
High-performance Out-of-Core Randomized Singular Value Decomposition on GPU
Yuechao Lu, Fumihiko Ino and Yasuyuki Matsushita

Department of Computer Science, Osaka University, Osaka, Japan
{yc-lu, ino, yasumat}@ist.osaka-u.ac.jp

• Randomized SVD on multi-GPU.
• Randomized linear algebra algorithms including QR, CUR, RPCA is

under development.
• Open source code is released at https://github.com/luyuechao/.

Randomized Singular Value Decomposition (SVD)[1] is gaining attention in
finding structure in scientific data. However, processing large-scale data is not
easy due to the limited capacity of GPU memory. To deal with this issue, we
propose RLAGPU, an out-of-core process method accelerating large-scale
randomized SVD on GPU.
The contribution of our method is as follows:
l Out-of-core implementation that overcomes the GPU memory capacity limit.
l High-performance. In-core and out-of-core routines switched automatically

according to data size and available GPU memory.
We found that our proposed method outperforms the existing cuBLAS-XT by a
margin up to 50%.

This study was supported in part by the Japan Society for the
Promotion of Science KAKENHI Grant Numbers 15K12008, 15H01687,
and 16H02801.

• Low-rank matrix approximation exists in a lot of problems like data
mining, information retrieval, machine learning, bioinformatics, etc.
SVD is a common matrix decomposition method for finding singular
values in low-rank matrix.

• Decomposing a low-rank matrix by randomized SVD (rSVD)[1] is an
emerging approach for reducing the time complexity of a full SVD.

• In order to utilize fast BLAS computation on GPUs, an out-of-core
method is necessary for processing large matrices on a limited GPU
memory.

0 100 200
0

0.5

1

Singular value index

N
o
rm

a
liz

e
d
 m

a
g
n
itu

d
e

Image
Gaussian
Video

Figure 1. Illustration of singular value decaying. [Left] Gaussian
random, video and image samples. [Right] Decaying graphs of
singular values. The Red, Green, Blue lines represent the graphs
of a Gaussian random matrix, video, and image, respectively. The
spectrum of visual data decays significantly fast.

newly sampled. We append {y} to the previous singular
vector matrix Q̃(i−1) as Q(i) = [Q̃(i−1),y1, · · · ,yp], and
apply partial orthogonalization only for newly added {y}
by the modified Gram-Schmidt procedure [8]. The number
of bases can subsequently be reduced by checking the rank
with QR-CP in the first step of the power iteration.

Power Iteration Among the overall process in our al-
gorithm, since the only approximation step is to estimate
the orthonormal column matrix Q only, the accuracy of
our algorithm depends only on this step. In Eq. (5), if
the magnitude of the action (i.e., spectrum) of Ak is not
dominant against E, the directions of sample vectors are
biased and may be included in Range(Ak)⊥. This intro-
duces accuracy degradation to the rest of the process. To
resolve this issue, Halko et al. [11] proposed the power it-
eration scheme, which makes the spectrum difference be-
tween Ak and E larger by estimating Q on (AA⊤)ηA. It
improves the chance of better capturing the range of Ak

from Y = (AA⊤)ηAΩ, while the singular vectors remain
unchanged. Halko et al. also showed that η = 2 or 4 power
iterations are sufficient for usual data of interest, and highly
accurate range finding can be achieved. As shown in Fig. 1,
decaying singular values of visual data is much faster than
Gaussian random matrix. Our empirical tests also show that
η = 2 is enough and it is used in all our experiments.

3.2. Computing the Singular Values (Vectors)

The NNM problem is now reduced to SVT on a smaller
matrix B. In this section, we further reduce the compu-
tation time of SVT on B. The SVT operator can be com-
puted by SVD and shrinkage on its singular values. For pos-
itive semi-definite matrices, SVD can be more efficiently
computed by Eigen decomposition (ED), which is generally
faster than SVD at least twice in our empirical tests. To ap-
ply ED to a general matrix, we form a positive semi-definite
matrix by the following decomposition:

Definition 2 (Polar decomposition [12]). Let X ∈ Cm×n,
m ≥ n. There exists a matrix W ∈ Cm×n and a unique
Hermitian positive semi-definite matrix P ∈ Cn×n such

that
X = WP, W∗W = I,

where I is the identity matrix. If rank(X) = n, then P is
positive definite and W is uniquely determined.

