
Non-Blocking

Communications

1

5
2

3

4

0 Communicator

2

Deadlock

• The mode of a communication determines when its

constituent operations complete.

i.e. synchronous / asynchronous

• The form of an operation determines when the procedure

implementing that operation will return

i.e. when control is returned to the user program

3

Completion

• Relate to when the operation has completed.

• Only return from the subroutine call when the operation

has completed.

• These are the routines you used thus far

MPI_Ssend

MPI_Recv

4

Blocking Operations

• Return straight away and allow the sub-program to

continue to perform other work. At some later time the

sub-program can test or wait for the completion of the

non-blocking operation.

Beep!

5

Non-Blocking Operations

• All non-blocking operations should have matching wait

operations. Some systems cannot free resources until

wait has been called.

• A non-blocking operation immediately followed by a

matching wait is equivalent to a blocking operation.

• Non-blocking operations are not the same as sequential

subroutine calls as the operation continues after the call

has returned.

6

Non-Blocking Operations

• Separate communication into three phases:

• Initiate non-blocking communication.

• Do some work (perhaps involving other communications?)

• Wait for non-blocking communication to complete.

7

Non-Blocking Communications

1

5
2

3

4

0 Communicator

8

Non-Blocking Send

1

5
2

3

4

0 Communicator

9

Non-Blocking Receive

• datatype same as for blocking (MPI_Datatype or

INTEGER).

• communicator same as for blocking (MPI_Comm or

INTEGER).

• request MPI_Request or INTEGER.

• A request handle is allocated when a communication is

initiated.

10

Handles used for Non-blocking Comms

• C:

int MPI_Issend(void* buf, int count,

 MPI_Datatype datatype, int dest,

 int tag, MPI_Comm comm,

 MPI_Request *request)

int MPI_Wait(MPI_Request *request,

 MPI_Status *status)

• Fortran:

 MPI_ISSEND(buf, count, datatype, dest,

 tag, comm, request, ierror)

 MPI_WAIT(request, status, ierror)

11

Non-blocking Synchronous Send

• C:

int MPI_Irecv(void* buf, int count,

 MPI_Datatype datatype, int src,

 int tag, MPI_Comm comm,

 MPI_Request *request)

int MPI_Wait(MPI_Request *request,

 MPI_Status *status)

• Fortran:

 MPI_IRECV(buf, count, datatype, src,

 tag, comm, request, ierror)

 MPI_WAIT(request, status, ierror)

12

Non-blocking Receive

• Send and receive can be blocking or non-blocking.

• A blocking send can be used with a non-blocking receive,

and vice-versa.

• Non-blocking sends can use any mode - synchronous,

buffered, standard, or ready.

• Synchronous mode affects completion, not initiation.

13

Blocking and Non-Blocking

NON-BLOCKING OPERATION MPI CALL

Standard send MPI_ISEND

Synchronous send MPI_ISSEND

Buffered send MPI_IBSEND

Ready send MPI_IRSEND

Receive MPI_IRECV

14

Communication Modes

• Waiting versus Testing.

• C:

 int MPI_Wait(MPI_Request *request,

 MPI_Status *status)

 int MPI_Test(MPI_Request *request,

 int *flag,

 MPI_Status *status)

• Fortran:

 MPI_WAIT(handle, status, ierror)

 MPI_TEST(handle, flag, status, ierror)

15

Completion

MPI_Request request;

if (rank == 0)

 {

 MPI_Issend(sendarray, 10, MPI_INTEGER, 1, tag,

 MPI_COMM_WORLD, &request);

 Do_something_else_while Issend_happens();

 // now wait for send to complete

 MPI_Wait(&request, &status);

 }

else if (rank == 1)

 {

 MPI_Irecv(recvarray, 10, MPI_INTEGER, 0, tag,

 MPI_COMM_WORLD, &request);

 Do_something_else_while Irecv_happens();

// now wait for receive to complete;

 MPI_Wait(&request, &status);

 }

16

Example

• Test or wait for completion of one message.

• Test or wait for completion of all messages.

• Test or wait for completion of as many messages as

possible.

17

Multiple Communications

 in

 in

 in

Process

18

Testing Multiple Non-Blocking Comms

• Specify all send / receive arguments in one call

MPI implementation avoids deadlock

useful in simple pairwise communications patterns, but not as generally

applicable as non-blocking

int MPI_Sendrecv(void *sendbuf, int sendcount, MPI_Datatype sendtype,

 int dest, int sendtag,

 void *recvbuf, int recvcount, MPI_Datatype recvtype,

 int source, int recvtag,

 MPI_Comm comm, MPI_Status *status);

MPI_SENDRECV(sendbuf, sendcount, sendtype, dest, sendtag,

 recvbuf, recvcount, recvtype, source, recvtag,

 comm, status, ierror)

19

Combined Send and Receive

• Non-blocking send to forward neighbour

blocking receive from backward neighbour

wait for forward send to complete

• Non-blocking receive from backward neighbour

blocking send to forward neighbour

wait for backward receive to complete

• Non-blocking send to forward neighbour

• Non-blocking receive from backward neighbour

wait for forward send to complete

wait for backward receive to complete

20

Possible solutions

