Subcell Modelling of the Digital Human Phantom (DHP) in the **Finite-Difference Time-Domain (FDTD) Method**

Basics of the FDTD Method

- The standard FDTD method [1] solves space and time derivatives of Maxwell's curl equations in the time domain using the central difference approximations.
- The method is powerful and robust for solving electromagnetic problems in broadband simulations; it provides a solution for a large number of scattering and interaction electromagnetic problems for wide range of frequencies in a single simulation run.
- However, the uniform rectangular grid structure of the FDTD method demands excessively high computational resources to resolve electrically-fine geometrical features in the problem space.

Subcell Technique

- The standard FDTD method, the entire problem space must be sampled at a scale equal to or smaller than the thickness of the layer. This spatial constraint typically causes very fine meshing of the entire problem space of interest.
- The fine spatial sampling results in excessively large memory consumption due to a dramatic increase of the total number of cells. The small size usage leads to a small time step under stability the condition, therefore an unreasonable computational time is required even for a simple engineering problem containing an electrically-fine geometrical features.

Figure 1: Meshing of the problem space.

- The subcell model permits the user to choose an FDTD cell size greater than the object thickness.
- The model relies on the application of the integral form of Ampere's law to the cell that contains the thin layer [2].

Kenan Tekbas, Fumie Costen, Jean-Pierre Bérenger

The University of Manchester

kenan.tekbas@manchester.ac.uk

Figure 2: Thin layer and the electric and magnetic field components in the three-dimensional grid.

The Digital Human Phantom (DHP)

- To test human body's response to electromagnetic radiation without exposing a human volunteer at any risk.
- To perform any number of tests at far lower cost than actual clinical trials.

Figure 3: Three-dimensional Digital Human Phantom (DHP) created by combining 1654 cross-sectional MRI scans, taken at 1 mm intervals from the head to feet, of the healthy subject.

Tissue ID Vol. 49 47 48 17

Figure 4: A slice of the digital human phantom showing the location of the tissues

• We used the Debye model to describe the electrical properties of the human tissues

$$\epsilon_r(\omega) = \epsilon_{\infty} + \frac{\epsilon_{\rm S} - \epsilon_{\infty}}{1 + \jmath\omega\tau} + \frac{\sigma_{\rm S}}{\jmath\omega\epsilon_0}.$$

• Each tissue is identified with a unique ID number - 49 (Muscle), 48 (Fat) - and calls its own parameters, ϵ_{∞} , $\epsilon_{\rm S}$, τ and $\sigma_{\rm S}$ to solve the subcell equation in each coarse cell

Figure 5: The coarse sampling of the DHP by 8x8, then identification of tissue types and volumes in each coarse cell.

Figure 7: The observation of E_z . The source excitation was a Gaussian pulse and the frequency range was set up to 5.0 GHz.

Conclusion

The subcell technique has the potential to be used in numerical applications of bioelectromagnetism, providing dramatic reductions in the computational requirements.

Future Works

- dependent objects.

Bibliography

- House, Norwood, MA, 2005.

Figure 6: The media mapping of the DHP after coarse meshing

Fotal Grid	Memory	Speed up	Relative Error
300×600	×14	× 37	2.03%
100×200	× 85	×1342	6.34%

• To apply the proposed subcell technique for the simulation of moving, expanding, or contracting frequency-

• To achieve higher computational performance by parallelization of the subcell algorithm in MPI.

[1] A. Taflove and S.C. Hagness. *Computational Electrodynamics*. Artech

[2] K. Tekbas, F. Costen, J. P. Berenger, R. Himeno, and H. Yokota. Subcell modeling of frequency-dependent thin layers in the FDTD method. IEEE Transactions on Antennas and Propagation, 65(1):278–286, Jan 2017.