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Preliminary Exercise

Let’s get the boring stuff out of the way now.
. Run the Big Data setup script:

~training/Setup

. Logout and then login again, so that the proper modules are in effect.

. Start an interactive session.

Iinteract




How does all this fit together?

Character Recognition
Capchas

Chess
Go



Big data is a broad term for data sets so large or complex that traditional
data processing applications are inadequate.

— Wikipedia



Once there was only small data...

Find a tasty appetizer — Easy!

Find something to use up these
oranges — grumble...

What if....

A classic amount of “small” data




Less sophisticated is sometimes better...

Get all articles from 2007.

Get all papers on “fault tolerance”
— grumble and cough

“Chronologically” or “geologically” organized.
Familiar to some of you at tax time.

Indexing will determine your individual performance.
Teamwork can scale that up.




The culmination of centuries...

Find books on Modern Physics (DD# 539)

Find books by Wheeler

where he isn’t the first author — grumble... Your only hope... p
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Then data started to grow.

1956 IBI\/I Model 350

But still pricey. S

Better think about what
you want to save.

5 MB of data!



And finally got BIG.

8TB for S130 Whys:

Storage got cheap

So why not keep it all?

Today data is a hot commodity S
And we got better at generating it

Horniman museum:
http://www.horniman.ac.uk

ntions a more acclraie 208TB, and in

get_involved/blog/bioblitz-
insects-reviewed http://www.arctic.noaa.gov/reportl

(Wikipedia Commons) 1/biodiv_whales_walrus.html

*Actually, a silly estimate. The original refere
2013 the digital collection alone was 3PB.
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A better sense of biggish

Size
* AWS hosted
« 260TB
Hosted on Bridges 3 V's of B|g Data
* 300-800TB+
e Volume
Throughput * Velocity
. .
*  Building now Varlety
* Exabyte of raw data/day — compressed to 10PB
* Endless streaming
Records

(Global Database of Events, Language, and Tone) (also soon to be hosted on Bridges)
*  Only about 2.5TB per year, but...
* 250M rows and 59 fields (BigTable)

“during periods with relatively little content, maximal translation accuracy can be achieved, with accuracy linearly degraded as needed to cope with
increases in volume in order to ensure that translation always finishes within the 15 minute window.... and prioritizes the highest quality material,
accepting that lower-quality material may have a lower-quality translation to stay within the available time window.”



Good Ol SQL couldn't keep up.

SAL.

SELECT NAME, NUMBER, FROM PHONEBOOK

Payroll

Why it wasn’t fashionable:

Schemas set in stone:
* Need to define before we can add data
* Not a fit for agile development
"What do you mean we didn't plan to keep logs of
everyone's heartbeat?"

Queries often require accessing multiple indexes and joining
and sorting multiple tables

Sharding isn’t trivial

Caching is tough

* ACID (Atomicity,Consistency,lsolation,Durability) in a transaction is costly.
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So we gave up: Key-Value

Redis, Memcached, Amazon DynamoDB, Riak, Ehcache

GET foo

Certainly agile (no schema)

Certainly scalable (linear in most ways: hardware, storage, cost)
Good hash might deliver fast lookup

Sharding, backup, etc. could be simple

Often used for “session” information: online games, shopping carts

GET cart:joe:15~4~7~0723




How does a pile of unorganized data solve our
problems?

Sure, giving up ACID buys us a lot performance, but doesn't our crude organization
cost us something? Yes, but remember these guys?

';ImMJ)

This is what they
look like today.




Document
& cassandra l‘ ’ DB

GET foo

* Value must be an object the DB can understand
* Common are: XML, JSON, Binary JSON and nested thereof

* This allows server side operations on the data

GET plant=daisy

* Can be quite complex: Ling query, JavaScript function

» Different DB’s have different update/staleness paradigms




Wide Column Stores

"/»r'v‘f:g;Cassandra Google B|gTab|e

SELECT Name, Occupation FROM People WHERE key IN (199, 200, 207);

* No predefined schema

e Can think of this as a 2-D key-value store: the value may be a key-value
store itself

* Different databases
aggregate data differently
on disk with different
optimizations

Address:




Graph

?."_QNeoz.j Titan, GEMS

Great for semantic web

Great for graphs

Can be hard to visualize
e Serialization can be difficult

* Queries more complicated

PRI

From PDX Graph Meetup




Queries @,
SPARQL, Cypher O O O

SPARQL (W3C Standard) O O

* Uses Resource Description Framework format O O
* triple store
* RDF Limitations

* No named graphs Cypher (Neo4J only)
* No quantifiers or general statements
* “Every page was created by some author” * Nolonger proprietary
e “Cats meow” e Stores whole graph, not just triples
* Requires a schema or ontology (RDFS) to define rules * Allows for named graphs
* "The object of ‘homepage’ must be a e ..and general Property Graphs (edges
Document.” and nodes may have values)
* "Link from an actor to a movie must
connect an object of type Person to an SMATCH (Jack:Person
object of type Movie." { name:‘Jack Nicolson’})-[:ACTED IN]- (movie:Movie

RETURN movie
SELECT ?name ?email
WHERE {
?person a foaf:Person.
?person foaf:name ?name.
?person foaf:mbox ?email. }



Graph Databases

* These are not curiosities, but are behind some of the most high-profile pieces of Web
infrastructure.

e They are definitely big data.

Microsoft Bing Knowledge Graph | Search and conversations. | ~2 billion primary entries
~55 billion facts

Facebook ~50 million primary entries
~500 million assertions

Google Knowledge Graph Search and conversations. | ~1 billion entries
~55 billion facts

LinkedIn graph 590 million members
30 million companies

Noy, Goa, Jain. Communications of the ACM, August 2019



Hadoop & Spark

What kind
of databases
are they?



Frameworks for Data

These are both frameworks for distributing and retrieving data. Hadoop is focused on
disk based data and a basic map-reduce scheme, and Spark evolves that in several

directions that we will get in to. Both can accommodate multiple types of databases and
achieve their performance gains by using parallel workers.

We have repurposed many of these
blocks to build a better framework.

The mother of Hadoop was necessity. It is
trendy to ridicule its primitive design, but
it was the first step.




Hadoop Ecosystem Lives On

And lots
more...




Spark Capabilities
(i.e. Hadoop shortcomings)
Performance
* First, use RAM

 Also, be smarter

Ease of Use
* Python, Scala, Java first class citizens

New Paradigms

* SparkSQL
e Streaming
e MLib

e GraphX

¢ ..more



Same Idea (improved)




Spark Formula

Create/Load RDD

Webpage visitor IP address log

Transform RDD

“Filter out all non-U.S. IPs”

But don’t do anything yet!

Wait until data is actually needed
Maybe apply more transforms (“Distinct IPs)

Perform Actions that return data

Count “How many unique U.S. visitors?”



Simple Example

>>> Tines_rdd = sc.textFile("nasa_serverlog_20190404.tsv") } Read into RDD

Spark Context

The first thing a Spark program requires is a context, which interfaces with some kind of cluster to use. Our

pyspark shell provides us with a convenient sc, using the local filesystem, to start. Your standalone programs
will have to specify one:

from pyspark import SparkcConf, SparkContext
conf = SparkcConf().setMaster("local").setAppName("Test_App")
sc = Sparkcontext(conf = conf)

You would typically run these scripts like so:

spark-submit Test_App.py




Simple Example

>>> Tines_rdd = sc.textFile("nasa_serverlog_20190404.tsv") } Read into RDD
>>> HubbleLines_rdd = Tines_rdd.filter(lambda 1line: "Hubble" in 1ine) ::}- Transform

>>> HubbleLines_rdd.count()
47
Actions
>>> HubbleLines_rdd.first()
'www.nasa.gov\shuttle/missions/61-c/Hubble.gif"

Lambdas

WEe’'ll see a lot of these. A lambda is simply a function that is too simple to deserve its own subroutine.
Anywhere we have a lambda we could also just name a real subroutine that could go off and do anything.

