High Performance Computing Applications Dynamism Evaluation for Energy Tuning

O. Vysocký¹, M. Beseda¹, L. Říha¹, J. Zapletal¹, V. Nikl², M. Lysaght³ and V. Kannan³

- 1 IT4Innovations, VŠB Technical University of Ostrava, Ostrava, Czech Republic
- 2 Faculty of Information Technology, Brno University of Technology, Czech Republic

3 Irish Centre for High End Computing, Ireland

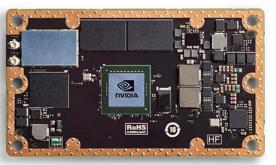
Applications exhibit dynamic behaviour

- Changing resource requirements
- Computational characteristics
- Changing load on processors over time

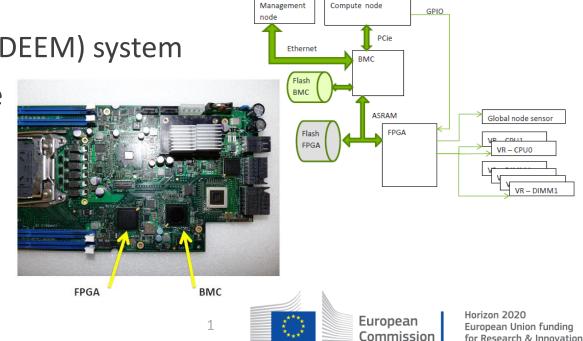
 Image: Control of the line
 <th

READEX creates a tools-aided methodology for automatic tuning of parallel applications

= dynamically adjust system parameters to actual resource requirements

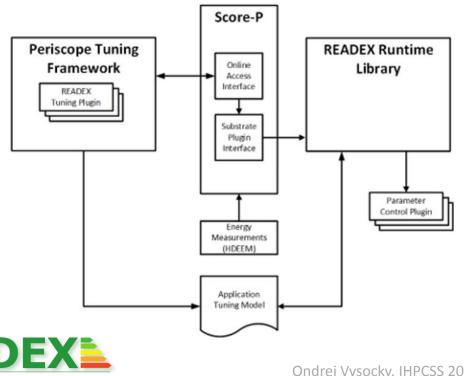


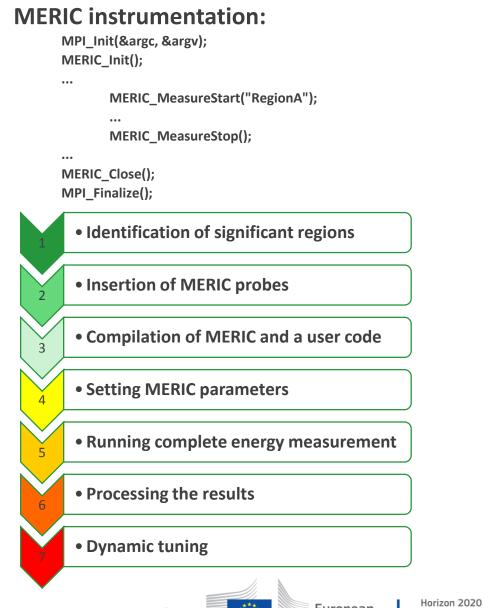
Horizon 2020 European Union funding for Research & Innovation


25.6. - 30.6. 2017, IHPCSS

Parameters tuning

- Hardware parameters CPU core frequency, uncore frequency
- System software parameters number of OpenMP threads, thread placement
- Application-level parameters depends on the specific application
- Static tuning, Inter-phase dynamic tuning, Intra-phase dynamic tuning Energy measurement
- Running Average Power Limit (RAPL) interface
- High Definition Energy Efficiency Monitoring (HDEEM) system
- ARM Jetson TX1 energy measurement interface

