_

High-performance Out-of-Core Randomized Singular Value Decomposition on GPU

Yuechao Lu, Fumihiko Ino and Yasuyuki Matsushita
Department of Computer Science, Osaka University, Osaka, Japan

{yc-lu, ino, yasumat}@ist.osaka-u.ac.jp

~

:)

Randomized Singular Value Decomposition (SVD)!"l is gaining attention in
finding structure in scientific data. However, processing large-scale data is not
easy due to the limited capacity of GPU memory. To deal with this issue, we
propose RLAGPU, an out-of-core process method accelerating large-scale
randomized SVD on GPU.

The contribution of our method is as follows:

® Out-of-core implementation that overcomes the GPU memory capacity limit.

® High-performance. In-core and out-of-core routines switched automatically
according to data size and available GPU memory.

We found that our proposed method outperforms the existing cuBLAS-XT by a

margin up to 50%.

« Low-rank matrix approximation exists in a lot of problems like data
mining, information retrieval, machine learning, bioinformatics, etc.
SVD is a common matrix decomposition method for finding singular
values in low-rank matrix.

o 1
S i —-Image
g i — @Gaussian
cU : ---Video
S
- 0.9];
o R e o .
RO D I
s '© :
G o AR Video data -
st T 5
- ¥ ' ‘ i _L.*:';I:j"'t.-_ ; "".‘ ; -':_;_t .~$
Image data = 5 '"f"-‘L't-fl';é'.'-;-*;.-;'-,g;;i- Zz 0 -
| R R 0 100 - 200
L Singular value index

' Gau33|an random number |

Al ~ U 3] v

Singular value matrix
Data matrix

« Decomposing a low-rank matrix by randomized SVD (rSVD)!l is an
emerging approach for reducing the time complexity of a full SVD.

Random sampling matrix

* In order to utilize fast BLAS computation on GPUs, an out-of-core

method is necessary for processing large matrices on a limited GPU
memory.

Related Work

« Yamazaki, et al. ¥l proposed randomized SVD on a hybrid CPU/GPU cluster.
Their work shows random sampling algorithm obtain speedups of up to 14.1 x in
a cluster environment.

« Voronin, et al Bl proposed a comprehensive randomized linear algebra library
called RSVDPACK. Their GPU implementation is limited by the capacity of GPU
memory, which can process data up to 0.5 GB with 12 GB memory.

Reference

[1] Halko, Nathan, Per-Gunnar Martinsson, and Joel A. Tropp. "Finding structure with randomness: Probabilistic
algorithms for constructing approximate matrix decompositions." SIAM review 53.2 (2011): 217-288.

[2] Yamazaki, Ichitaro, et al. "Random Sampling to Update Partial Singular Value Decomposition on a Hybrid
CPU/GPU Cluster.” SC15, November 15-20, 2015.

[3] Voronin, Sergey, and Per-Gunnar Martinsson. "RSVDPACK: Subroutines for computing partial singular value

decompositions via randomized sampling on single core, multi core, and GPU architectures." arXiv preprint
arXiv:1502.05366 (2015).

Randomized SVD Algorithm

Algorithm 1: Randomized SVD [1]

Input : matrix A € R™*", target rank k, oversampling parameter p, and
power iteration exponent g

Output: SVD of A: matrices U &€]R{le, X € RM, and V' ¢ R*n

1 Generate a Gaussian matrix Q € R™*', where | = k + p.

2 Y =(AA")IAQ ; // sketch A and perform power iterations
3 Q = orthonormalize(Y) ; // form an orthonormal basis of Y
4 B=Q'"A ; // form B
5 [G,E,VT} = svd(B) ; // truncated rank-{ SVD of B
6 U=QU : // form U

@® Input data A is partitioned into small blocks.

® Block data reuse for batched power iteration to minimize data
transfer between CPU and GPU.

® Automatic block size choosing.