When all you want to do is see if “given an input variable line, is “stanford” in there?”, it isn’t worth the
digression.

Most modern languages have adopted this nicety.




Common Transformations

Full list at http://spark.apache.org/docs/latest/api/python/reference/api/pyspark.RDD.html#pyspark.RDD

Same Size

Fewer
Elements

More
Elements



Common Actions

Full list at http://spark.apache.org/docs/latest/api/python/reference/api/pyspark.RDD.html#pyspark.RDD



Transformations vs. Actions

Transformations go from one RDD to another?.

Actions bring some data back from the RDD.

Transformations are where the Spark machinery can do its magic with lazy evaluation and
clever algorithms to minimize communication and parallelize the processing. You want to
keep your data in the RDDs as much as possible.

Actions are mostly used either at the end of the analysis when the data has been distilled
down ( ), or along the way to "peek" at the process ( , ).

1Yes, some of them also create an RDD (parallelize), but you get the idea.



Pair RDDs

» Key/Value organization is a simple, but often very efficient schema, as we mentioned
in our NoSQL discussion.

» Spark provides special operations on RDDs that contain key/value pairs. They are
similar to the general ones that we have seen.

* Onthe language (Python, Scala, Java) side key/values are simply tuples. If you have an
RDD all of whose elements happen to be tuples of two items, it is a Pair RDD and you
can use the key/value operations that follow.



Pair RDD Transformations

Note that all of the regular transformations are available as well.




Pair RDD Actions

As with transformations, all of the regular actions are available to Pair RDDs, and there
are some additional ones that can take advantage of key/value structure.




Two Pair RDD Transformations




Joins Are Quite Useful

Any database designer can tell you how common joins are. Let's look at a simple
example. We have (here we create it) an RDD of our top purchasing customers.

And an RDD with all of our customers' addresses.

To create a mailing list of special coupons for those favored customers we can use a
join on the two datasets.

>>> best_customers_rdd = sc.parallelize([("Joe", "$103"), ("Alice"™, "$2000"), ("Bob", "$1200")]1)

>>> customer_addresses_rdd = sc.parallelize([("Joe", "23 state st."), ("Frank™, "555 Timer Lane"), ("sally", "44
Forest Rd."), ("Alice", "3 Elm Road"), ("Bob", "88 west 0ak")])

>>> promotion_mail_rdd = best_customers_rdd.join(customer_addresses_rdd)

>>> promotion_mail_rdd.collect()
[('Bob', ('$1200', '88 west 0ak')), ('Joe', ('$103', '23 state st.')), ('Alice', ('$2000', '3 Elm Road'))]



Shakespeare, a Data Analytics Favorite

Applying data analytics to the works of Shakespeare has become all the rage. Whether determining the legitimacy of
his authorship (it wasn’t Marlowe) or if Othello is actually a comedy (perhaps), it is amazing how much publishable
research has sprung from the recent analysis of 400 year old text.

We're going to do some exercises here using a text file containing all of his works.



Who needs this Spark stuff?

As we do our first Spark exercises, you might think of several ways to accomplish these tasks that you already know. For example, Python
Pandas is a fine way to do our following problem, and it will probably work on your laptop reasonably well. But they do not scale well*.

However we are learning how to leverage scalable techniques that work on very big data. Shortly, we will encounter problems that are
considerable in size, and you will leave this workshop knowing how to harness very large resources.

Searching the Complete Works of William Shakespeare for patterns is a lot different from searching the entire Web (perhaps as the 800TB
Common Crawl dataset).

So everywhere you see an RDD, realize that it is a actually a parallel databank that could scale to PBs.

* See Panda's creator Wes McKinney's "10 Things | Hate About Pandas" at
https://wesmckinney.com/blog/apache-arrow-pandas-internals/



Some Simple Problems

We have an input file, Complete _Shakespeare.txt, that you can also find at http://www.gutenberg.org/ebooks/100.

You might find it useful to have http://spark.apache.org/docs/latest/api/python/reference/api/pyspark.RDD.html#pyspark.RDD in a browser
window.

If you are starting from scratch on the login node:
1) interact 2) cd BigData/Shakespeare 3) module load spark 4) pyspark

>>> rdd = sc.textFile("Complete Shakespeare.txt")

Let’s try a few simple exercises.

4)

5)

Count the number of lines

Count the number of words (hint: Python "split" is a workhorse)
Count unique words

Count the occurrence of each word

Show the top 5 most frequent words

These last two are a bit more challenging. One approach is
to think “key/value”. If you go that way, think about which
data should be the key and don’t be afraid to swap it
about with value. This is a very common manipulation
when dealing with key/value organized data.



http://www.gutenberg.org/ebooks/100

Some Simple Answers

>>> lines_rdd = sc.textFile("Complete_Shakespeare.txt")

>>>

>>> Tines_rdd.count()

124787
>>>

>>> words_rdd = lines_rdd.flatMap(Tambda x: x.split())
>>> words_rdd.count()

904061
>>>

>>> words_rdd.distinct().count()

67779
>>>

Next, | know I'd like to end up with a pair RDD of sorted word/count pairs:

(23407, 'the'), (19540,'1'), (15682, 'to'), (15649, 'of")

Why not just words_rdd.countByValue()? It is an action that gives us a massive Python
unsorted dictionary of results:

... 1, '"precious-princely': 1, 'christenings?': 1, 'empire': 11, 'vaunts': 2, 'Lubber's': 1,
'poet.': 2, 'Toad!': 1, 'Tleaden': 15, 'captains': 1, 'leaf': 9, 'Barnes,': 1, 'lead': 101, 'Hell':
1, 'wheat,': 3, 'lean': 28, 'Toad,': 1, 'trencher!': 2, '"1.F.2.': 1, 'leas': 2, 'leap': 17,
Where to go next? Sort this in Python or try to get back into an RDD? If this is truly BIG

data, we want to remain as an RDD until we reach our final results. So, no.



Some Harder Answers

Things data
scientists do.

>>> key_value_rdd = words_rdd.map(Tambda x: (x,1))

>>>

>>> key_value_rdd. take(5)

[('The', 1), ('Project', 1), ('Gutenberg', 1), ('EBook', 1), ('of', 1)]
>>>

>>> word_counts_rdd = key_value_rdd.reduceByKey(Tambda x,y: x+y) }' Reduce to get words counts
>>> word_counts_rdd. take(5)

[('fawn', 11), ('considered-', 1), ('Fame,', 3), ('mustachio', 1), ('protested,', 1)]
>>>

>>> flipped_rdd = word_counts_rdd.map(Tambda x: (x[1],x[0]))

>>> flipped_rdd.take(5)

[(11, 'fawn'), (1, 'considered-'), (3, 'Fame,'), (1, 'mustachio'), (1, 'protested,')]
>>>

>>> results_rdd = flipped_rdd.sortBykey(False)

>>> results_rdd.take(5)

[(23407, 'the'), (19540, '1'), (18358, 'and'), (15682, 'to'), (15649, 'of')]

>>>

} Turn these into k/v pairs

Flip keys and values
SO we can sort on

wordcount instead of
words.

results_rdd = lines_rdd.flatmap(lambda x: x.split()).map(lambda x: (x,1)).reduceByKey(lambda x,y: x+y).map(lambda x: (x[1],x[0])).sortBykey(False)



Some Homework Problems

To do research-level text analysis, we generally want to clean up our input. Here are some of the kinds of things you
could do to get a more meaningful distinct word count.

