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Our  Environment For IHPCSS

Your laptops or workstations: only used for portal access.

Bridges-2 is our HPC platform.

We will here briefly go through 
the steps to login, edit, compile 
and run before we get into the 
real materials.

We want to get all of the 
distractions and local trivia out 
of the way here.  Everything 
after this part applies to any 
HPC environment you will 
encounter.



Getting Connected

⚫ We will be working on bridges2.psc.edu.  Use an ssh client (a Putty terminal, for example), to ssh to the machine.

⚫ At this point you are on a login node.  It will have a name like “bridges2-login011”.  This is a fine place to edit and 
compile codes.  However we must be on compute nodes to do actual computing.  We have designed Bridges to be 
the world’s most interactive supercomputer.  We generally only require you to use the batch system when you want 
to. Otherwise, you get your own personal piece of the machine.  To get a single GPU use “interact –gpu”:

[urbanic@bridges2-login011]$ interact –gpu

[urbanic@v005]$

⚫ However when we have too many of you looking for very quick turnaround, we will fall back on the queuing system 
to help.  We will keep it very simple today:

[urbanic@bridges2-login011]$ sbatch gpu.job



Editors

For editors, we have several options:

– emacs

– vi

– nano: use this if you aren’t familiar with the others



Compiling
We will be using standard Fortran and C compilers.  They should look familiar.

⚫ pgcc for C

⚫ pgf90 for Fortran

Note that on Bridges you would normally have to enable this compiler with

module load pgi/nvhpc

I have put that in the .bashrc file that we will all start with.



Multiple Sessions

There is no reason not to open other sessions (windows) to the login 

nodes for compiling and editing.  You may find this convenient.  Feel free 

to do so.



Our Setup For This Workshop

After you copy the files from the training directory, you will have:

/Exercises

/Test

/OpenMP

laplace_serial.f90/c

/Solutions

/Examples

/Prime

/OpenACC

/MPI



Let’s get the boring stuff out of the way now.

⚫ Log on to Bridges.

ssh username@bridges2.psc.edu

⚫ Run the setup script that will copy over the Exercises directory we will all use. It will also automatically load the right compiler using your 
.bashrc script whenever you login.

~training/Setup

⚫ As told, logout and log back on again to complete the setup.  You won’t need to do that in the future.

⚫ Edit a file to make sure you can do so.  Use emacs, vi or nano (if the first two don’t sound familiar).

⚫ cd into your exercises/test directory and compile (C or Fortran)

cd Exercises/Test

nvc test.c

nvfortran test.f90

⚫ Run your program  (or just interact -gpu and then run a.out, if we can all fit)

sbatch gpu.job

(Wait a minute, or see how your job is doing with squeue –u username)

⚫ Look at the results

more slurm-55838.out       (The exact job number will differ)

It should say “Congratulations!”

Preliminary    Exercise



Introduction  to  OpenACC

John Urbanic
Parallel Computing Scientist

Pittsburgh Supercomputing Center

Copyright 2021



What is OpenACC?

It is a directive based standard to allow developers to 

take advantage of accelerators such as GPUs from 

NVIDIA and AMD, Intel's Xeon Phi, FPGAs, and even DSP 

chips.



Directives

Program myscience

... serial code ...

!$acc kernels

do k = 1,n1

do i = 1,n2

... parallel code ...

enddo

enddo

!$acc end kernels

...

End Program myscience

CPU GPU

Your original 

Fortran or C code

OpenACC

Compiler

Hint

Simple compiler hints from coder.

Compiler generates parallel 

threaded code.

Ignorant compiler just sees some 

comments.



Familiar to OpenMP Programmers

main() {

double pi = 0.0; long i;

#pragma omp parallel for reduction(+:pi)

for (i=0; i<N; i++)

{

double t = (double)((i+0.05)/N);

pi += 4.0/(1.0+t*t);

}

printf(“pi = %f\n”, pi/N);

}

CPU

OpenMP

main() {

double pi = 0.0; long i;

#pragma acc kernels

for (i=0; i<N; i++)

{

double t = (double)((i+0.05)/N);

pi += 4.0/(1.0+t*t);

}

printf(“pi = %f\n”, pi/N);

}

CPU GPU

OpenACC

More on this later!



How Else Would We Accelerate Applications?

Applications

Libraries

“Drop-in” 

Acceleration

Programming 

Languages

(CUDA)

OpenACC

Directives

Maximum

Flexibility

Incrementally 

Accelerate

Applications



Key Advantages Of This Approach

High-level.  No involvement of OpenCL, CUDA, etc.

