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Introduction and Motivation

Computational Fluid Dynamics (CFD)

e Increase in computer memory and
processing power.

Density norm error

e CFD - capture complex phenomena.
{Parallel algorithms, accuracy,

Figure 1.1: Error in the density norm for steady supersonic

ComPUtational time, COStS?} flow over a sphere. [Freret and Groth 2015]
e To reduce memory & storage
requirements, utilize local Goal of this work
anisotropic block-based adaptive
mesh refinement (AM R) of Freret e Find a metric relating funct.ional to s?lution.error.
aindl Grail [2015] . gzzi?;;t;:fjeia;)r. estimation for anisotropic

e AMR originally deven by e Benefits and associated computational cost?
physics—based criteria. Limitations e Calculate error estimates in two ways:

A 0 e h-derived error estimates: via refining the
in solution accuracy. mesh.

e p-derived error estimates: by increasing the
order of discretization.

by reconstructing the solution, U and solution
residual, R(U).
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Euler equations
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e vectors F, G, H — inviscid flux vectors associated with the solution flux in the x, y, and z directions respectively.
o Ideal gas equation of state p = pRT is used to close the system.

CENO - [Ivan and Groth 2014]

Limited 2"¢ order FVM
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e Limited linear least-squares method for
solution reconstruction.

e Solution space is enriched from coarse
(Qy) to fine (2p).

unlimited k-exact reconstruction - smooth solution.
low-order for non-smooth content.

Smoothness indicator used to ensure monotonicity.
Solution space from coarse (Q2p) to fine (€2p).

store relevant num of derivatives for high-order solution.

Domain Decomposition & AMR [Freret et al. 2017, Freret and Groth 2015]

Edge ghost cells

Comer ghost cells
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Output-Based Error Estimation - [Becker & Rannacher 1994; Giles & Pierce 2000; Venditti & Darmofal 2000]

Solve the governing equations to obtain a converged primal solution, —R(U) =0
Define an engineering functional of interest, J(U).
Discrete Adjoint (W) measures functional sensitivity to the solution residual, R(U):
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U, is expensive to solve. Instead, approximate by U%.
The error in the functional is given in the approximation:
0 = Jy(UR) = Jn(Un) = (W) "Ru(UF) + (Re" (W}))" (U5 — U})

computable correction error in computable correction

EKH based on ECC
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SKH p based on CcC
’ SKH p based on ECC
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Gradient-based

Functional accuracy vs. mesh size

B— . h-derived CC error indicator
+ Gradient-based

error r
ived ECC error indicator
—#— Uniform Refinement

Figure 1.1: Close-up showing final
gradient-based AMR mesh, 435 blocks 10° .
(445,440 cells). A N
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Figure 1.2: Close-up showing final

output-based AMR mesh, via
p-derived ECC-based error indicator,
259 blocks (= 265,216 cells),
representing 40% cell count savings.
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