1) Remove punctuation. Often punctuation is just noise, and it is here. Do a Map and/or Filter (some punctuation is
attached to words, and some is not) to eliminate all punctuation from our Shakespeare data. Note that if you are
familiar with regular expressions, Python has a ready method to use those.

2) Remove stop words. Stop words are common words that are also often uninteresting ("I", "the", "a"). You can
remove many obvious stop words with a list of your own, and the MLIib that we are about to investigate has a
convenient StopWordsRemover() method with default lists for various languages.

3) Stemming. Recognizing that various different words share the same root ("run", "running") is important, but not so

’

easy to do simply. Once again, Spark brings powerful libraries into the mix to help. A popular one is the Natural
Language Tool Kit. You should look at the docs, but you can give it a quick test quite easily:

import nltk

from nltk.stem.porter import

stemmer = PorterStemmer()

stems_rdd = words_rdd.map( Tambda x: stemmer.stem(x) )



|O Formats

Spark has an impressive, and growing, list of input/output formats it supports. Some important
ones:

* Text

e (CSV

* SQL type Query/Load
 JSON (can infer schema)

* Parquet
* Hive
XML

* Sequence (Hadoopy key/value)
e Databases: JDBC, Cassandra, HBase, MongoDB, etc.
 Compression (gzip...)

And it can interface directly with a variety of filesystems: local, HDFS, Lustre, Amazon S3,...



Spark Streaming

Spark addresses the need for streaming processing of data with a APl that divides the
data into batches, which are then processed as RDDs.

There are features to enable:

15% of the "global datasphere”
*  Fast recovery from { (quantification of the amount of data
e Load balancing created, captured, and replicated across
* Integration with sta| the world) is currently real-time. That
« Integration with otH number is growing quickly both in
absolute terms and as a percentage.




A Few Words About DataFrames

As mentioned earlier, an appreciation for having some defined structure to your data has come back
into vogue. For one, because it simply makes sense and naturally emerges in many applications. Often
even more important, it can greatly aid optimization, especially with the Java VM that Spark uses.

For both of these reasons, you will see that the newest set of APIs to Spark are DataFrame based. Sound

leading-edge? This is simply SQL type columns. Very similar to Python pandas DataFrames (but based on
RDDs, so not exactly).

We haven't prioritized them here because they aren't necessary, and some of the pieces aren't mature.
But some of the latest features use them.

And while they would just complicate our basic examples, they are often simpler for real research
problems. So don't shy away from using them.



Creating DataFrames

It is very pretty intuitive to utilize DataFrames. Your elements just have labeled columns.

A row RDD is the basic way to go from RDD to DataFrame, and back, if necessary. A "row" is just a tuple.

>>> row_rdd = sc.parallelize([ ("Joe","Pine st.","PA",12543), ("sally","Fir Dr.","wA",78456),

("Jose","Elm P1.","ND",45698) 1)

>>> aDataFrameFromRDD = spark.createbDataFrame( row_rdd, ["name", "street", "state", "zip"] )

>>> aDataFrameFromRDD.show()
F-———= fmm———— === === +
| name| street|state| zip|
+-———= fmm————- +-——== +-——== +
| Joe|Pine St.| PA|12543|
|sally| Fir Dr.| WA | 78456 |
| Jose| Elm P1.| ND| 45698 |
+-———= fmm————- +-——== +-——== +



Creating DataFrames

You will come across DataFrames created without a schema. They get default column names.

>>> noSchemaDataFrame = spark.createDataFrame( row_rdd )
>>> noSchemabDataFrame.show()

| Joe|Pine St.| PA|12543]
|sally| Fir Dr.| WA|78456|
| Jose| Elm P1.| ND|45698]|
+--—=-- +-——————= +o——t-———- +

And you can create them inline as well.

Datasets
Spark has added a variation (technically a superset)
of DataFrames called Datasets. For compiled
languages with strong typing (Java and Scala) these
provide static typing and can detect some errors at
compile time.

This is not relevant to Python or R.

>>> directDataFrame = spark.createDataFrame([ ("Joe","Pine St.","PA",12543), ("sally","Fir Dr.","wA",78456),
("Jose","ETm PT1.","ND",45698) 1],
["name", "street", "state", "zip"] )




Data from https://github.com/spark-examples/pyspark-examples/raw/master/resources/zipcodes.json

Just Spark DataFrames making life easier...

{"RecordNumber":1,"Zipcode":704,"ZipCodeType":"STANDARD","City":"PARC PARQUE","State":"PR"," LocationType":"NOT ACCEPTABLE","Lat":17.96,"Long":-66.22,"Xaxis":0.38,"Yaxis":-0.87,"Zaxis":0.3,"WorldRegion":'
{"RecordNumber":2,"Zipcode":704,"ZipCodeType":"STANDARD","City":"PASEO COSTA DEL SUR","State":"PR","LocationType":"NOT ACCEPTABLE","Lat":17.96,"Long":-66.22,"Xaxis":0.38,"Yaxis":-0.87,"Zaxis":0.3,"WorldI
{"RecordNumber":10,"Zipcode":709,"ZipCodeType":"STANDARD","City":"BDA SAN LUIS","State":"PR"," LocationType":"NOT ACCEPTABLE","Lat":18.14,"Long":-66.26,"Xaxis":0.38,"Yaxis":-0.86,"Zaxis":0.31,"WorldRegion

>>> df = spark.read.json("zipcodes.json™)
>>> df.printSchema()

root
I__
I__
I__
I__
I__
I__
I__
I__
I__
I__
I__
I__
I__
I__
I__
I__
|__
|__
|__
|__

City: string (nullable = true)

Country: string (nullable = true)
Decommisioned: boolean (nullable = true)
EstimatedPopulation: Tong (nullable = true)
Lat: double (nullable = true)

Location: string (nullable = true)
LocationText: string (nullable = true)
LocationType: string (nullable = true)
Long: double (nullable = true)

Notes: string (nullable = true)
RecordNumber: long (nullable = true)
State: string (nullable = true)
TaxReturnsFiled: Tong (nullable = true)
Totalwages: long (nullable = true)
worldrRegion: string (nullable = true)
Xaxis: doubTle (nullable = true)

Yaxis: double (nullable = true)

Zzaxis: double (nullable = true)
ZipCodeType: string (nullable = true)
Zipcode: Tong (nullable = true)

>>> df.show()

e fom Fomm - e e LT S et e L E R e
| City|Country|Decommisioned|EstimatedPopulation| Lat]| Location
e fom Fomm - e e LT S et e L E R e
| PARC PARQUE | us| false] null1]17.96|NA-US-PR-PARC PARQUE
| PASEO COSTA DEL SUR] us| false] null1]17.96|NA-US-PR-PASEO CO...
| BDA SAN LUIS| us| false] nul1]18.14|NA-US-PR-BDA SAN

| CINGULAR WIRELESS]| us| false] nul1]32.72|NA-US-TX-CINGULAR. ..
| FORT WORTH | us| false] 4053]32.75| NA-US-TX-FORT WORTH
| FT WORTH | us| false] 4053]32.75] NA-US-TX-FT WORTH
| URB EUGENE RICE | us| false]| null|17.96 |NA-US-PR-URB EUGE. ..
| MESA | us| false]| 26883/33.37] NA-US-AZ-MESA
| MESA | us| false]| 25446|33.38] NA-US-AZ-MESA
| HILLIARD | us| false]| 7443130.69| NA-US-FL-HILLIARD
| HOLDER | us| false]| null|28.96] NA-US-FL-HOLDER
| HOLT | us| false]| 2190(30.72] NA-US-FL-HOLT
| HOMOSASSA | us| false]| null|28.78| NA-US-FL-HOMOSASSA
| BDA SAN LUIS| us| false]| null|18.14 |NA-US-PR-BDA SAN

| SECT LANAUSSE | us| false| null|17.96 |NA-US-PR-SECT LAN...
| SPRING GARDEN | us| false| nu11|33.97 |NA-US-AL-SPRING G...
| SPRINGVILLE| us| false| 7845|33.77 INA-US-AL-SPRINGVILLE
| SPRUCE PINE]| us| false| 1209 34.37 |NA-US-AL-SPRUCE PINE
| ASH HILL]| us| false| 1666| 36.4] NA-US-NC-ASH HILL
| ASHEBORO | us| false| 1522835.71] NA-US-NC-ASHEBORO

e  iniaiiebe o o === o



Speaking of pandas, or SciPy, or...