Single source.  No forking off a separate GPU code.  Compile the same program for 

accelerators or serial; non-GPU programmers can play along.

Efficient.  Experience shows very favorable comparison to low-level implementations 

of same algorithms.

Performance portable.  Supports GPU accelerators and co-processors from multiple 

vendors, current and future versions.

Incremental.  Developers can port and tune parts of their application as resources 

and profiling dictates. No wholesale rewrite required.  Which can be quick.



True Standard

Full OpenACC specifications (now on 3.0) available online

http://www.openacc-standard.org

Quick reference card also available and useful

Implementations available now from PGI, Cray, CAPS and GCC.

GCC version of OpenACC started in 5.x, but use 10.x

Best free option is very probably PGI Community version:

http://www.pgroup.com/products/community.htm



Resources 
https://www.openacc.org/resources

Success Stories
https://www.openacc.org/success-stories

Events
https://www.openacc.org/events

OPENACC Resources
Guides ● Talks ● Tutorials ● Videos ● Books ● Spec ● Code Samples ● Teaching Materials ● Events ● Success Stories ● Courses ● Slack ● Stack Overflow

Compilers and Tools 
https://www.openacc.org/tools

FREE 

Compilers

https://www.openacc.org/resources
https://www.openacc.org/success-stories
https://www.openacc.org/events
https://gcc.gnu.org/wiki/OpenACC
https://www.openacc.org/tools
https://www.pgroup.com/products/community.htm


Sunway TaihuLight

Built around 

OpenACC

NEW PLATFORMS
GROWING 

COMMUNITY

▪ 6,000+ enabled 
developers

▪ Hackathons constantly

▪ Diverse online 
community

▪ Five of 13 CAAR 

codes using 

OpenACC

▪ Gaussian ported to 

Tesla with OpenACC

▪ FLUENT using 

OpenACC in R18 

production release

PORTING 
SUCCESS

Serious Adoption



A Few Cases
Reading DNA nucleotide sequences

Shanghai JiaoTong University

Designing circuits for quantum 
computing

UIST, Macedonia

Extracting image features in real-
time

Aselsan

1 week

40x faster

3 directives

4.1x faster

HydroC- Galaxy Formation

PRACE Benchmark Code, CAPS

Real-time Derivative Valuation

Opel Blue, Ltd

Matrix Matrix Multiply

Independent Research 
Scientist

Few hours

70x faster

4 directives

6.4x faster

4 directives

16x faster

1 week

3x faster



A Champion Case

S3D: Fuel Combustion

Design alternative fuels with 
up to 50% higher efficiencyTitan

10 days

Jaguar

42 days

Modified <1% 
Lines of Code

4x Faster

15 PF!  One of fastest 

simulations ever!



subroutine saxpy(n, a, x, y)
real :: x(:), y(:), a
integer :: n, i

!$acc kernels
do i=1,n

y(i) = a*x(i)+y(i)
enddo

!$acc end kernels
end subroutine saxpy

...
$ From main program
$ call SAXPY on 1M elements
call saxpy(2**20, 2.0, x_d, y_d)
...

void saxpy(int n, 

float a, 

float *x, 

float *restrict y)

{

#pragma acc kernels

for (int i = 0; i < n; ++i)

y[i] = a*x[i] + y[i];

}

...

// Somewhere in main

// call SAXPY on 1M elements

saxpy(1<<20, 2.0, x, y);

...

A Simple Example: SAXPY

SAXPY in C SAXPY in Fortran



kernels: Our first OpenACC Directive

We request that each loop execute as a separate kernel on the GPU.  

This is an incredibly powerful directive.

!$acc kernels

do i=1,n

a(i) = 0.0

b(i) = 1.0

c(i) = 2.0

end do

do i=1,n

a(i) = b(i) + c(i)

end do

!$acc end kernels

kernel 1

kernel 2

Kernel: 
A parallel routine to 

run on the GPU



General Directive Syntax and Scope

Fortran

!$acc kernels [clause …]
structured block

!$acc end kernels

C

#pragma acc kernels [clause …]
{

structured block

}

I may indent the directives at the natural code indentation level for readability.  It is a 

common practice to always start them in the first column (ala #define/#ifdef).  Either is fine 

with C or Fortran 90 compilers.



