algorithm obtain speedups of up to 14.1 x in
a cluster environment.

« Voronin, et al Bl proposed a comprehensive randomized linear algebra library
called RSVDPACK. Their GPU implementation is limited by the capacity of GPU
memory, which can process data up to 0.5 GB with 12 GB memory.
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Randomized SVD Algorithm

Algorithm 1: Randomized SVD [1]

Input : matrix A € R™*", target rank k, oversampling parameter p, and
power iteration exponent g

Output: SVD of A: matrices U &€ ]R{le, X € RM, and V' ¢ R*n

1 Generate a Gaussian matrix Q € R™*', where | = k + p.

2 Y =(AA")IAQ ; // sketch A and perform power iterations
3 Q = orthonormalize(Y) ; // form an orthonormal basis of Y
4 B=Q'"A ; // form B
5 [G,E,VT} = svd(B) ; // truncated rank-{ SVD of B
6 U=QU : // form U

@® Input data A is partitioned into small blocks.

® Block data reuse for batched power iteration to minimize data
transfer between CPU and GPU.

® Automatic block size choosing.
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Figure 1: (a) Proposed block randomized SVD (BRSVD) method. A column block a is
reused on a GPU in the RSVD computation pipeline. Pass-efficiency comparison of (b) naive
implementation and (c) proposed BRSVD illustrates that our method reduces data accesses
for efficient computation.

Algorithm 2: Proposed method: RSVD by block column sampling

Input : matrix A € R™*", target rank k, oversampling parameter p, power

iteration exponent ¢, and partition number s
Output: SVD of A: matrix U € R™*' ¥ € R”' and V' € R™*"

1 n =[n/sl; I=k+p; Y =0mxi;
2 for j < 0tos—1do // J denotes index set jn’:(j+1)n’ —1
3 Generate a Gaussian matrix 2; € R”/Xl;
4 Y <Y + (A.(:,J)A.(:7J)T)q A(:’J)ﬂj ; // sketch A(:’J) and do power
iterations
5 end
6 Q,.x; = orthonormalize(Y) ; // orthonormalization by CAQR
7 free Y; B = O0;xn;
8 for < 0tos—1do
9 | Buoy QA ; // form B
10 end
11 [ﬁ,E,VT] = svd(B) ; // truncated rank-/ SVD of B
12 U:Qﬁ; // form U

Experimental Result

e Environment

- CPU: Math Kernel Library 11.1.1 on two-socket Intel 10-core Xeon E5-2650v3

- GPU: CUDA 8.0 on Pascal P100 (16 GB memory)

- 4 implementation: CPU, In-core on GPU, naive (without data partition) by cuBLAS_XT
on GPU, BRSVD on GPU.
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(a) and (b) show overall performance of tall-skinny matrices (m:n: k=1024:32:1) and
square (m:n:k=256:256:1)onesin Tflops/s. (c) and (d) show the time breakdown of
proposed method for tall-skinny and square matrices.

Robost PCA is a iterative algorithm which separate the input data into a Low-rank

and sparse (noise) matrix Its most computation is composed of SVD.

Sparse Input
a) The Extended Yale Face Database

Low-rank

Low-rank
(b) Indoor surveillance video

| ‘Input Low-rank

(c) Outdoor traffic video
Data Image # Size (GB)  tol [terations RSVD time (s) Total time (s) Speedup

The Extended Yale Face 2383 0.57 10-" | CPU 30 4.0 26.6 -
(168x192) 10~7 | GPU 30 1.1 2.0 13.3%

Indoor surveillance 100 1.5 10" | CPU 30 50.6 121.4 -
(1920 1080) 107 | GPU 30 3.4 5.3 22.9 %

Outdoor traffic 100 1.5 10 | CPU 25 51.2 104.7 -
(1920x1080) 10~° | GPU 24 2.9 4.3 24.3%

Future Work

 Randomized SVD on multi-GPU.

 Randomized linear algebra algorithms including QR, CUR, RPCA is
under development. Ob0

* Open source code is released at https://github.com/luyuechao/.
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