Some of you may have experience with the many Python libraries that accomplish some of
these tasks. Immediately relevant to today, pandas allows us to sort and query data, and SciPy
provides some nice clustering algorithms. So why not just use them?

The answer is that Spark does these things in the context of having potentially huge, parallel
resources at hand. We don't notice it as Spark is also convenient, but behind every Spark call:

 every RDD could be many TB in size
* every transform could use many thousands of cores and TB of memory
* every algorithm could also use those thousands of cores

So don't think of Spark as just a data analytics library because our exercises are modest. You
are learning how to cope with Big Data.



Other Scalable Alternatives: Dask )jﬁ

Of the many alternatives to play with data on
your laptop, there are only a few that aspire to
scale up to big data. The only one, besides Spark,
that seems to have any traction is Dask.

It attempts to retain more of the "laptop feel" of
your toy codes, making for an easier port. The
tradeoff is that the scalability is a lot more
mysterious. If it doesn't work - or someone hasn't
scaled the piece you need - your options are
limited.

At this time, I'd say it is riskier, but academic
projects can often entertain more risk than industry.

‘ Drill Down? ‘

Numpy Tike operations

import dask.array as da

a = da.random.random(size=(10000, 10000),
chunks=(1000, 1000))

a + a.T - a.mean(axis=0)

Dataframes implement Pandas

import dask.dataframe as dd
df = dd.read_csv('/.../2020-*-*_csv")
df.groupby(df.account_id) .balance.sum()

Pieces of Scikit-Learn

from dask_ml.Tinear_model import \
LogisticRegression

Tr = LogisticRegression()
Tr.fit(train, test)




Using MLlib

One of the reasons we use spark is for easy access to powerful data analysis tools. The MLlib library
gives us a machine learning library that is easy to use and utilizes the scalability of the Spark system.

It has supported APIs for Python (with NumPy), R, Java and Scala.

We will use the Python version in a generic manner that looks very similar to any of the above
implementations.

There are good example documents for the clustering routine we are using, as well as alternative
clustering algorithms, here:

http://spark.apache.org/docs/latest/mllib-clustering.html

| suggest you use these pages for your Spark work.


http://spark.apache.org/docs/latest/mllib-clustering.html

Clustering

Clustering is a very common operation for finding grouping in data and has countless applications. This is a very simple
example, but you will find yourself reaching for a clustering algorithm frequently in pursuing many diverse machine
learning objectives, sometimes as one part of a pipeline.

Coin Sorting

Size

Weight



Clustering

As intuitive as clustering is, it presents challenges to implement in an efficient and robust manner.

You might think this is trivial to implement in lower dimensional spaces.

But it can get tricky even there.

Sometimes you know how many clusters you have to start with. Often you don’t.
How hard can it be to count clusters? How many are here?

We will start with 5000 2D points. We want to figure out how many clusters there are, and their centers. Let’s fire up
pyspark and get to it...



Finding Clusters

S /]

N\ N~/ '/

/_/ . /\_,_/_/ /_/\.\ version 1.6.0
/—/

Using Python version 2.7.5 (default, Nov 20 2015 02:00:19)
SparkContext available as sc, HiveContext available as sqlContext.
>>>

>>> rddl = sc.textFil brl06% 'i nte r'aCt

>>>

>>> rdd2 = rddl.map(]l

>>> rdd3 = rdd2.map(1l = = =
>>>

r288%

r288% module load spark
r288% pyspark

to RDD

rm to words and integers



Finding Our Way

>>> rddl = sc.textFile("5000_points.txt")
>>> rddl.count()

5000
>>> rddl.take(4)
[' 664159 550946', ' 665845 557965', ' 597173 575538', ' 618600 551446']

>>> rdd2 = rddl.map(lambda x:x.spTlit())

>>> rdd2.take(4)

[['664159', '550946'], ['665845"', '557965'], ['597173', '575538'], ['618600', '551446']]
>>> rdd3 = rdd2.map(lambda x: [int(x[0]),int(x[1]1)])

>>> rdd3.take(4)

[[664159, 550946], [665845, 557965], [597173, 575538], [618600, 551446]]

>>>



Finding Clusters

/. ]/

N\ N~/ '/

/__/ o IN\_,_/_] /_/\_\ version 1.6.0
/—/

Using Python version 2.7.5 (default, Nov 20 2015 02:00:19)
SparkContext available as sc, HiveContext available as sqlContext.
>>>

>>> rddl = sc.textFile("5000_points.txt") } Read into RDD
>>>

>>> rdd2 = rddl.map(lambda x:x.spTit()) } Transform

>>> rdd3 = rdd2.map(lambda x: [int(x[0]),int(x[1]1)])

>>>

>>>

>>> from pyspark.mllib.clustering import KMeans } Import Kmeans

ering.KMeans

od train(rdd.

Parameters: « rdd - Tra tor or convertible sequence types
« k— Number

« maxlterations — mum num of it wed. (default: 100)

« runs-T

« initializationMode —

« seed —

« initialization Steps —

« epsilon—D ce th c ch re 3 e C nce re ped. (default: 1e-4
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Finding Clusters

/. /]

N\ N~/ '/
/__/ o IN\_,_/_] /_/\_\ version 1.6.0

/-/

Using Python version 2.7.5 (default, Nov 20 2015 02:00:19)
SparkContext available as sc, HiveContext available as sqlContext.

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

rddl = sc.textFile("5000_points.txt")
rdd2 = rddl.map(lambda x:x.spTit())
rdd3 = rdd2.map(lambda x: [int(x[0]),int(x[1]1)])

from pyspark.m1Tib.clustering import KMeans

for clusters in range(1,30):
model = KMeans.train(rdd3, clusters)
print (clusters, model.computeCost(rdd3))

Let’s see results for 1-30 cluster tries

OooNOOUVTD WN

ABRANNRRNWW

.76807041184e+14
.43183673951e+14
.23097486536e+14
.64792608443e+14
.19410028576e+14
.97690150116e+13
.16451594344e+13
.81469246295e+13
.23762700793e+13

OO NNNNNNCOOORFHE R ORFRNNWW

.65230706654e+13
.16991867996e+13
.94369408304e+13
.04031903147e+13
.37018893034e+13
.91761561687e+12
.31833652006e+13
.39010717893e+13
.22806178508e+12
.22513516563e+12
.79359299283e+12
.79615059172e+12
.70001662709e+12
.24231610447e+12
.21990743993e+12
.09395133944e+12
.92577789424e+12
.53939015776e+12
.57782690833e+12
.37192522244e+12




Right Answer?