Complete SAXPY Example Code

#include <stdlib.h>

void saxpy(int n,

float a,

float *x,

float *restrict y)

{

#pragma acc kernels 

for (int i = 0; i < n; ++i)

y[i] = a * x[i] + y[i];

}

int main(int argc, char **argv)

{

int N = 1<<20; // 1 million floats

if (argc > 1)

N = atoi(argv[1]);

float *x = (float*)malloc(N * sizeof(float));

float *y = (float*)malloc(N * sizeof(float));

for (int i = 0; i < N; ++i) {

x[i] = 2.0f;

y[i] = 1.0f;

}

saxpy(N, 3.0f, x, y);

return 0;

}

“I promise y is not aliased by

Anything else (esp. x)”



C Detail: the restrict keyword

Standard C (as of C99).

Important for optimization of serial as well as OpenACC and OpenMP code.

Promise given by the programmer to the compiler for a pointer

float *restrict ptr

Meaning: “for the lifetime of ptr, only it or a value directly derived from it (such as ptr + 1) will be 

used to access the object to which it points”

Limits the effects of pointer aliasing

OpenACC compilers often require restrict to determine independence

Otherwise the compiler can’t parallelize loops that access ptr

Note: if programmer violates the declaration, behavior is undefined



Compile and Run

C: nvc –acc -Minfo=accel saxpy.c

Fortran: nvfortran –acc -Minfo=accel saxpy.f90

Compiler Output

nvc -acc -Minfo=accel saxpy.c

saxpy:

8, Generating copyin(x[:n-1])

Generating copy(y[:n-1])

Generating compute capability 1.0 binary

Generating compute capability 2.0 binary

9, Loop is parallelizable

Generating Tesla code

9, #pragma acc loop worker, vector(256) /* blockIdx.x threadIdx.x */

CC 1.0 : 4 registers; 52 shared, 4 constant, 0 local memory bytes; 100% occupancy

CC 2.0 : 8 registers; 4 shared, 64 constant, 0 local memory bytes; 100% occupancy

Run: a.out



Compare:  Partial CUDA C SAXPY Code
Just the subroutine

__global__ void saxpy_kernel( float a, float* x, float* y, int n ){

int i;

i = blockIdx.x*blockDim.x + threadIdx.x;

if( i <= n ) x[i] = a*x[i] + y[i];

}

void saxpy( float a, float* x, float* y, int n ){

float *xd, *yd;

cudaMalloc( (void**)&xd, n*sizeof(float) );

cudaMalloc( (void**)&yd, n*sizeof(float) ); cudaMemcpy( xd, x, n*sizeof(float),

cudaMemcpyHostToDevice );

cudaMemcpy( yd, y, n*sizeof(float),

cudaMemcpyHostToDevice );

saxpy_kernel<<< (n+31)/32, 32 >>>( a, xd, yd, n );

cudaMemcpy( x, xd, n*sizeof(float),

cudaMemcpyDeviceToHost );

cudaFree( xd ); cudaFree( yd );

}



Compare:  Partial CUDA Fortran SAXPY Code
Just the subroutine

module kmod
use cudafor

contains
attributes(global) subroutine saxpy_kernel(A,X,Y,N)
real(4), device :: A, X(N), Y(N)
integer, value :: N
integer :: i
i = (blockidx%x-1)*blockdim%x + threadidx%x
if( i <= N ) X(i) = A*X(i) + Y(i)
end subroutine

end module

subroutine saxpy( A, X, Y, N )
use kmod
real(4) :: A, X(N), Y(N)
integer :: N
real(4), device, allocatable, dimension(:):: &

Xd, Yd
allocate( Xd(N), Yd(N) )
Xd = X(1:N)
Yd = Y(1:N)
call saxpy_kernel<<<(N+31)/32,32>>>(A, Xd, Yd, N)
X(1:N) = Xd
deallocate( Xd, Yd )
end subroutine



Again: Complete SAXPY Example Code

#include <stdlib.h>

void saxpy(int n,

float a,

float *x,

float *restrict y)

{

#pragma acc kernels 

for (int i = 0; i < n; ++i)

y[i] = a * x[i] + y[i];

}

int main(int argc, char **argv)

{

int N = 1<<20; // 1 million floats

if (argc > 1)

N = atoi(argv[1]);

float *x = (float*)malloc(N * sizeof(float));

float *y = (float*)malloc(N * sizeof(float));

for (int i = 0; i < N; ++i) {

x[i] = 2.0f;

y[i] = 1.0f;

}

saxpy(N, 3.0f, x, y);

return 0;

}

Entire Subroutine

Main Code



Big Difference!