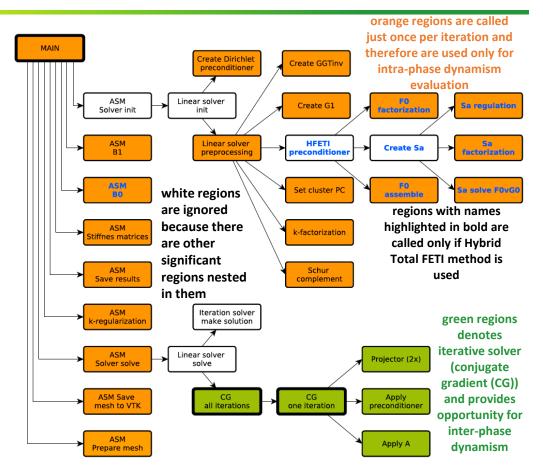




Tuning tools

- Score-P
- Periscope Tuning Framework
- **READEX Runtime Library**
- MERIC library
- RADAR generator

Runtime Exploitation of Application Dynamism for Energy-efficient eXascale computing


European European Union funding Commission for Research & Innovation

Example results - ESPRESO

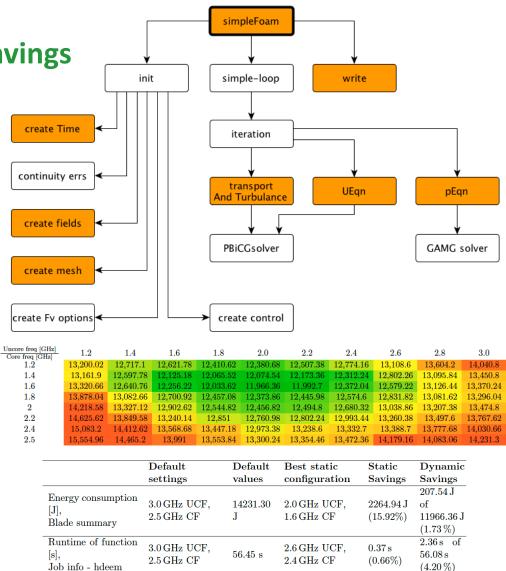
static dynamic total ESPRESO: 12.3% + 9.1% = 20.3%

- Structural mechanics code
- Finite element + sparse FETI solver

Region	% of 1 phase	Best static configuration	Value	Best dynamic configuration	Value	Dynamic savings	
Assembler– AssembleStiffM	lat 14.32	18 threads, 1.8 GHz UCF, 2.5 GHz CF	733.73 J	$\begin{array}{c} 20\mathrm{threads},\\ 2.0\mathrm{GHz}\;\mathrm{UCF},\\ 2.5\mathrm{GHz}\;\mathrm{CF} \end{array}$	731.22 J	2.51 J (0.34%)	
Assembler– Assemble-B1	2.23	18 threads, 1.8 GHz UCF, 2.5 GHz CF	114.30 J	$2 ext{ threads}, 2.2 ext{ GHz UCF}, 2.5 ext{ GHz CF}$	94.15 J	20.15 J (17.63%)	
Cluster– CreateF0- FactF0	0.17	18 threads, 1.8 GHz UCF, 2.5 GHz CF	8.71 J	6 threads, 1.6 GHz UCF, 2.5 GHz CF	6.90 J	1.80 J (20.73%)	
Assembler– SaveResults	3.10	$\begin{array}{l} 18\mathrm{threads},\\ 1.8\mathrm{GHz}\;\mathrm{UCF},\\ 2.5\mathrm{GHz}\;\mathrm{CF} \end{array}$	158.81 J	2 threads, 1.2 GHz UCF, 2.5 GHz CF	147.66 J	11.16 J (7.03%)	
Cluster– CreateSa- SaReg	0.17	18 threads, 1.8 GHz UCF, 2.5 GHz CF	8.59 J	8 threads, 2.0 GHz UCF, 2.5 GHz CF	7.03 J	$\begin{array}{cc} 1.56 & {\rm J} \\ (18.15\%) \end{array}$	
Total value for static tuning for significant re- gions			$\begin{array}{r} 733.73 + 114.30 + 8.71 + 158.81 + 278.39 + 113.87 + \\ 14.23 + 658.07 + 325.69 + 99.93 + 74.70 + 641.88 + \\ 1578.06 + 13.28 + 24.20 + 278.22 + 8.59 = 5124.66 \mathrm{J} \end{array}$				
Total savings for dy- namic tuning for signif- icant regions			$\begin{array}{c} 2.51 + 20.15 + 1.80 + 11.16 + 47.01 + 16.41 + 5.31 + \\ 28.45 + 29.03 + 19.08 + 0.16 + 2.49 + 288.21 + 0.77 + \\ 1.88 + 23.24 + 1.56 = 499.22 \mathrm{J} \text{ of } 5124.66 \mathrm{J} \ (9.74 \%) \end{array}$				
Dynamic savings for ap- plication runtime Total value after savings			499.22 J of 5493.55 J (9.09%) 4994.33 J (79.72% of 6265.18 J)				