Note that the existence of polar decomposition is equiv-
alent to the existence of SVD.

We use a Newton based polar decomposition suggested
by Higham et al. [12], which has a quadratic convergence
behavior. In our experiment, it converges at a small num-
ber of iterations (typically 7) with various different data,
which is consistent with the result of [2, 12]. Due to the
requirement of the inverse operator in Newton iterations,
it is only applicable to non-singular square matrix. Since
B⊤ ∈ Rn×s is a full column rank matrix, the non-singular
square matrix can be simply obtained from B⊤ = HC by
QR decomposition, where we call C ∈ Rs×s a core matrix
that is always non-singular and square. Contrary to Sec. 3.1,
no column pivoting is required.

We sequentially apply the polar decomposition and ED
on the core matrix to be C = WP = WVDV⊤, where D
and V are the eigenvalue and eigenvector matrices of P, re-
spectively. Since the matrices H, W, and V are orthonor-
mal column matrices, the diagonal matrix D is equivalent
to the singular value matrix of B. Finally, Sτ (A) can be
approximated by

Sτ (A) ≈ Sτ (Âs) = (QV) Sτ (D) (HWV)⊤. (6)

For the range propagation, the singular vector matrix Q̃ is
stored as Q̃ = QV or HWV (according to either side of
random matrix multiplication). Overall algorithm is sum-
marized in Algorithm 1.

3.3. Adaptive Rank Prediction (AP) Heuristic
For SVT, only singular vectors corresponding to the sin-

gular values that are greater than a certain threshold are
needed, and full SVD is unnecessary. Since the rank of
A(i) is unknown before SVD, predicting its rank can avoid
unnecessary computation. We observe that, in many NNM
related problems, the rank of A(i) is monotonically increas-
ing or decreasing over iterations, and the rank is stabilized
as the number of iteration increases. As we shall see in the
theorem of error bound in Sec. 4, over-sampling is always
useful to reduce the expected error bound of FRSVT. Thus,
optimistically predicting rank allows to achieve both com-
putational efficiency and stability.

The speed advantage of our method will be lost with a
higher sampling rate. In such a case, we resort to the trun-
cated SVT by upper bounding the target rank. As shown in
natural image statistics of Fig. 1, the rank of A(i) is gener-
ally stabilized at low-rank in many computer vision appli-
cation. Usually, the final accuracy is not harmed, as seen

≈

≈≈

Random sampling matrix

𝑙𝑛

𝑚

𝑙

𝑚

𝑙 𝑙 𝑛

𝑚

l Input data A is partitioned into small blocks.
l Block data reuse for batched power iteration to minimize data

transfer between CPU and GPU.
l Automatic block size choosing.

• Yamazaki, et al. [2] proposed randomized SVD on a hybrid CPU/GPU cluster.
Their work shows random sampling algorithm obtain speedups of up to 14.1 x in
a cluster environment.

• Voronin, et al [3] proposed a comprehensive randomized linear algebra library
called RSVDPACK. Their GPU implementation is limited by the capacity of GPU
memory, which can process data up to 0.5 GB with 12 GB memory.

Summary

Why Out-of-core Randomized SVD?