With CUDA, we changed  the structure of the old code.  Non-CUDA 

programmers can’t understand new code.  It is not even ANSI standard code.

We have separate sections for the host code and the GPU code.  Different flow 

of code.  Serial path now gone forever.

Where did these “32”s and other mystery numbers come from?  This is a clue 

that we have some hardware details to deal with here.

Exact same situation as assembly used to be.  How much hand-assembled code 

is still being written in HPC now that compilers have gotten so efficient?



This looks easy!  Too easy…

If it is this simple, why don’t we just throw kernel in front of every loop?

Better yet, why doesn’t the compiler do this for me?

The answer is that there are two general issues that prevent the compiler from being 

able to just automatically parallelize every loop.

Data Dependencies in Loops

Data Movement

The compiler needs your higher level perspective (in the form of directive hints) to 

get correct results and reasonable performance.



Data Dependencies

Most directive based parallelization consists of splitting up big do/for loops into 

independent chunks that the many processors can work on simultaneously.

Take, for example, a simple for loop like this:

for(index=0; index<1000000; index++)

Array[index] = 4 * Array[index];

When run on 1000 processors, it will execute something like this…



for(index=0, index<999,index++)

Array[index] = 4*Array[index];

Processor

0

for(index=1000, index<1999,index++)

Array[index] = 4*Array[index];

Processor

1

for(index=2000, index<2999,index++)

Array[index] = 4*Array[index];

Processor

2

for(index=3000, index<3999,index++)

Array[index] = 4*Array[index];

Processor

3

for(index=4000, index<4999,index++)

Array[index] = 4*Array[index];

Processor

4 ….

No Data Dependency



Data Dependency

But what if the loops are not entirely independent?

Take, for example, a similar loop like this:

for(index=1; index<1000000; index++)

Array[index] = 4 * Array[index] – Array[index-1];

This is perfectly valid serial code.



Data Dependency

Now Processor 1, in trying to calculate its first iteration…

for(index=1000; index<1999; index++)

Array[1000] = 4 * Array[1000] – Array[999];

needs the result of Processor 0’s last iteration.  If we want the correct (“same 

as serial”) result, we need to wait until processor 0 finishes.  Likewise for 

processors 2, 3, …



Data Dependencies

That is a data dependency.  If the compiler even suspects that there is a data 

dependency, it will, for the sake of correctness, refuse to parallelize that loop 

with kernels.

11, Loop carried dependence of 'Array' prevents parallelization

Loop carried backward dependence of 'Array' prevents vectorization

As large, complex loops are quite common in HPC, especially around the most 

important parts of your code, the compiler will often balk most when you most 

need a kernel to be generated.  What can you do?



Data Dependencies

Rearrange your code to make it more obvious to the compiler that there 

is not really a data dependency.

Eliminate a real dependency by changing your code.

There is a common bag of tricks developed for this as this issue goes 

back 40 years in HPC.  Many are quite trivial to apply.

The compilers have gradually been learning these themselves.

Override the compiler’s judgment (independent clause) at the risk of 

invalid results.  Misuse of restrict has similar consequences.



Our Foundation Exercise: Laplace Solver

I’ve been using this for MPI, OpenMP and now OpenACC.  It is a great simulation problem, not rigged for OpenACC.

In this most basic form, it solves the Laplace equation:    𝛁𝟐𝒇(𝒙, 𝒚) = 𝟎
The Laplace Equation applies to many physical problems, including:

Electrostatics

Fluid Flow

Temperature

For temperature, it is the Steady State Heat Equation:

Metal

Plate

Heating

Element

Initial Conditions Final Steady State

Metal

Plate



Exercise Foundation: Jacobi Iteration

The Laplace equation on a grid states that each grid point is the average of it’s 

neighbors.

We can iteratively converge to that state by repeatedly computing new values at 

each point from the average of neighboring points.

We just keep doing this until the difference from one pass to the next is small 

enough for us to tolerate.