	Default settings	Default values	Best static configuration	Static Savings	Dynamic Savings
Energy consumption [J] , Blade summary	24 threads, 3.0 GHz UCF, 2.5 GHz CF	6265.18 J	18 threads, 1.8 GHz UCF, 2.5 GHz CF	771.63 J (12.32%)	$\begin{array}{c} 499.2 \ {\rm J} \ {\rm of} \\ 5493.6 \ {\rm J} \\ (9.09 \ \%) \end{array}$
Runtime of function [s], Job info - hdeem	24 threads, 3.0 GHz UCF, 2.5 GHz CF	$29.55~\mathrm{s}$	22 threads, 3.0 GHz UCF, 2.5 GHz CF	$0.01 \mathrm{s}$ (0.04%)	$\begin{array}{cc} 0.82{\rm s} & {\rm of} \\ 29.54{\rm s} \\ (2.76\%) \end{array}$

3


Horizon 2020 European Union funding for Research & Innovation

Example results - OpenFOAM

static dynamic total OpenFOAM: 15.9% + 1.8% = 17.4% energy savings

- Computational fluid dynamics
- Finite volume + multigrid solver

Region	% of 1 phase	Best static configuration	Value	Best dynamic configuration	Value	Dynamic savings	
init- createTime	0.03	$2.0\mathrm{GHz}\mathrm{UCF},\ 1.6\mathrm{GHz}\mathrm{CF}$	3.35 J	$1.4\mathrm{GHz}\mathrm{UCF},\ 1.4\mathrm{GHz}\mathrm{CF}$	2.64 J	$\begin{array}{ccc} 0.71 & J \\ (21.06\%) \end{array}$	
init- createFields	4.28	$2.0\mathrm{GHz}\mathrm{UCF},\ 1.6\mathrm{GHz}\mathrm{CF}$	506.91 J	$2.4\mathrm{GHz}\mathrm{UCF},$ $2.0\mathrm{GHz}\mathrm{CF}$	474.80 J	$\begin{array}{ccc} 32.11 & { m J} \\ (6.33\%) \end{array}$	
init- createMesh	2.26	$2.0\mathrm{GHz}\mathrm{UCF},\ 1.6\mathrm{GHz}\mathrm{CF}$	267.33 J	$1.4\mathrm{GHz}\mathrm{UCF},\ 1.4\mathrm{GHz}\mathrm{CF}$	194.38 J	$\begin{array}{ccc} 72.96 & J \\ (27.29\%) \end{array}$	
UEqn	40.71	$2.0\mathrm{GHz}\mathrm{UCF},\ 1.6\mathrm{GHz}\mathrm{CF}$	4820.82 J	$2.2\mathrm{GHz}\mathrm{UCF},\ 1.6\mathrm{GHz}\mathrm{CF}$	4810.03 J	10.80 J (0.22%)	
pEqn	19.15	$2.0\mathrm{GHz}\mathrm{UCF},\ 1.6\mathrm{GHz}\mathrm{CF}$	2268.19 J	$2.0\mathrm{GHz}\mathrm{UCF},\ 1.6\mathrm{GHz}\mathrm{CF}$	2268.19 J	$\begin{array}{ccc} 0.00 & { m J} \\ (0.00\%) \end{array}$	
trans- portAnd- Turbulence	25.70	$2.0\mathrm{GHz}\mathrm{UCF},\ 1.6\mathrm{GHz}\mathrm{CF}$	3042.91 J	$2.0\mathrm{GHz}\mathrm{UCF},$ $1.6\mathrm{GHz}\mathrm{CF}$	3042.91 J	0.00 J (0.00%)	
write	7.88	$2.0\mathrm{GHz}\mathrm{UCF},\ 1.6\mathrm{GHz}\mathrm{CF}$	932.59 J	$1.2\mathrm{GHz}\mathrm{UCF},\ 1.4\mathrm{GHz}\mathrm{CF}$	841.62 J	90.97 J (9.75%)	
Total value for static tuning for significant re- gions			$\begin{array}{l} 3.35 + 506.91 + 267.33 + 4820.82 + 2268.19 + 3042.91 \\ + 932.59 = 11842.12\mathrm{J} \end{array}$				
Total savings for dy- namic tuning for signif- icant regions		$\begin{array}{c} 0.71 + 32.11 + 72.96 + 10.80 + 0.00 + 0.00 + 90.97 = \\ 207.54 \mathrm{J} \ \mathrm{of} \ 11842.12 \mathrm{J} \ (1.75 \%) \end{array}$					
Dynamic savings for ap- plication runtime		207.54 J of 11966.36 J (1.73%)					
Total value after savings		11758.82 J (82.63 % of 14231.30 J)					