Related Work

Randomized SVD Algorithm

BRSVD: Block	Randomized	SVD	

Experimental Result

Application	to	Robust	PCA

Reference
[1] Halko, Nathan, Per-Gunnar Martinsson, and Joel A. Tropp. "Finding structure with randomness: Probabilistic
algorithms for constructing approximate matrix decompositions." SIAM review 53.2 (2011): 217-288.
[2] Yamazaki, Ichitaro, et al. "Random Sampling to Update Partial Singular Value Decomposition on a Hybrid
CPU/GPU Cluster.” SC15, November 15-20, 2015.
[3] Voronin, Sergey, and Per-Gunnar Martinsson. "RSVDPACK: Subroutines for computing partial singular value
decompositions via randomized sampling on single core, multi core, and GPU architectures." arXiv preprint
arXiv:1502.05366 (2015).

Image data

Gaussian random number

Video data

Data matrix

Singular value matrix

Algorithm 1: Randomized SVD [12]
Input : matrix A 2 Rm⇥n, target rank k, oversampling parameter p, and

power iteration exponent q
Output : SVD of A: matrices U 2 Rm⇥l, ⌃ 2 Rl⇥l, and V> 2 Rl⇥n

1 Generate a Gaussian matrix ⌦ 2 Rn⇥l, where l = k + p.
2 Y = (AA>

)

qA⌦ ; // sketch A and perform power iterations

3 Q = orthonormalize(Y) ; // form an orthonormal basis of Y

4 B = Q>A ; // form B

5
h
eU,⌃,V>

i
= svd(B) ; // truncated rank-l SVD of B

6 U = QeU ; // form U

standard deterministic SVD in a cluster environment. Voronin et al . proposed a
comprehensive randomized linear algebra library called RSVDPACK [31]. While
effective, their GPU implementation is in-core, and the efficient computation can
only be achieved when the data fits in the space of GPU memory. Ji et al . [15]
presented a GPU-accelerated implementation of RSVD for image compression.
Their GPU/CPU hybrid implementation was about 6–7 times faster than the
CPU version in their experiment. These studies pioneered utilizing GPU in
accelerating RSVD and other randomized matrix decomposition algorithms,
while they are all limited to either specialized purpose or memory capacity
limit. Our work aim at providing a flexible and high-performance RSVD GPU
solver for a wider range of applications that involve large data that cannot be
accommodated in a GPU memory.

Previous related works of RSVD on GPUs used GPU/CPU hybrid sys-
tems [32]. In these methods, only a part of RSVD computations, namely random
number generation and GEMM, are performed on GPUs, but other computation
steps, such as reduction of projected matrices, orthonormalization, and SVD are
computed on CPUs, which results a large amount of CPU-GPU communications.
The growth of GPU’s arithmetic computation power is super-linear w.r.t. the
growth of CPU-GPU communication bandwidth, and the CPU-GPU bandwidth
bound emerges as a new bottleneck for various applications [10]. Our method
avoids this bottleneck by maximizing the pass-efficiency with a block partitioning
approach and performing all the RSVD computation on a GPU.

3 Proposed Method: Block Randomized SVD (BRSVD)

on a GPU

The proposed BRSVD method partitions the input matrix A 2 Rm⇥n into
column blocks that consists of a set of columns and sequentially transfers them
to GPU. Subsequently, a sample matrix Y 2 Rm⇥l is constructed in a gradual
manner by capitalizing on the fact that matrix product can be naturally divided

4

	Ω
y = a

(2) Block Sampling

Y

(3) Block power iterations

+=
aT∗ ∗ ∗

QT

(5) Form B

=

(7) Form U

U =
Σ VT

= '()()B

(6) SVD of B

	U- ∗

Q =	orth()

(4) Orthonormalization

B(J,:)

(a)

(1) (2) (3) (4) (5) (6) (7)
GPU execution

A
1

Pass time

(b)

A

(c)
Data reuse on GPU

Matrix A stored on CPU memory

∗

a Y

Q

	Ω

(1) Random

number generation

a

2q 1 1 1

	U-

(1) (2) (3) (4) (5) (6) (7)

y

Figure 1: (a) Proposed block randomized SVD (BRSVD) method. A column block a is

reused on a GPU in the RSVD computation pipeline. Pass-efficiency comparison of (b) naïve

implementation and (c) proposed BRSVD illustrates that our method reduces data accesses

for efficient computation.