A(i,j) A(i+1,j)A(i-1,j)

A(i,j-1)

A(i,j+1)

𝐴𝑘+1 𝑖, 𝑗 =
𝐴𝑘(𝑖 − 1, 𝑗) + 𝐴𝑘 𝑖 + 1, 𝑗 + 𝐴𝑘 𝑖, 𝑗 − 1 + 𝐴𝑘 𝑖, 𝑗 + 1

4



Serial Code Implementation

for(i = 1; i <= ROWS; i++) {
for(j = 1; j <= COLUMNS; j++) {

Temperature[i][j] = 0.25 * (Temperature_last[i+1][j] + Temperature_last[i-1][j] +
Temperature_last[i][j+1] + Temperature_last[i][j-1]);

}
}

do j=1,columns
do i=1,rows

temperature(i,j)= 0.25 * (temperature_last(i+1,j)+temperature_last(i-1,j) + &
temperature_last(i,j+1)+temperature_last(i,j-1) )

enddo
enddo



while ( dt > MAX_TEMP_ERROR && iteration <= max_iterations ) {

for(i = 1; i <= ROWS; i++) {
for(j = 1; j <= COLUMNS; j++) {

Temperature[i][j] = 0.25 * (Temperature_last[i+1][j] + Temperature_last[i-1][j] +
Temperature_last[i][j+1] + Temperature_last[i][j-1]);

}
}

dt = 0.0;

for(i = 1; i <= ROWS; i++){
for(j = 1; j <= COLUMNS; j++){

dt = fmax( fabs(Temperature[i][j]-Temperature_last[i][j]), dt);
Temperature_last[i][j] = Temperature[i][j];

}
}

if((iteration % 100) == 0) {
track_progress(iteration);

}

iteration++;

}

Serial C Code (kernel)

Calculate

Update 

temp

array and

find max

change

Output

Done?



void initialize(){

int i,j;

for(i = 0; i <= ROWS+1; i++){
for (j = 0; j <= COLUMNS+1; j++){

Temperature_last[i][j] = 0.0;
}

}

// these boundary conditions never change throughout run

// set left side to 0 and right to a linear increase
for(i = 0; i <= ROWS+1; i++) {

Temperature_last[i][0] = 0.0;
Temperature_last[i][COLUMNS+1] = (100.0/ROWS)*i;

}

// set top to 0 and bottom to linear increase
for(j = 0; j <= COLUMNS+1; j++) {

Temperature_last[0][j] = 0.0;
Temperature_last[ROWS+1][j] = (100.0/COLUMNS)*j;

}
}

Serial C Code Subroutines

void track_progress(int iteration) {

int i;

printf("-- Iteration: %d --\n", iteration);
for(i = ROWS-5; i <= ROWS; i++) {

printf("[%d,%d]: %5.2f ", i, i,Temperature[i][i]);
}
printf("\n");

}

BCs could run from 0 

to ROWS+1 or from 1 

to ROWS. We chose 

the former.



#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <sys/time.h>

// size of plate
#define COLUMNS    1000
#define ROWS       1000

// largest permitted change in temp (This value takes about 3400 steps)
#define MAX_TEMP_ERROR 0.01

double Temperature[ROWS+2][COLUMNS+2];      // temperature grid
double Temperature_last[ROWS+2][COLUMNS+2]; // temperature grid from last iteration

//   helper routines
void initialize();
void track_progress(int iter);

int main(int argc, char *argv[]) {

int i, j;                                            // grid indexes
int max_iterations;                                  // number of iterations
int iteration=1;                                     // current iteration
double dt=100;                                       // largest change in t
struct timeval start_time, stop_time, elapsed_time;  // timers

printf("Maximum iterations [100-4000]?\n");
scanf("%d", &max_iterations);

gettimeofday(&start_time,NULL); // Unix timer

initialize();                   // initialize Temp_last including boundary conditions

// do until error is minimal or until max steps
while ( dt > MAX_TEMP_ERROR && iteration <= max_iterations ) {

// main calculation: average my four neighbors
for(i = 1; i <= ROWS; i++) {

for(j = 1; j <= COLUMNS; j++) {
Temperature[i][j] = 0.25 * (Temperature_last[i+1][j] + Temperature_last[i-1][j] +

Temperature_last[i][j+1] + Temperature_last[i][j-1]);
}

}

dt = 0.0; // reset largest temperature change

// copy grid to old grid for next iteration and find latest dt
for(i = 1; i <= ROWS; i++){

for(j = 1; j <= COLUMNS; j++){
dt = fmax( fabs(Temperature[i][j]-Temperature_last[i][j]), dt);
Temperature_last[i][j] = Temperature[i][j];

