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Basics of the FDTD Method
•The standard FDTD method [1] solves space and time

derivatives of Maxwell’s curl equations in the time do-
main using the central difference approximations.
•The method is powerful and robust for solving electro-

magnetic problems in broadband simulations; it provides
a solution for a large number of scattering and interaction
electromagnetic problems for wide range of frequencies
in a single simulation run.
•However, the uniform rectangular grid structure of the

FDTD method demands excessively high computational
resources to resolve electrically-fine geometrical features
in the problem space.

Subcell Technique
•The standard FDTD method, the entire problem space

must be sampled at a scale equal to or smaller than the
thickness of the layer. This spatial constraint typically
causes very fine meshing of the entire problem space of
interest.
•The fine spatial sampling results in excessively large

memory consumption due to a dramatic increase of the to-
tal number of cells. The small size usage leads to a small
time step under stability the condition, therefore an unrea-
sonable computational time is required even for a simple
engineering problem containing an electrically-fine geo-
metrical features.
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Figure 1: Meshing of the problem space.

•The subcell model permits the user to choose an FDTD
cell size greater than the object thickness .
•The model relies on the application of the integral form of

Ampere’s law to the cell that contains the thin layer [2] .
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Figure 2: Thin layer and the electric and magnetic field compo-
nents in the three-dimensional grid.

The Digital Human Phantom (DHP)
•To test human body’s response to electromagnetic radia-

tion without exposing a human volunteer at any risk.
•To perform any number of tests at far lower cost than ac-

tual clinical trials.
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Figure 3: Three-dimensional Digital Human Phantom (DHP) cre-
ated by combining 1654 cross-sectional MRI scans, taken at 1
mm intervals from the head to feet, of the healthy subject.
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Figure 4: A slice of the digital human phantom showing the loca-
tion of the tissues

•We used the Debye model to describe the electrical prop-
erties of the human tissues

εr(ω) = ε∞ +
εS − ε∞
1 + ωτ

+
σS

ωε0
.

•Each tissue is identified with a unique ID number - 49
(Muscle), 48 (Fat) - and calls its own parameters, ε∞, εS,
τ and σS to solve the subcell equation in each coarse cell
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Figure 5: The coarse sampling of the DHP by 8x8, then identifi-
cation of tissue types and volumes in each coarse cell.
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Figure 6: The media mapping of the DHP after coarse meshing
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Figure 7: The observation of Ez. The source excitation was a
Gaussian pulse and the frequency range was set up to 5.0 GHz.

Subcell Ratio Total Grid Memory Speed up Relative Error
8 300×600 ×14 ×37 2.03%

24 100×200 ×85 ×1342 6.34%

Conclusion
The subcell technique has the potential to be used in numeri-
cal applications of bioelectromagnetism, providing dramatic
reductions in the computational requirements.

Future Works
•To apply the proposed subcell technique for the simu-

lation of moving, expanding, or contracting frequency-
dependent objects.
•To achieve higher computational performance by paral-

lelization of the subcell algorithm in MPI.
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