>>> for trials in range(10):
print
for clusters in range(12,18):
model = KMeans.train(rdd3,clusters)
print (clusters, model.computeCost(rdd3))

R RRFRRFRNN O NNN 00 00 00 NN oo, NN

O ONNN

.45472346524e+13
.00175423869e+13
.90313863726e+13
.52746006962e+13
.67526114029e+12
.49571894386e+12

.62619056924e+13
.90031673822e+13
.52308079405e+13
.91765957989%e+12
.70736515113e+12
.49616440477e+12

.5524719797e+13

.14332949698e+13
.11070395905e+13
.47792736325e+13
.85736955725e+13
.42795740134e+12

.31466242693e+13
.10129797745e+13
.45400177021e+13
.52115329071e+13
.41347332901e+13
.31314086577e+13

.47927778784e+13
.43404436887e+13
.1522702068e+13
.91765000665e+12
.4580927737e+13
.57823507015e+12

ONRRNN WOORKREN ORRRREN HORREREN

CORNENN

.31466520037e+13
.91856542103e+13
.49332023312e+13
.3506302755e+13
.7757678836e+12
.60075548613e+13

.5187054064e+13

.83498739266e+13
.96076943156e+13
.41725666214e+13
.41986217172e+13
.46755159547e+12

.38234539188e+13
.85101922046e+13
.91732620477e+13
.91769396968e+12
.64876051004e+12
.54677681587e+12

.5187054064e+13

.04031903147e+13
.95213876047e+13
.93000628589e+13
.07670831868e+13
.47797102908e+12

.39830397362e+13
.00248378195e+13
.34867337672e+13
.09299321238e+13
.32266735736e+13
.50857884943e+12




Find the Centers

>>> for trials in range(10):
for clusters in range(12, 16):

model = KMeans.train(rdd3, clusters)

cost = model.computeCost(rdd3)

centers = model.clusterCenters

if cost<le+13:
print (clusters, cost)
for coords in centers:

print (int(coords[0]), int(coords[1]))

break

#Try ten times to find best result
#0only look in interesting range

#lLet’s grab cluster centers
#If result is good, print it out

15 8.91761561687e+12
852058 157685
606574 574455
320602 161521
139395 558143
858947 546259
337264 562123
244654 847642
398870 404924
670929 862765
823421 731145
507818 175610
801616 321123
617926 399415
417799 787001
167856 347812
15 8.91765957989%e+12
670929 862765
139395 558143
244654 847642
852058 157685
617601 399504
801616 321123
507818 175610
337264 562123
858947 546259
823421 731145
606574 574455
167856 347812
398555 404855
417799 787001
320602 161521
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Dimensionality Reduction
A look ahead to next Thursday

We are going to find a recurring theme throughout machine learning:
* Our data naturally resides in higher dimensions

* Reducing the dimensionality makes the problem more tractable

* And simultaneously provides us with insight

This last two bullets highlight the principle that "learning" is often finding an effective compressed
representation.

As we return to this theme, we will highlight these slides with our Dimensionality

Reduction badge so that you can follow this thread and appreciate how fundamental
itis.




Why all these dimensions?

The problems we are going to address, as well as the ones you are likely to encounter, are naturally highly
dimensional. If you are new to this concept, lets look at an intuitive example to make it less abstract.

Category Purchase Total ($)
Children's Clothing $800
Pet Supplies SO A
Cameras (Dash, Security, Baby) $450 N
Containers (Storage) $350 8
Romance Book $0 =
Remodeling Books $S80 Q(?
Sporting Goods $25 'r_D"
Children's Toys $378 oQ
Power Tools S0 2
Computers S0 r_D‘
Garden S0 v
! Vv




Why all these dimensions?

If we apply our newfound clustering expertise, we might find we have 80 clusters (with an acceptable
error).

People spending on “child’s toys “ and “children’s clothing” might cluster with “child’s books” and, less
obvious, "cameras (Dashcams, baby monitors and security cams)", because they buy new cars and are
safety conscious. We might label this cluster "Young Parents". We also might not feel obligated to label the
clusters at all. We can now represent any customer by their distance from these 80 clusters.

80 dimensional vector.

Customer Representation

Cluster Young College Auto Knitter Steelers Fan Shakespeare | Sci-Fi Fan Plumber
Parents Athlete Enthusiast Reader
Distance 0.02 2.3 1.4 8.4 2.2 14.9 33 0.8

We have now accomplished two things:

* we have compressed our data

* learned something about our customers (who to send a dashcam promo to).




Curse of Dimensionality

This is a good time to point out how our intuition can lead us astray as we increase the dimensionality of our problems - which we will
certainly be doing - and to a great degree. There are several related aspects to this phenomenon, often referred to as the Curse of
Dimensionality. One root cause of confusion is that our notion of Euclidian distance starts to fail in higher dimensions.

2 dimensions. 3 dimensions 10 dimensions

These plots show the distributions of pairwise distances
between randomly distributed points within differently
dimensioned unit hypercubes. Notice how all the points start
to be about the same distance apart.

Once can imagine this makes life harder on a clustering
algorithm!

100 dimensions 1000 dimensions 10000 dimensions

There are other surprising effects: random vectors are
almost all orthogonal; the unit sphere takes almost no
volume in the unit square. These cause all kinds of problems
when generalizing algorithms from our lowly 3D world.




Metrics
yAN

Even the definition of distance (the metric) can vary based upon application. If you are solving chess problems, you might find the
Manhattan distance (or taxicab metric) to be most useful.

Image Source: Wikipedia

For comparing text strings, we might choose one of dozens of different metrics. For spell checking you might want one that is
good for phonetic distance, or maybe edit distance. For natural language processing (NLP), you probably care more about tokens.

For genomics, you might care more about string sequences.

Some useful measures don't even qualify as metrics (usually because they fail the triangle inequality: a + b > ¢ ).



Alternative DR: Principal Component Analysis

3D Data Set Maybe mostly 1D!



Alternative DR: Principal Component Analysis :

Flatter 2D-ish Data Set View down the 15t Princ. Comp.




Why So Many Alternatives?

Let's look at one more example today. Suppose we are tying to do a Zillow type of analysis and predict home values based upon available
factors. We may have an entry (vector) for each home that captures this kind of data:

Last Sale Price S 480,000

Last Sale Year 1998

oors
Bedrooms 3
Bathrooms 2
Garage 2
Yard Width 84
Yard Depth 60

There may be some opportunities to reduce the dimension of the vector here. Perhaps clustering on the geographical coordinates...



Principal Component Analysis Fail

- House Price
House Price

$2,000,0

Non-Linear PCA?

: A Better Approach Tomorrow!
$1,500,0 °
$1,000,000

$500,00

$0

15t Component Off

Data Not Very Linear

D x W Is Not Linear

But (DxW) Fits Well




Why Would An Image Have 784 Dimensions?

MNIST 28x28
greyscale images




Central Hypothesis of Modern DL

Data Lives On
A Lower Dimensional
Manifold

Maybe Less So
Maybe Very Contiguous

Images from Wikipedia



Testing These Ideas With Scikit-learn

import numpy as np
import matplotlib.pyplot as plt
from sklearn import (datasets, decomposition, manifold, random_projection)

def draw(X, title):
plt.figureQ)
plt.xTim(X.min(0) [0],X.max(0) [0]); plt.ylim(X.min(0)[1],X.max(0)[1])
plt.xticks([1); plt.yticks([]1)
plt.title(title)
for i in range(X.shape[0]):
plt.text(X[i, 0], Xx[i, 11, str(y[i]), color=plt.cm.Setl(y[i] / 10.) )

digits = datasets.load_digits(n_class=6)
X = digits.data
y = digits.target

rp = random_projection.SparseRandomProjection(n_components=2, random_state=42)
X_projected = rp.fit_transform(x) PCA Two Components)
draw(X_projected, "Sparse Random Projection of the digits")

X_pca = decomposition.PCA(n_components=2).fit_transform(x)
draw(X_pca, "PCA (Two Components)')

tsne = manifold.TSNE(n_components=2, init='pca', random_state=0)
X_tsne = tsne.fit_transform(x)
draw(X_tsne, "t-SNE Embedding")

plt.show()
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How does all this fit together?

