
Message Passing 

Programming 
Modes, Tags and Communicators 



• Lecture will cover 

explanation of MPI modes (Ssend, Bsend and Send) 

meaning and use of message tags 

rationale for MPI communicators 

 

• These are all commonly misunderstood 

essential for all programmers to understand modes 

often useful to use tags 

certain cases benefit from exploiting different communicators 

2 

Overview 



• MPI_Ssend (Synchronous Send) 

• guaranteed to be synchronous 

• routine will not return until message has been delivered 

 

• MPI_Bsend (Buffered Send) 

• guaranteed to be asynchronous 

• routine returns before the message is delivered 

• system copies data into a buffer and sends it later on 

 

• MPI_Send (standard Send) 

• may be implemented as synchronous or asynchronous send 

• this causes a lot of confusion (see later) 

 

 
3 

Modes 



Process A Process B 

Ssend(x,B) 

Recv(y,A) 

Running other 

non-MPI code 

Wait in Ssend 

x y 
Data Transfer 

Recv returns Ssend returns 

x can be 

overwritten by A 
y can now be 

read by B 

4 

MPI_Ssend 



Process A Process B 

Bsend(x,B) 

Recv(y,A) 

Running other 

non-MPI code 

y 

Bsend returns 

x can be 

overwritten by A 

y can now be 

read by B 

x 

Recv returns 

5 

MPI_Bsend 



• Recv is always synchronous 

• if process B issued Recv before the Bsend from process A, then B 

would wait in the Recv until Bsend was issued 

 

• Where does the buffer space come from? 

• for Bsend, the user provides a single large block of memory 

• make this available to MPI using MPI_Buffer_attach 

 

• If A issues another Bsend before the Recv 

• system tries to store message in free space in the buffer 

• if there is not enough space then Bsend will FAIL! 

6 

Notes 



• Problems 

Ssend runs the risk of deadlock 

Bsend less likely to deadlock, and your code may run faster, but 

• the user must supply the buffer space 

• the routine will FAIL if  this buffering is exhausted 

• MPI_Send tries to solve these problems 

buffer space is provided by the system 

Send will normally be asynchronous (like Bsend) 

if buffer is full, Send becomes synchronous (like Ssend) 

• MPI_Send routine is unlikely to fail 

but could cause your program to deadlock if buffering runs out 

7 

Send 



Process A Process B 

Send(x,B) Send(y,A) 

Recv(y,A) Recv(x,B) 

This code is NOT guaranteed to work 
– will deadlock if Send is synchronous 

– is guaranteed to deadlock if you used Ssend! 

8 

MPI_Send 



• To avoid deadlock 

either match sends and receives explicitly 

eg for ping-pong 

• process A sends then receives 

• process B receives then sends 

 

• For a more general solution use non-blocking 

communications (see later) 

 

• For this course you should program with Ssend 

more likely to pick up bugs such as deadlock than Send 

9 

Solutions 



• MPI allows you to check if any messages have arrived 
you can “probe” for matching messages 

same syntax as receive except no receive buffer specified 

 

• e.g. in C: 
 

 int MPI_Probe(int source, int tag, 

     MPI_Comm comm, MPI_Status *status) 

 

• Status is set as if the receive took place 
e.g. you can find out the size of the message and allocate space prior to receive 

 

• Be careful with wildcards 
you can use, e.g., MPI_ANY_SOURCE in call to probe 

but must use specific source in receive to guarantee matching same message 

e.g. MPI_Recv(buff, count, datatype, status.MPI_SOURCE, ...) 

 
10 

Checking for Messages 



• Every message can have a tag 

this is a non-negative integer value 

maximum value can be queried using MPI_TAG_UB attribute 

MPI guarantees to support tags of at least 32767 

not everyone uses them; many MPI programs set all tags to zero 
 

• Tags can be useful in some situations 

can choose to receive messages only of a given tag 
 

• Most commonly used with MPI_ANY_TAG 

receives the most recent message regardless of the tag 

user then finds out the actual value by looking at the status 

 

11 

Tags 



All MPI communications take place within a 

communicator 

a communicator is fundamentally a group of processes 

there is a pre-defined communicator: MPI_COMM_WORLD which 

contains ALL the processes 

• also MPI_COMM_SELF which contains only one process 

 

A message can ONLY be received within the same 

communicator from which it was sent 

unlike tags, it is not possible to wildcard on comm 

12 

Communicators 



• Can split MPI_COMM_WORLD into pieces 

each process has a new rank within each sub-communicator 

guarantees messages from the different pieces do not interact 

• can attempt to do this using tags but there are no guarantees 

rank=6 
rank=2 

rank=1 rank=3 

rank=0 rank=4 

rank=5 

size=7 

rank=2 

MPI_COMM_WORLD 

rank=0 
rank=1 rank=3 

size=4 
size=3 

comm1 
comm2 

rank=2 rank=0 

rank=1 

MPI_Comm_split() 

13 

Uses of Communicators (i) 



• Can make a copy of MPI_COMM_WORLD  
• e.g. call the MPI_Comm_dup routine 

• containing all the same processes but in a new communicator 

 

• Enables processes to communicate with each other safely 
within a piece of code 
• guaranteed that messages cannot be received by other code 

• this is essential for people writing parallel libraries (eg a Fast 
Fourier Transform) to stop library messages becoming mixed up 
with user messages 

• user cannot intercept the the library messages if the library keeps the 
identity of the new communicator a secret 

• not safe to simply try and reserve tag values due to wildcarding 

14 

Uses of Communicators (ii) 



• Question: Why bother with all these send modes? 

• Answer 
it is a little complicated, but you should make sure you understand 

Ssend and Bsend are clear 

• map directly onto synchronous and asynchronous sends 

Send can be either synchronous or asynchronous 

• MPI is trying to be helpful here, giving you the benefits of Bsend if there is 
sufficient system memory available, but not failing completely if buffer 
space runs out 

• in practice this leads to endless confusion! 

• The amount of system buffer space is variable 
programs that run on one machine may deadlock on another 

you should NEVER assume that Send is asynchronous! 

15 

Summary (i) 



• Question: What are the tags for? 

• Answer 

if you don’t need them don’t use them! 

• perfectly acceptable to set all tags to zero 

can be useful for debugging 

• e.g. always tag messages with the rank of the sender 

16 

Summary (ii) 



• Question: Can I just use MPI_COMM_WORLD? 

• Answer 
yes: many people never need to create new communicators in their 

MPI programs 

however, it is probably bad practice to specify MPI_COMM_WORLD 
explicitly in your routines 

• using a variable will allow for greater flexibility later on, e.g.: 

 

MPI_Comm comm;        /* or INTEGER for Fortran */ 

comm = MPI_COMM_WORLD; 

... 

MPI_Comm_rank(comm, &rank); 

MPI_Comm_size(comm, &size); 

.... 

17 

Summary (iii) 


