Non-Blocking
Communications

cpcc



Deadlock

epcc 2



Completion

- The mode of a communication determines when its
constituent operations complete.
+1.e. synchronous / asynchronous

- The form of an operation determines when the procedure
Implementing that operation will return
+l1.e. when control is returned to the user program

epcc 3



Blocking Operations

- Relate to when the operation has completed.

- Only return from the subroutine call when the operation
has completed.

- These are the routines you used thus far

+MPI_Ssend
+MPI_Recv

CSPOCC 4



Non-Blocking Operations

Return straight away and allow the sub-program to
continue to perform other work. At some later time the

sub-program can test or wait for the completion of the
non-blocking operation.

L te =

J{ = == =
.

P &R

cpcc



Non-Blocking Operations

- All non-blocking operations should have matching wait
operations. Some systems cannot free resources until
wait has been called.

- A non-blocking operation immediately followed by a
matching wait is equivalent to a blocking operation.

- Non-blocking operations are not the same as sequential

subroutine calls as the operation continues after the call
has returned.

W =V ."_=

-\.\' = .Jf'
e e -
P "

6 G - T
TN WO

o '-.‘:‘L
G pt



Non-Blocking Communications

- Separate communication into three phases:
- Initiate non-blocking communication.

- Do some work (perhaps involving other communications?)
- Wait for non-blocking communication to complete.

CSPOCC 7




Non-Blocking Send

epcc 8



Non-Blocking Recelve

epcc 9



Handles used for Non-blocking Comms

- datatype same as for blocking (MPI Datatype or
INTEGER).

- communicator same as for blocking (MPI Comm or
INTEGER).

* request MPI Request or INTEGER.

- Arequest handle is allocated when a communication is
Initiated.

epcc .



Non-blocking Synchronous Send
- C:

int MPI Issend(void* buf, int count,
MPI Datatype datatype, int dest,
int tag, MPI Comm comm,
MPI Request *request)

int MPI Wailt (MPI Request *request,
MPI Status *status)
- Fortran:

MPI ISSEND (buf, count, datatype, dest,
tag, comm, request, 1error)

MPI WAIT (request, status, ierror)

epcc :




Non-blocking Receive
- C:

int MPI Irecv(void* buf, int count,
MPI Datatype datatype, int src,
int tag, MPI Comm comm,
MPI Request *request)

int MPI Wailt (MPI Request *request,
MPI Status *status)
- Fortran:

MPI IRECV (buf, count, datatype, src,
tag, comm, request, 1error)

MPI WAIT (request, status, ilerror)

epcc :




Blocking and Non-Blocking

- Send and receive can be blocking or non-blocking.

- A blocking send can be used with a non-blocking receive,
and vice-versa.

- Non-blocking sends can use any mode - synchronous,
buffered, standard, or ready.

- Synchronous mode affects completion, not initiation.

epcc .



Communication Modes

NON-BLOCKING OPERATION MPI CALL
Standard send MPI_ISEND
Synchronous send MPI_ISSEND
Buffered send MPI_IBSEND
Ready send MPI_IRSEND
Receive MPI_IRECV

epcc .



Completion

- Waiting versus Testing.

- C:
int MPI Wailt (MPI Request *request,
MPI Status *status)
int MPI Test (MPI Request *request,
int *flag,
MPI Status *status)
- Fortran:

MPI WAIT (handle, status, ilerror)

MPI TEST (handle, flag, status, lerror)

epcc .




Example

MPI Request request;

if (rank == 0)
{
MPI Issend(sendarray, 10, MPI INTEGER, 1, tag,
MPI COMM WORLD, &request);
Do something else while Issend happens();
// now wait for send to complete
MPI Wailt (&request, &status);
}
else 1if (rank == 1)
{
MPI Irecv(recvarray, 10, MPI INTEGER, 0, tag,
MPI COMM WORLD, &request);
Do something else while Irecv happens();
// now wait for receive to complete;
MPI Wait (&request, &status);

}

epcc ’




Multiple Communications

- Test or wait for completion of one message.
- Test or wait for completion of all messages.

- Test or wait for completion of as many messages as
possible.

epcc :



Testing Multiple Non-Blocking Comms

epcc .



Combined Send and Recelve

- Specify all send / receive arguments in one call
+MPI implementation avoids deadlock

+useful in simple pairwise communications patterns, but not as generally
applicable as non-blocking

int MPI Sendrecv (void *sendbuf, int sendcount, MPI Datatype sendtype,
int dest, 1int sendtag,
void *recvbuf, int recvcount, MPI Datatype recvtype,
int source, 1int recvtag,
MPI Comm comm, MPI Status *status);

MPI SENDRECV (sendbuf, sendcount, sendtype, dest, sendtag,
recvbuf, recvcount, recvtype, source, recvtag,
comm, Status, ilerror)

epcc .




Possible solutions

- Non-blocking send to forward neighbour
+blocking receive from backward neighbour
+wait for forward send to complete

- Non-blocking receive from backward neighbour
+blocking send to forward neighbour
+wait for backward receive to complete

- Non-blocking send to forward neighbour

- Non-blocking receive from backward neighbour
+walit for forward send to complete
+wait for backward receive to complete

epcc :