Character Recognition
Capchas

Chess
Go



P(c)
P(flc)
P(c,d) = P(c)*P(flc)
P(c,d)

The
Journey

Ahead

Machine
Learning

As the Data Scientist wanders across the ill-defined boundary between Data Science and Machine Learning,
in search of the fabled land of Artificial Intelligence, they find that the language changes from programming
to a creole of linear algebra and probablity and statistics.




A Recommender System
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John Urbanic
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Obvious Applications

We are now advanced enough that we can aspire to a serious application. One of the

most significant applications for some very large websites (Netflix, Amazon, etc.) are
recommender systems.

“Customers who bought this product also bought these.”

“Here are some movies you might like...”

As well as many types of targeted advertising. However those of you with less

commercial ambitions will find the core concepts here widely applicable to many types
of data that require dimensionality reduction techniques.



Let’s go all Netflix

Netflix once (2009) had a $1,000,000 contest to with just this very problem(). We will start
with a similar dataset. It looks like:

Movie Dataset (Movie ID, Title, Genre):

31,Dangerous Minds (1995),Drama

32,Twelve Monkeys (a.k.a. 12 Monkeys) (1995),Mystery | Sci-Fi| Thriller
34,Babe (1995),Children|Drama

Ratings Dataset (User ID, Movie ID, Rating, Timestamp):
2,144,3.0,835356016
2,150,5.0,835355395
2,153,4.0,835355441
2,161,3.0,835355493

We won’t use the genres or timestamp fields for our analysis.

1) https://en.wikipedia.org/wiki/Netflix_Prize



Starting Point

What we are given is a large (100,480,507 ratings) and sparse (that is a little better than 1%
of 8,532,958,530 matrix elements) list of ratings for users:

< 480,189 Users -

& 17,770 Movies -



Objective

For any given user we would like to use their ratings, in combination with all the existing user
ratings, to determine which movies they might prefer. For example, a user might really like
Annie Hall and The Purple Rose of Cairo (both Woody Allen movies, although our database
doesn’t have that information). Can we infer from other users that they might like Zelig? That
would be finding a latent variable. These might also include affinities for an actor, or director,
or genre, etc.

3 5 2 3 5 2 4 3 1 4 3 1 3 2 1
" i1 /4 1 3 2 1 3 2 5 5 3 4 3 4 1
@1 /3 5 3 /3 /55 4 2 2 2 5 4 3 3
- 4 1 2 4 2 3 5 2 3 1 1 3 1 2 3
2 2 4 1 4 4 3 51 2 4 5 2 5 4

Movies



Matrix Factorization

This resulting large, dense, matrix would be too big to actually keep around. We need to find a

compressed representation where we can reproduce any given element we request. This will have to be
lossy.

There are different ways to decompose a matrix. We will approximate our matrix as the product of two
smaller matrices. The rank, k, of the new matrices will determine how accurate this approximation will be.



Lossy Compression Becomes Approximate Solution

The process of lossy compressing the sparse R matrix is also going to provide us a means to
construct its missing members (the dense matrix).

112
X

We will call our smaller matrices a user feature matrix and a product feature matrix. This
approximation is also going to smooth out the zeros and in the process give us our projected
ratings.



Why are we getting this two-for-one?

This provides an excellent introduction to a profound perspective on Machine Learning.

112
X

One way of thinking about learning is that we are compressing everything we know about
the world into a smaller representation. Sometimes, but not usually, this can be seen
explicitly, as here.



You can do this too.

Let's say you worked in a 1990's video store, but had never heard of Steven Spielberg. If you
paid careful attention to the rental records you might notice that many people that rented E.T.
also rented Raiders of the Lost Ark and Jaws and Close Encounters and Jurassic Park. So if a
customer told you they really enjoyed an Indiana Jones movie, you might suggest they try
Jurassic Park. All without knowing who the director was. You have inferred a hidden
connection (latent effect).

One can imaging many such hidden categories in our movie data: actors, genres, release
dates, etc.

You can also imagine that the renters themselves possess these preferences hidden in their
own data. Without it being explicitly noted, we might easily see that Mary likes
documentaries and Joe loves movies with Cher.

We are thinking of reduced ways to represent these people ("likes documentaries")
vs. the raw data!



Matrix Factorization

The rank k can now also be thought of as the number of latent effects we are incorporating.
But it will not be as intuitively explicit as a simple category, and we will have to investigate an
optimal size for this parameter.

X

«—xX—

|12



Defining our error

In ML, defining the error (or loss, or cost) is often the core of defining the objective solution.
Once we define the error, we can usually plug it into a canned solver which can minimize it.
Defining the error can be obvious, or very subtle, or have multiple acceptable methods.

Clustering: For k-means we simply used the geometrical distance. It was actually the sum of
the squared distances, but you get the idea.

Image Recognition: If our algorithm tags a picture of a cat as a dog, is that a larger error than
if it tags it as a horse? Or a car? How would you quantify these?

Recommender: We will take the Mean Square Error distance between our given matrix and
our approximation as a starting point.



Mean Square Error plus Regularization

We will also add a term to discourage overfitting by damping large elements of U or P. This is
called regularization and versions appear frequently in error functions.

Error =| R—UxP |> + A(Penalty for large elements)

The | | notation means “sum the squares of all the elements and then take the square root”.

You may wonder how we can have “too little” error — the pursuit of which leads to overfitting.
Think back to our clustering problem. We could drive the error as low as we wanted by adding

more clusters (up to 5000!). But we weren’t really finding new clusters. Variations of this
phenomena occur throughout machine learning.



Overfitting

/




Mean Square Error plus Regularization

Here is exactly our error term with regularization. MLLIB scales this factor for us based on the
number of ratings (this tweak is called ALS-WR).

Error=| R—UxP |? + A(JU|? + |P}?)

The | | notation means “sum the squares of all the elements and then take the square root”.

Additionally, we need to account for our missing (unrated) values. We just zero out those
terms. Here it is term-by-term:

Error =2, w;; (R;;— (UxP);)* + A(|U]* + |P[?) w,; =0 if R,; is unknown

Note that we now have two hyperparameters, k and A, that we need to select intelligently.



Alternating Least Squares

To actually find the U and P that minimize this error we need a solving algorithm.

SGD, a go-to for many ML problems and one we will use later, is not practical for billions of
parameters, which we can easily reach with these types of problems. We are dealing with
Users X Items elements here.

Instead we use Alternating Least Squares (ALS), also built into MLLIB.

e Alternating least squares cheats by holding one of the arrays constant and then doing a
classic least squares fit on the other array parameters. Then it does this for the other array.

e This is easily parallelized.

e It works well with sparse inputs. The algorithm scales linearly with observed entries.



Here Is Our Plan

Given Use Predicted
Ratings ALS Ratings

112
I

Sparse Dense

3 . 3[5 (2 (3 52431431321

I T ez z[s]s[3[a[3]a ]2

IE | Zl1(3[s (3355 (az]2]2[5]s3]3

| s [ 5[ 1 |5 Slafafafalafs (s |21 |1]a1]z]s

4 BNE 22 (a1 alaa[s|1]2]4]s5 25 a
[

Movies



Training, Validation and Test Data

We use the training data to create our solution, the UxP matrix here.

The validation data is used to verify we are not overfitting: to stop training after
enough iterations, to adjust A or k here, or to optimize the many other
hyperparameters you will encounter in ML.

The test data must be saved to judge our final solution.

Reusing, or subtly mixing, the training, validation and t
confusion. There are techniques to slice-
and-cycle share the training
What proportions of your data to use for each of these| and validation data, called

might want to start by copying from similar work or exg cross-validation. Don't try this
with the test data!