}
}

// periodically print test values
if((iteration % 100) == 0) {

track_progress(iteration);
}

iteration++;
}

Whole C Code

gettimeofday(&stop_time,NULL);
timersub(&stop_time, &start_time, &elapsed_time); // Unix time subtract routine

printf("\nMax error at iteration %d was %f\n", iteration-1, dt);
printf("Total time was %f seconds.\n", elapsed_time.tv_sec+elapsed_time.tv_usec/1000000.0);

}

// initialize plate and boundary conditions
// Temp_last is used to to start first iteration
void initialize(){

int i,j;

for(i = 0; i <= ROWS+1; i++){
for (j = 0; j <= COLUMNS+1; j++){

Temperature_last[i][j] = 0.0;
}

}

// these boundary conditions never change throughout run

// set left side to 0 and right to a linear increase
for(i = 0; i <= ROWS+1; i++) {

Temperature_last[i][0] = 0.0;
Temperature_last[i][COLUMNS+1] = (100.0/ROWS)*i;

}

// set top to 0 and bottom to linear increase
for(j = 0; j <= COLUMNS+1; j++) {

Temperature_last[0][j] = 0.0;
Temperature_last[ROWS+1][j] = (100.0/COLUMNS)*j;

}
}

// print diagonal in bottom right corner where most action is
void track_progress(int iteration) {

int i;

printf("---------- Iteration number: %d ------------\n", iteration);
for(i = ROWS-5; i <= ROWS; i++) {

printf("[%d,%d]: %5.2f  ", i, i, Temperature[i][i]);
}
printf("\n");

}



do while ( dt > max_temp_error .and. iteration <= max_iterations)

do j=1,columns
do i=1,rows

temperature(i,j)=0.25*(temperature_last(i+1,j)+temperature_last(i-1,j)+ &
temperature_last(i,j+1)+temperature_last(i,j-1) )

enddo
enddo

dt=0.0

do j=1,columns
do i=1,rows

dt = max( abs(temperature(i,j) - temperature_last(i,j)), dt )
temperature_last(i,j) = temperature(i,j)

enddo
enddo

if( mod(iteration,100).eq.0 ) then
call track_progress(temperature, iteration)

endif

iteration = iteration+1

enddo

Serial Fortran Code (kernel)

Calculate

Update 

temp

array and

find max

change

Output

Done?



subroutine initialize( temperature_last )
implicit none

integer, parameter             :: columns=1000
integer, parameter             :: rows=1000
integer                        :: i,j

double precision, dimension(0:rows+1,0:columns+1) :: temperature_last

temperature_last = 0.0

!these boundary conditions never change throughout run

!set left side to 0 and right to linear increase
do i=0,rows+1

temperature_last(i,0) = 0.0
temperature_last(i,columns+1) = (100.0/rows) * i

enddo

!set top to 0 and bottom to linear increase
do j=0,columns+1

temperature_last(0,j) = 0.0
temperature_last(rows+1,j) = ((100.0)/columns) * j

enddo

end subroutine initialize

Serial Fortran Code Subroutines

subroutine track_progress(temperature, iteration)
implicit none

integer, parameter             :: columns=1000
integer, parameter             :: rows=1000
integer                        :: i,iteration

double precision, dimension(0:rows+1,0:columns+1) :: temperature

print *, '---------- Iteration number: ', iteration, ' ---------------'
do i=5,0,-1

write (*,'("("i4,",",i4,"):",f6.2,"  ")',advance='no'), &
rows-i,columns-i,temperature(rows-i,columns-i)

enddo
print *



program serial
implicit none

!Size of plate
integer, parameter             :: columns=1000
integer, parameter             :: rows=1000
double precision, parameter    :: max_temp_error=0.01

integer                        :: i, j, max_iterations, iteration=1
double precision               :: dt=100.0
real                           :: start_time, stop_time

double precision, dimension(0:rows+1,0:columns+1) :: temperature, temperature_last

print*, 'Maximum iterations [100-4000]?'
read*,   max_iterations

call cpu_time(start_time)      !Fortran timer

call initialize(temperature_last)