as:

Y = A⌦ =

X

i,j

A
(:,j)⌦(i,:), (3)

where the subscript indicates matrix elements; (i, :) and (:, j) designate the i-th
row and j-th column, respectively. For each column block A

(:,J) 2 Rm⇥n0
where

J is a list of column indices (|J | = n

0), a Gaussian matrix ⌦j 2 Rn0⇥l is drawn
on the GPU to sketch the column block A

(:,J) by A
(:,J)⌦j . The resulting matrix

is further refined via a power method (with exponent q) reusing the transferred
column block A

(:,J), and the sample matrix Y 2 Rm⇥l is updated as

Y Y +

⇣
A

(:,J)A
>
(:,J)

⌘q
A

(:,J)⌦j . (4)

After each update of Y, the transfered column block A
(:,J) is discarded from

the GPU for avoiding memory overflow.
Once the sample matrix Y is created, its orthonormalized basis Q 2 Rm⇥l is

constructed on the GPU. Using the basis Q, a small core matrix B 2 Rl⇥n is
computed using the column block A

(:,J) that is once again transferred from the
CPU memory as

B
(J,:) Q>A

(:,J). (5)

Finally, an SVD of the small matrix B is performed on the GPU to yield its
decomposition eU,⌃,V>, and by reprojecting the obtained basis eU by Q, the

5

Algorithm 2: Proposed method: RSVD by block column sampling
Input : matrix A 2 Rm⇥n, target rank k, oversampling parameter p, power

iteration exponent q, and partition number s
Output : SVD of A: matrix U 2 Rm⇥l, ⌃ 2 Rl⇥l, and V> 2 Rl⇥n

1 n0
= dn/se; l = k + p; Y = 0m⇥l;

2 for j 0 to s� 1 do // J denotes index set jn0
: (j + 1)n0 � 1

3 Generate a Gaussian matrix ⌦j 2 Rn0⇥l;
4 Y Y +

�
A(:,J)A(:,J)

>�q A(:,J)⌦j ; // sketch A(:,J) and do power

iterations

5 end
6 Qm⇥l = orthonormalize(Y) ; // orthonormalization by CAQR

7 free Y; B = 0l⇥n;
8 for j 0 to s� 1 do
9 B(:,J) Q>A(:,J) ; // form B

10 end

11
h
eU,⌃,V>

i
= svd(B) ; // truncated rank-l SVD of B

12 U = QeU ; // form U

left singular vectors U = QeU of the input matrix A can be obtained. Figure 1
(a) summarizes the overall pipeline of the proposed method.

While a naïve implementation requires 2(q + 1) times of data accesses to
the input matrix A, the proposed BRSVD method only requires twice of data
transfers because it reuses the column blocks A

(:,J) on the GPU memory (see
Fig. 1 (b) and (c)). As we will see later in the experiment, this reduction of
data transfer significantly improves the efficiency of RSVD computation for large
matrices. For now, let us look at the efficiency analysis summarized Table 1. It
compares the computation and communication costs of the proposed method
with a naïve method. In the table, #flops refers to the arithmetic computation
cost in floating point operations. #words refers to the communication cost
between CPU and GPU memory. While the #flops remains the same in both
approaches, our BRSVD method significantly reduces the communication cost
#words from O(mnl + (m+ n)l

2

) to O(m(n+ l)).

Implementation details. Here we describe implementation details that will
be needed to reproduce the work.
Sampling and power iteration: For generating Gaussian random matrices ⌦J

on GPU, we have used cuRAND library [25]. The random number generation
is performed in parallel with transferring column blocks A

(:,J) and sampling of
the column blocks. The GEMM calculation sequence in Line 4 of Algorithm 2 is
reversed from right to left based on the associative law of matrix multiplication
so as to avoid generating a large projection matrix of size m⇥m in the process:

Y Y +

 �����������������������������
A

(:,J)A(:,J)
> · · ·A

(:,J)A(:,J)
>

| {z }
q (power iteration)

A
(:,J)⌦J , (6)

6

Table 2: Comparison of RPCA by RSVD on CPU and GPU. All experiments are conducted

in double precision. The parameters are set as: k = p = 10, q = 1. The experimental setup is

the same in Section 4.