Reality Check By Test Data




Used The
Test Data
For
Training




Where does our data come into play?

Test
Data

Training
Given Data Predicted
Ratings

Training Ratings
Data

Validation

Data

Test
Data

Dense

Validation
Data




Let’s Build A Recommender

We have all the tools we need, so let’s fire up PySpark and create a scalable recommender.
Our planis:

1. Load and parse data files
Create ALS model
3. Train it with varying ranks (k) to find reasonable hyperparameters

N

4. Add a new user
5. Get top recommendations for new user



A
AN/ N/ _ /]
/_///._/\_,_/_/ /_/N\\

Using Python version 3.7.4 (d ="

SparkSession available as 'sp o)
>» r288%

>>> ratings_raw_RDD = sc.text

Building a Recommender

login06% i1nteract

iii ratings_RDD = ratings_raw. r. 2 8 8% mOd u 'I e 'I Oad S pa r. k

>>> training_RDD, validation_
>>>

>>> predict_validation_RDD =
>>> predict_test_RDD = test_R

r288% pyspark

>>> training_RDD.take(4)

[(1, 1029, 3.0), (1, 1061, 3.0), (1, 1263, 2.0),
>>> predict_validation_RDD.take(4)

[(1, 1129, (1, 1172), (1, 1405), (1, 2105)]

o

(1, 1371, 2.5)]

ovie,rating) data.

Ds.

|data for our prediction RDDs.

), float(tokens[2])))



Y

NN N/
/— ] N/ NN

yav

version 1.6.0

Using Python version 2.7.5 (default, Nov 20 2015 02:00:19)
SparkContext available as sc, HiveContext available as sqlContext.

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

ratings_raw_RDD = sc.textFile('ratings.csv')
ratings_RDD = ratings_raw_RDD.map(lambda 1ine: Tine.split(",")).map(lambda tokens: (int(tokens[0]),int(tokens[1]),float(tokens[2])))

training_RDD, validation_RDD, test_RDD = ratings_RDD.randomSplit([3, 1, 1], 0)

predict_validation_RDD = validation_RDD.map(lambda x: (x[0], x[1]))
predict_test_RDD = test_RDD.map(lambda x: (x[0], x[1]))

from pyspark.ml1lib.recommendation import ALS

import math

seed = 5

iterations = 10
regularization = 0.1
trial_ranks = [4, 8, 12]
Towest_error = float('inf')

Import milib and set some variables we are about to use.



>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
For
For
For
>>>
>>>
The

ratings_raw_RDD = sc.textFile('ratings.csv')

ratings_RDD = ratings_raw_RDD.map(lambda 1ine: Tine.split(",")).map(lambda tokens: (int(tokens[0]),int(tokens[1]),float(tokens[2])))

training_RDD, validation_RDD, test_RDD = ratings_RDD.randomSplit([3, 1, 1], 0)

predict_validation_RDD = validation_RDD.map(lambda x: (x[0], x[1]))
predict_test_RDD = test_RDD.map(lambda x: (x[0], x[1]))

from pyspark.mllib.recommendation import ALS
import math

seed = 5

iterations = 10
regularization = 0.1
trial_ranks = [4, 8, 12]
lowest_error = float('inf')

for k in trial_ranks:

k=
k=
k=

model = ALS.train(training_RDD, k, seed=seed, iterations=iterations, lambda_=regularization)
#Coercing ((u,p),r) tuple format to accomodate join
predictions_RDD = model.predictAll(predict_validation_RDD).map(lambda r: ((r[0], r[1]), r[2]1))
ratings_and_preds_RDD = validation_RDD.map(lambda r: ((r[0], r[1]), r[2])).join(predictions_RDD)
error = math.sqrt(ratings_and_preds_RDD.map(Tambda r: (r[1][0] - r[1]1[1]1)**2).mean())
print ('For k=',k,'the RMSE is', error)
if error < lowest_error:

best_k = k

Towest_error = error

4 the RMSE 1is 0.9357038861004305
8 the RMSE 1is 0.9438612625240242
12 the RMSE is 0.9390638322819614

print('The best rank is size', best_k)
best rank is size 4

Run our ALS model on various ranks to see which is best.




>>> for k in trial_ranks:

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
For k=
For k=
For k=

model = ALS.train(training_RDD, k, seed=seed, iterations=iterations, Tambda_=regularization)
#Coercing ((Cu,p),r) tuple format to accomodate join
predictions_RDD = model.predictAll(predict_validation_RDD).map(lambda r: ((r[0], r[1]), r[21))
ratings_and_preds_RDD = validation_RDD.map(lambda r: ((r[0], r[1]), r[2])).join(predictions_RDD)
error = math.sqrt(ratings_and_preds_RDD.map(lambda r: (r[1][0] - r[1][1])**2).mean())
print ('For k=',k,'the RMSE is', error)
if error < lowest_error:

best_k = k

Towest_error = error

4 the RMSE 1is 0.9357038861004305
8 the RMSE is 0.9438612625240242
12 the RMSE is 0.9390638322819614

The ALS.train() routines gives us:

>>> model.predictAlT(predict_validation_RDD).take(2)
[Rating(user=463, product=4844, rating=2.7640960482284322), Rating(user=380, product=4844, rating=2.399938320644199)]

To do the "RMS error" math, we want elements with a (Given,Predicted) value for each (User,Movie) key:
>>> ratings_and_preds_RDD. take(2)

[((119, 145), (4.0, 2.903215714486778)), ((407, 5995), (4.5, 4.604779028840272))]

So the next two lines get us from here to there.




>>> for k in trial_ranks:

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
For k=
For k=
For k=

model = ALS.train(training_RDD, k, seed=seed, iterations=iterations, Tambda_=regularization)
#Coercing ((Cu,p),r) tuple format to accomodate join
predictions_RDD = model.predictAll(predict_validation_RDD).map(lambda r: ((r[0], r[1]), r[2]))
ratings_and_preds_RDD = validation_RDD.map(lambda r: ((r[0], r[1]), r[2])).join(predictions_RDD)
error = math.sqrt(ratings_and_preds_RDD.map(lambda r: (r[1]1[0] - r[1]1[1])**2).mean())
print ('For k=',k,'the RMSE is', error)
if error < lowest_error:

best_k = k

Towest_error = error

4 the RMSE 1is 0.9357038861004305
8 the RMSE is 0.9438612625240242
12 the RMSE is 0.9390638322819614

>>> model.predictAlT(predict_validation_RDD).map(lambda r: ((r[0], r[1]), r[2])).take(2)
[(C463, 4844), 2.7640960482284322), ((380, 4844), 2.399938320644199)]

That map gets us to a pair RDD with [ (User,Movie), rating ] format.