!do until error is minimal or until maximum steps
do while ( dt > max_temp_error .and. iteration <= max_iterations)

do j=1,columns
do i=1,rows

temperature(i,j)=0.25*(temperature_last(i+1,j)+temperature_last(i-1,j)+ &
temperature_last(i,j+1)+temperature_last(i,j-1) )

enddo
enddo

dt=0.0

!copy grid to old grid for next iteration and find max change
do j=1,columns

do i=1,rows
dt = max( abs(temperature(i,j) - temperature_last(i,j)), dt )
temperature_last(i,j) = temperature(i,j)

enddo
enddo

!periodically print test values
if( mod(iteration,100).eq.0 ) then

call track_progress(temperature, iteration)
endif

iteration = iteration+1

enddo

call cpu_time(stop_time)

print*, 'Max error at iteration ', iteration-1, ' was ',dt
print*, 'Total time was ',stop_time-start_time, ' seconds.'

end program serial

Whole Fortran Code

! initialize plate and boundery conditions
! temp_last is used to to start first iteration
subroutine initialize( temperature_last )

implicit none

integer, parameter             :: columns=1000
integer, parameter             :: rows=1000
integer                        :: i,j

double precision, dimension(0:rows+1,0:columns+1) :: temperature_last

temperature_last = 0.0

!these boundary conditions never change throughout run

!set left side to 0 and right to linear increase
do i=0,rows+1

temperature_last(i,0) = 0.0
temperature_last(i,columns+1) = (100.0/rows) * i

enddo

!set top to 0 and bottom to linear increase
do j=0,columns+1

temperature_last(0,j) = 0.0
temperature_last(rows+1,j) = ((100.0)/columns) * j

enddo

end subroutine initialize

!print diagonal in bottom corner where most action is
subroutine track_progress(temperature, iteration)

implicit none

integer, parameter             :: columns=1000
integer, parameter             :: rows=1000
integer                        :: i,iteration

double precision, dimension(0:rows+1,0:columns+1) :: temperature

print *, '---------- Iteration number: ', iteration, ' ---------------'
do i=5,0,-1

write (*,'("("i4,",",i4,"):",f6.2,"  ")',advance='no'), &
rows-i,columns-i,temperature(rows-i,columns-i)

enddo
print *

end subroutine track_progress



Exercises: General Instructions for Compiling

Exercises are in the “Exercises/OpenACC” directory in your home 

directory

Solutions are in the “Solutions” subdirectory

To compile

nvc –acc laplace.c

nvfortran –acc laplace.f90

This will generate the executable a.out



Exercises: Very useful compiler option

Adding –Minfo=accel to your compile command will give you some very useful information about 

how well the compiler was able to honor your OpenACC directives.

[urbanic@gpu017 Solutions]$ nvc -acc -Minfo=accel laplace_acc.c
main:

59, Generating create(Temperature[:][:]) [if not already present]
Generating copy(Temperature_last[:][:]) [if not already present]

64, Loop is parallelizable
65, Loop is parallelizable

Generating Tesla code
64, #pragma acc loop gang, vector(4) /* blockIdx.y threadIdx.y */
65, #pragma acc loop gang, vector(32) /* blockIdx.x threadIdx.x */

75, Loop is parallelizable
76, Loop is parallelizable

Generating Tesla code
75, #pragma acc loop gang, vector(4) /* blockIdx.y threadIdx.y */
76, #pragma acc loop gang, vector(32) /* blockIdx.x threadIdx.x */
77, Generating implicit reduction(max:dt)

85, Generating update self(Temperature[:][:])



Special Instructions for Running on the GPUs

(during this workshop)

As mentioned, on Bridges2 you generally only have to use the queueing system 

when you want to.  However, as we have hundreds of you wanting quick 

turnaround, we will have to use it today.

Once you have an a.out that you want to run, you should use the simple job that 

we have already created (in Exercises/OpenACC) for you to run:

fred@bridges2-login011$ sbatch gpu.job



Output From Your Batch Job

The machine will tell you it submitted a batch job, and you can await your 

output, while will come back in a file with the corresponding number as a 

name:

slurm-138555.out

As everything we are doing this afternoon only requires a few minutes at 

most (and usually just seconds), you could just sit there and wait for the file 

to magically appear.  At which point you can “more” it or review it with 

your editor.



Changing Things Up

If you get impatient, or want to see what the machine us up to, you can 

look at the situation with squeue.

You might wonder what happened to the interaction count that the user is 

prompted for.  I stuck a reasonable default (4000 iterations) into the job 

file.  You can edit it if you want to.  The whole job file is just a few lines.

Congratulations, you are now a Batch System veteran.  Welcome to 

supercomputing.



Exercise 1: Using kernels to parallelize the main loops
(About 20 minutes)

Q: Can you get a speedup with just the kernels directives?