* | () * *
()
—> |ly|- —>|[Y]+= y| [||Q] o |Y])
(1) Random (2) Block Sampling (3) Block power iterations (4) Orthonormalization
number generation
= _q° |- ol|z|| v "[U
j‘> Bu, j‘> > [1U] = |Q
= SVD(B)
(5) Form B (6) SVD of B (7) Form U
(a)
Pass time [A]MatrixAstored on CPU memory l ﬂm I
T |
Efecren ([Apnied
H @ 3 (4) (5)) () () @ 1(3) @4) () ()
GPU execution Data reuse on GPU
(b) (c)

Figure 1: (a) Proposed block randomized SVD (BRSVD) method. A column block a is
reused on a GPU in the RSVD computation pipeline. Pass-efficiency comparison of (b) naive
implementation and (c) proposed BRSVD illustrates that our method reduces data accesses
for efficient computation.

Algorithm 2: Proposed method: RSVD by block column sampling

Input : matrix A € R™*", target rank k, oversampling parameter p, power

iteration exponent ¢, and partition number s
Output: SVD of A: matrix U € R™*' ¥ € R”' and V' € R™*"

1 n =[n/sl; I=k+p; Y =0mxi;
2 for j < 0tos—1do // J denotes index set jn’:(j+1)n’ —1
3 Generate a Gaussian matrix 2; € R”/Xl;
4 Y <Y + (A.(:,J)A.(:7J)T)q A(:’J)ﬂj ; // sketch A(:’J) and do power
iterations
5 end
6 Q,.x; = orthonormalize(Y) ; // orthonormalization by CAQR
7 free Y; B = O0;xn;
8 for < 0tos—1do
9 | Buoy QA ; // form B
10 end
11 [ﬁ,E,VT] = svd(B) ; // truncated rank-/ SVD of B
12 U:Qﬁ; // form U

Experimental Result

e Environment

- CPU: Math Kernel Library 11.1.1 on two-socket Intel 10-core Xeon E5-2650v3

- GPU: CUDA 8.0 on Pascal P100 (16 GB memory)

- 4 implementation: CPU, In-core on GPU, naive (without data partition) by cuBLAS_XT
on GPU, BRSVD on GPU.

4 4
12,10 1210
1.20_, ﬁgsg Eyogugfkls(g{%posed) 1.27 Egg;/ Eyoé\ugf,&] (pr_?posed) s Sampling and power iteration wesm Sampling and power iteration
—a— naive on CPU —e— naive on CPU 10. ™= Orthonormalization ¢ 10 W= Orthonormalization
11 In-core on GPU | 1L In-core on GPU | == ESTET B -g:)/r[r)n B
__ 8 mmmFormU . __ 8 mmmFormU
2
6 £ 6
=

0 20 40 60 80 "0 20 40 60 80 0 20 40 60 80 0 20 40 60 80
Data size (GiB) Data size (GiB) Data size (GiB) Data size (GiB)

(@) (b) (c) (d)

(a) and (b) show overall performance of tall-skinny matrices (m:n: k=1024:32:1) and
square (m:n:k=256:256:1)onesin Tflops/s. (c) and (d) show the time breakdown of
proposed method for tall-skinny and square matrices.

Robost PCA is a iterative algorithm which separate the input data into a Low-rank

and sparse (noise) matrix Its most computation is composed of SVD.

Sparse Input
a) The Extended Yale Face Database

Low-rank

Low-rank
(b) Indoor surveillance video

| ‘Input Low-rank

(c) Outdoor traffic video
Data Image # Size (GB) tol [terations RSVD time (s) Total time (s) Speedup

The Extended Yale Face 2383 0.57 10-" | CPU 30 4.0 26.6 -
(168x192) 10~7 | GPU 30 1.1 2.0 13.3%

Indoor surveillance 100 1.5 10" | CPU 30 50.6 121.4 -
(1920 1080) 107 | GPU 30 3.4 5.3 22.9 %

Outdoor traffic 100 1.5 10 | CPU 25 51.2 104.7 -
(1920x1080) 10~° | GPU 24 2.9 4.3 24.3%

Future Work

 Randomized SVD on multi-GPU.

 Randomized linear algebra algorithms including QR, CUR, RPCA is
under development. Ob0

* Open source code is released at https://github.com/luyuechao/.

[=]

This study was supported in part by the Japan Society for the
Promotion of Science KAKENHI Grant Numbers 15K12008, 15H01687,
and 16H02801.