Now do this with the validation RDD:

>>> validation_RDD. take(2)

[, 1129, 2.0), (1, 1172, 4.0)]

>>>

>>> validation_RDD.map(lambda r: ((r[0], r[1]1), r[2])).take(2)
[ca, 1129, 2.0, ((a, 1172, 4.0)]




>>> for k in trial_ranks:

>>> model = ALS.train(training_RDD, k, seed=seed, iterations=iterations, Tambda_=regularization)

>>> #Coercing ((Cu,p),r) tuple format to accomodate join

>>> predictions_RDD = model.predictAll(predict_validation_RDD).map(lambda r: ((r[0], r[1]), r[2]1))
>>> ratings_and_preds_RDD = validation_RDD.map(lambda r: ((r[0], r[1]), r[2])).join(predictions_RDD)
>>> error = math.sqrt(ratings_and_preds_RDD.map(lambda r: (r[1]1[0] - r[1]1[1])**2).mean())

>>> print ('For k=',k,'the RMSE is', error)

>>> if error < lowest_error:
>>> best_k = k

>>> Towest_error = error
>>>

For k= 4 the RMSE is 0.9357038861004305
For k= 8 the RMSE is 0.9438612625240242
For k= 12 the RMSE is 0.9390638322819614

To collect rating values for common (User,Movie) keys calls for a join(Q)

Data before join:

>>> predictions_RDD.take(2)
[(C463, 4844), 2.7640960482284322), ((380, 4844), 2.399938320644199)]

>>>
>>> validation_RDD.map(lambda r: ((r[0], r[1]), r[2])).take(2)
[CC1, 1129), 2.0), ((, 1172), 4.0)]

Results of join:

>>> ratings_and_preds_RDD.take(2)
[((119, 145), (4.0, 2.903215714486778)), ((407, 5995), (4.5, 4.604779028840272))]




>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
For
For
For
>>>
>>>
The
>>>
>>>
>>>
>>>
>>>
>>>
For

for k in trial_ranks:
model = ALS.train(training_RDD, k, seed=seed, iterations=iterations, Tambda_=regularization)
#Coercing ((Cu,p),r) tuple format to accomodate join
predictions_RDD = model.predictAll(predict_validation_RDD).map(lambda r: ((r[0], r[1]), r[2]1))
ratings_and_preds_RDD = validation_RDD.map(lambda r: ((r[0], r[1]), r[2])).join(predictions_RDD)
error = math.sqrt(ratings_and_preds_RDD.map(lambda r: (r[1]1[0] - r[1]1[1])**2).mean())
print ('For k=',k,'the RMSE is', error)
if error < lowest_error:
best_k = k
Towest_error = error

k= 4 the RMSE 1is 0.9357038861004305
k= 8 the RMSE 1is 0.9438612625240242
k= 12 the RMSE 1is 0.9390638322819614

print('The best rank is size', best_k)
best rank is size 4

model = ALS.train(training_RDD, best_k, seed=seed, iterations=iterations, Tambda_=regularization)
predictions_RDD = model.predictAll(predict_test_RDD).map(lambda r: ((r[0], r[1]1), r[2]))
ratings_and_preds_RDD = .map(lambda r: ((r[0], r[1]), r[2])).join(predictions_RDD)

error = math.sqrt(ratings_and_preds_RDD.map(lambda r: (r[1]1[0] - r[1]1[1])**2).mean())

print ('For testing data the RMSE 1is %s' % (error))

testing data the RMSE is 0.9406803213698973

This is our fully tested model (smallest dataset).
These results were reported against the test RDD.




Adding a User

>>>
>>> new_user_ID = 0 " | checked that ID 0O is unused with a quick
ratings_RDD.filter(Tambda x: x[0]=='0").count()"

>>> new_user = [
(0,100,4), # city Hall (1996)
(0,237,1), # Forget Paris (1995)
(0,44,4), # Mortal Kombat (1995)
(0,25,5), # etc....

(0,456,3),
(0,849,3),
(0,778,2),
Egzgz 33 ’ Note that we are joining, and then training, with ALL data
(0 248 ) ’ now - the ratings RDD. We are confident we know what
] we are doing and are done testing.
>>>
>>> new_user_RDD = sc.parallelize(new_user
>>>
>>> updated_ratings_RDD = .union(new_user_RDD)
>>>

>>> updated_model = ALS.train(updated_ratings_RDD, best_rank, seed=seed, iterations=iterations,
Tambda_=regularization)
>>>



Let’s get some predictions...

>>>
>>> movies_raw_RDD = sc.textFile('movies.csv')

>>> movies_RDD = movies_raw_RDD.map(lambda Tine: line.split(",")).map(lambda tokens: (int(tokens[0]),tokens[1]))
>>>

>>> new_user_rated_movie_ids = map(lambda x: x[1], new_user)
>>> new_user_unrated_movies_RDD = movies_RDD.filter(Tambda x: x[0] not in new_user_rated_movie_ids).map(Tambda x: (new_user_ID, x[0]))
>>> new_user_recommendations_RDD = updated_model.predictAll(new_user_unrated_movies_RDD)

>>> new_user_unrated_movies_RDD.take(3)

[0, 1, (0, 2), (0, 3]

>>> new_user_recommendations_RDD.take(2)

[Rating(user=0, product=4704, rating=3.606560950463134), Rating(user=0, product=4844, rating=2.1368358868224036)]




>>>

>>> product_rating_RDD = new_user_recommendations_RDD.map(lambda x: (x.product, x.rating))

>>> new_user_recommendations_titled_RDD = product_rating_RDD.join(movies_RDD)

>>> new_user_recommendations_formatted_RDD = new_user_recommendations_titled_RDD.map(lambda x: (x[1]J[1],x[11[0]1))
>>>

>>> top_recomends = new_user_recommendations_formatted_RDD.takeordered (10, key=lambda x: -x[1])
>>> for Tine in top_recomends: print (line)

("Maelstr\xféem (2000)', 6.2119957527973355)

('King Is Alive', 6.2119957527973355)

("Innocence (2000)', 6.2119957527973355)

('Dangerous Beauty (1998)', 6.189751978239315)

('Bad and the Beautiful', 6.005879185976944)

('Taste of cherry (Ta'm e guilass) (1997)', 5.96074819887891)
('The Lair of the white worm (1988)', 5.958594728894122)
('Mifune's Last song (Mifunes sidste sang) (1999)', 5.934820295566816)
('Business of strangers', 5.899232655788708)

>>>

>>> one_movie_RDD = sc.parallelize([(0, 800)]) # Lone Star (1996)
>>> rating_RDD = updated_model.predictAll(one_movie_RDD)

>>> rating_RDD.take(1)

[Rating(user=0, product=800, rating=4.100848893773136)]

Looks 1ike we can sort
by value after all!

Behind the scenes
takeordered() just does
the key/value swap and
SortByKey that we
previously did
ourselves.

>>> new_user_recommendations_titled_RDD.take(2)

>>> new_user_recommendations_formatted_RDD.take(2)
[('Lucy (2014)', 1.0666741148393921), ('Blood Diamond (2006)', 1.8020006042285814)]

[(111360, (1.0666741148393921, 'Lucy (2014)')), (49530, (1.8020006042285814, 'Blood Diamond (2006)'))]




Exercises

1) We noticed that out top ranked movies have ratings higher than 5. This makes perfect sense as there is no ceiling
implied in our algorithm and one can imagine that certain combinations of factors would combine to create “better
than anything you’ve seen yet” ratings.

Maybe you have a friend that really likes Anime. Many of her ratings for Anime are 5. And she really likes Scarlett
Johansson and gives her movies lots of 5s. Wouldn’t it be fair to consider her rating for Ghost in the Shell to be a 7/5?

Nevertheless, we may have to constrain our ratings to a 1-5 range. Can you normalize the output from our
recommender such that our new users only sees ratings in that range?

2) We haven’t really investigated our convergence rate. We specify 10 iterations, but is that reasonable? Graph your
error against iterations and see if that is a good number.

3) I mentioned that our larger dataset does benefit from a rank of 12 instead of 4 (as one might expect). The larger
datasets (ratings-large.csv and movies-large.csv) are available to you in ~training/LargeMovies. Prove that the error is
less with a larger rank. How does this dataset benefit from more iterations? Is it more effective to spend the
computation cycles on more iterations or larger ranks?

4) We could have used the very similar pyspark.ml.recommendation API, which uses dataframes. It requires a little
more type checking, so we used the classic RDD API pyspark.mllib.recommendation instead - for conciseness. Try
porting this example to that API. Is this a better way to work?