Data Image # Size (GB) tol Iterations RSVD time (s) Total time (s) Speedup
The Extended Yale Face 2383 0.57 10

�7 CPU 30 4.0 26.6 -
(168⇥192) 10

�7 GPU 30 1.1 2.0 13.3⇥
Indoor surveillance 100 1.5 10

�7 CPU 30 50.6 121.4 -
(1920⇥1080) 10

�7 GPU 30 3.4 5.3 22.9⇥
Outdoor traffic 100 1.5 10

�5 CPU 25 51.2 104.7 -
(1920⇥1080) 10

�5 GPU 24 2.9 4.3 24.3⇥

(13.3⇥) for this dataset.

Background subtraction. We have used PEViD-UHD (Privacy Evaluation
Ultra High Definition Video Dataset) [17] for assessing the background subtrac-
tion application shown in Fig. 3 (b). In this background subtraction experiment,
100 video frames captured by a stationary indoor surveillance camera with a
resolution of 1920 ⇥ 1080(= 2073600) are used. They form a 2073600 ⇥ 100

tall-skinny input matrix. In this evaluation, it was observed that our method
with a GPU exhibited 22.9⇥ speedup over a CPU implementation. In addition,
we used a Full-HD outdoor traffic video, which is heavily corrupted by camera
jitterings and large traffic volume, indicating more corruptions (Fig. 3 (c). With
a looser tolerance for evaluating convergence, i.e., the tolerance parameter tol

was set to 10

�5, our method achieved overall 24.3⇥ acceleration over a CPU
implementation.

Regarding the number of iterations in Algorithm 3, we found that there was
a little difference in our method on GPU and a CPU implementation. This was
caused by the slight accuracy difference between MKL and cuBLAS routines.

6 Conclusions

Over the past several years, the SVD solution methods have shown significant
advancement in terms of efficiency, but there have not been many attempts
to harness the modern computing architectures such as GPUs. The likely
explanation is that GPUs are still considered a specialized device; however, with
that large-scale computations are now performed on cloud instances that are
quite often equipped with GPU accelerators, developing new algorithms for
new computing architectures is becoming urgent. This paper provides a fast
randomized SVD algorithm that fully utilizes a GPU, that leads to state-of-the-
art speed by a large margin. Our future work includes enabling BRSVD to run
in a multi-GPU environment to achieve further acceleration.

Acknowledgments

This research was supported by in part by the Japan Society for the Promotion
of Science KAKENHI Grant Numbers 15K12008, 15H01687, 16H02801 and

11

Input
 (a) The Extended Yale Face Database

Low-rank Sparse Input Low-rank Sparse

Input Low-rank Sparse
 (b) Indoor surveillance video

Input Low-rank Sparse
 (c) Outdoor traffic video

Future Work

(a)	and	(b)	show	overall	performance	of	tall-skinny	matrices	(m	:	n	:	k	=	1024	:	32	:	1)	and	
square	(m	:	n	:	k	=	256	:	256	:	1)	ones	in	Tflops/s.	(c)	and	(d)	show	the	time	breakdown	of	
proposed	method	for	tall-skinny	and	square	matrices.	

• Environment
- CPU: Math Kernel Library 11.1.1 on two-socket Intel 10-core Xeon E5-2650v3
- GPU: CUDA 8.0 on Pascal P100 (16 GB memory)
- 4 implementation: CPU, In-core on GPU, naïve (without data partition) by cuBLAS_XT
on GPU, BRSVD on GPU.

[1]

Robost PCA	is	a	iterative	algorithm	which	separate	the	input	data	into	a	Low-rank	
and	sparse	(noise)	matrix.	Its	most	computation	is	composed	of	SVD.