.

European Commission

Horizon 2020 European Union funding for Research & Innovation

Other results

 Evaluation of HPC codes ranging from basic kernels to very complex applications

• Key results

- Highly optimized applications tend to provide higher static and lower dynamic savings
- Complex applications, such as ESPRESO, which contains variation on workload (not only compute) shows opportunity for dynamic tuning

Application	Static savings [%]	Dynam. savings $[\%]$	Total Savings [%]
Parallel OpenMP I/O	56		56
Dense BLAS - DGEMV - without NUMA	5.6	_	5.6
Dense BLAS - DGEMM - without NUMA	10.4		10.4
Compute only kernel	12.8	_	12.8
Sparse BLAS Routines - without NUMA	3.1-12.3	_	3.1 - 12.3
Sparse BLAS Routines - with NUMA	4.2-66.2	—	4.2 - 66.2
ProxyApps 1 - AMG2013, configuration 1	6.53	2.89	9.23
ProxyApps 1 - AMG2013, configuration 2	25.66	2.80	27.74
ProxyApps 2 - Kripke, configuration 1	28.16	1.56	29.28
ProxyApps 2 - Kripke, configuration 2	12.63	7.04	18.78
ProxyApps 3 - LULESH, configuration 1	28.58	0.55	28.88
ProxyApps 3 - LULESH, configuration 2	25.81	1.23	26.72
ProxyApps 4 - MCB, configuration 1	4.13	1.42	5.51
ProxyApps 4 - MCB, configuration 2	3.40	4.18	7.44
ESPRESO - configuration 0	5.6	8.7	14.3
ESPRESO - configuration 1	12.3	9.1	21.4
ESPRESO - configuration 2	7.8	4.7	12.5
ESPRESO - configuration 3	7.8	5.4	13.1
OpenFOAM (Motorbike benchmark)	15.9	1.8	17.7
Indeed	17.6	to be evaluated	17.6
MiniMD	21.92	0.00	21.92

The research leading to these results has received funding from the European Union's Horizon 2020 Programme under grant agreement number 671657.

This work was supported by VSB-Technical University of Ostrava under the grants SP2017/165.

Horizon 2020 European Union funding for Research & Innovation