
A Synchronization Mechanism for Parallel
Geometric Algorithms

Joel Fuentes1, Fei Luo2 and Isaac D. Scherson3

1Department of Computer Science and Information Technologies. Universidad del Bio-Bio, Chillán, Chile
2School of Information and Engineering. East China University of Science and Technology. Shanghai, China
3Donald Bren School of Information and Computer Sciences. University of California, Irvine, USA.

jfuentes@ubiobio.cl
IHPCSS 2017

Abstract
A new synchronization mechanism called Spatial Lock for parallel

geometric algorithms is presented. We demonstrate that Spatial Locks
can ensure thread synchronization in geometric applications that per-
form parallel operations over objects in 2D or 3D space. A parallel al-
gorithm for mesh simplification was implemented using Spatial Locks
to show its usefulness when parallelizing geometric application with
ease. Experimental results illustrate the advantage of using this syn-
chronization mechanism.

Introduction

Geometric algorithms are known for being highly compute-
intensive. With the advent of computing systems that use sili-
con devices with many CPUs per chip, parallelizing these algo-
rithms has become a desired objective in order to achieve signif-
icant computational improvement. For example, in triangulated
surface meshes a typical technique for parallelizing geometric
algorithms is decomposing the mesh into submeshes and run the
algorithm sequentially on each part. However, there are several
algorithms that require special order for processing objects, and
decomposing the mesh into submeshes can lead to bad quality
results.

We introduce a new synchronization mechanism called Spatial
Locks that allows thread synchronization when updating objects
concurrently in 2D or 3D space.

Spatial Lock

We use the concepts of Spatial Hashing and Axis-aligned
Bounding Box (AABB) to build this synchronization mecha-
nism. Spatial hashing is a data structure that subdivides the 2D
or 3D space into uniformly-sized cells, and then stores data el-
ements in these cells, as shown in Figure 1. It is called spatial
hash because the cell index of a data element can be obtained
in constant time by its coordinates (x, y and z) as a hash func-
tion. AABB is also a data structure that represent an axis-align
building box for certain object.

Figure 1: Spatial hashing where objects are mapped into uniformly-sized
cells

The Spatial Locks mechanism works by protecting objects be-
ing updated by a thread from other thread’s updates over the
same object. For this purpose, it maintains an internal spa-
tial hash table that reflects the status of concurrent updates by
threads, it is in which cells are threads performing concurrent
updates. The lock object operation is shown in Algorithm 1
where it can be seen that the spatial hash table is updated by
using the atomic operation compare and swap (CAS) to guaran-
tee thread safety.
Algorithm 1: Lock object (AABB) in Spatial Hash Table
Input : an axis-aligned bounding box (AABB)
minIndex = getCell(aabb.minPoint);
maxIndex = getCell(aabb.maxPoint);
if minIndex == maxIndex then

while true do
if table[minIndex] == -1 then

if table[minIndex].CAS(-1, 1) then
break;

end
end

end
else

//continue with other cases (minIndex != maxIndex)
end

Mesh Simplification

Surface mesh simplification is the process of reducing the num-
ber of faces used in a surface mesh while keeping the overall
shape, volume and boundaries preserved as much as possible
[1].

Figure 2: Surface mesh simplification algorithm applied to a mesh with dif-
ferent simplification levels.

The algorithm presented in [2] can simplify any oriented 2-
manifold surface using a method known as edge collapse with
quadratic errors. The method consists of iteratively replacing an
edge with a single vertex, removing 2 triangles per edge collapse
operation as shown in Figure 3.

Figure 3: Contraction of the edge (v, vu) into a single vertex. The shaded
triangles become degenerate and are removed during the contraction.

Parallel Mesh Simplification using Spatial Locks

The introduced modifications to make the explained algorithm
parallel are:

• A shared vector T is used to store the triangles. If priorities
are considered, a concurrent priority queue can be used in-
stead.

• Every thread takes a triangle t from T and starts analyzing the
quadratic errors from its edges.

• If an edge is set to be collapsed, we lock the triangle by cre-
ating a corresponding AABB and inserting it into the spatial
hash table.

• Once the edge is collapse and the shaded triangles removed,
the corresponding AABB is remove from the spatial hash ta-
ble.

The process of concurrent edge-collapse operation is shown
in Figure 4 and Algorithm 2. If two threads are attempting to
update adjacent triangles, only one will succeed locking the tri-
angle and the other must wait.

Figure 4: Edge-collapse operations being executed in parallel

Algorithm 2: Parallel Mesh Simplification using Spatial Lock
Input : Set of triangles
Output: Reduced set of triangles
parallel for every triangle t do

for every edge e do
err = calculateError(e);
if err > threshold then

continue;
else

aabb = createAABB();
spatialHashTable.put(aabb);
collapseEdge(e);
spatialHashTable.remove(aabb);

end
end

end

Experimental Results
A set of experiments were carried out in order to evaluate the
performance of the parallel mesh simplification algorithm and
to compare it to its sequential version. Meshes with more than 1
million of triangles are particularly of our interest, since their
simplifications require a big amount of edge-collapse opera-
tions.

Model # triangles
removed
triangles

Original
Alg. (sec.)

Parallel
Alg. (sec.)

Bunny 69,664 34,832 0.3 0.2
Head 281,724 140,862 1.4 0.9
Wall 651,923 325,961 3.3 2.0
Einstein 674,038 337,018 4.1 2.9
Castle 2,436,234 121,8116 30.3 12.8

Table 1: Performance of mesh simplification algorithms with different mod-
els. Models obtained from https://ten-thousand-models.appspot.com

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25 30

T
im

e
 (

s
e

c
o

n
d

s
)

Threads

Parallel simplification with Spatial Locks
Original simplification

Figure 5: Total time spent by both algorithms in simplifying a surface mesh
with 2,436,234 triangles.

Conclusions
Spatial Locks are a useful synchronization mechanism that al-
lows to make parallel geometric algorithms thread-safe. Based
on Spatial Hashing and AABB, they provide constant-time
lock/unlock operations when updating an object. Experiments
show that highly parallel executions can be obtained when us-
ing this mechanism for mesh simplification processes and big
meshes.

Forthcoming Research
Compare our Parallel Mesh Simplification algorithm with other
parallel proposals in terms of results quality and performance.
Find more geometric algorithms that can benefit from using Spa-
tial Locks.

References
[1] Fernando Cacciola. Triangulated surface mesh simplifica-

tion. In CGAL User and Reference Manual. CGAL Editorial
Board, 4.10 edition, 2017.

[2] Peter Lindstrom and Greg Turk. Fast and memory efficient
polygonal simplification. In Proceedings of the Conference
on Visualization ’98, VIS ’98, pages 279–286, Los Alamitos,
CA, USA, 1998. IEEE Computer Society Press.