1. Edit  laplace_serial.c/f90

1. Maybe copy your intended OpenACC version to  laplace_acc.c to start

2. Add directives where it helps

2. Compile with OpenACC parallelization

1. nvc -acc  –Minfo=accel laplace_acc.c or 

nvfortran -acc   –Minfo=accel laplace_acc.f90 

2. Look at your compiler output to make sure you are having an effect

3. Run

1. sbatch gpu.job (Leave it at 4000 iterations if you want a solution that converges to current tolerance)

2. Look at output in file that returns (something like slurm-138555.out)

3. Compare the serial and your OpenACC version for performance difference



Exercise 1 C Solution

while ( dt > MAX_TEMP_ERROR && iteration <= max_iterations ) {

#pragma acc kernels
for(i = 1; i <= ROWS; i++) {

for(j = 1; j <= COLUMNS; j++) {
Temperature[i][j] = 0.25 * (Temperature_last[i+1][j] + Temperature_last[i-1][j] +

Temperature_last[i][j+1] + Temperature_last[i][j-1]);
}

}

dt = 0.0; // reset largest temperature change

#pragma acc kernels
for(i = 1; i <= ROWS; i++){

for(j = 1; j <= COLUMNS; j++){
dt = fmax( fabs(Temperature[i][j]-Temperature_last[i][j]), dt);
Temperature_last[i][j] = Temperature[i][j];

}
}

if((iteration % 100) == 0) {
track_progress(iteration);

}

iteration++;
}

Generate a GPU kernel

Generate a GPU kernel



Exercise 1 Fortran Solution
do while ( dt > max_temp_error .and. iteration <= max_iterations)

!$acc kernels
do j=1,columns

do i=1,rows
temperature(i,j)=0.25*(temperature_last(i+1,j)+temperature_last(i-1,j)+ &

temperature_last(i,j+1)+temperature_last(i,j-1) )
enddo

enddo
!$acc end kernels

dt=0.0

!$acc kernels
do j=1,columns

do i=1,rows
dt = max( abs(temperature(i,j) - temperature_last(i,j)), dt )
temperature_last(i,j) = temperature(i,j)

enddo
enddo
!$acc end kernels

if( mod(iteration,100).eq.0 ) then
call track_progress(temperature, iteration)

endif

iteration = iteration+1

enddo

Generate a GPU kernel

Generate a GPU kernel



Exercise 1: Compiler output (C)

[urbanic@gpu017 Solutions]$ nvc -acc -Minfo=accel laplace_acc.c
main:

59, Generating create(Temperature[:][:]) [if not already present]
Generating copy(Temperature_last[:][:]) [if not already present]

64, Loop is parallelizable
65, Loop is parallelizable

Generating Tesla code
64, #pragma acc loop gang, vector(4) /* blockIdx.y threadIdx.y */
65, #pragma acc loop gang, vector(32) /* blockIdx.x threadIdx.x */

75, Loop is parallelizable
76, Loop is parallelizable

Generating Tesla code
75, #pragma acc loop gang, vector(4) /* blockIdx.y threadIdx.y */
76, #pragma acc loop gang, vector(32) /* blockIdx.x threadIdx.x */
77, Generating implicit reduction(max:dt)

85, Generating update self(Temperature[:][:])

Compiler was able to

parallelize

Compiler was able to

parallelize



while ( dt > MAX_TEMP_ERROR && iteration <= max_iterations ) {
#pragma acc kernels
for(i = 1; i <= ROWS; i++) {

for(j = 1; j <= COLUMNS; j++) {
Temperature[i][j] = 0.25 * (Temperature_last[i+1][j] + Temperature_last[i-1][j] +

Temperature_last[i][j+1] + Temperature_last[i][j-1]);
}

}

dt = 0.0;

#pragma acc kernels
for(i = 1; i <= ROWS; i++){

for(j = 1; j <= COLUMNS; j++){
dt = fmax( fabs(Temperature[i][j]-Temperature_last[i][j]), dt);
Temperature_last[i][j] = Temperature[i][j];

}
}

.

.
iteration++;

}

First, about that “reduction”

Exiting this loop, 

each processor has 

a different idea of 

what the max dt is.

With kernel the compiler recognizes 

this and does a reduction, a very 

convenient thing. We can get too 

sophisticated for this autoscoping to 

happen.

loop reduction (max:dt)

This explicitly declares the 

reduction.



Exercise 1: Performance
3372 steps to convergence

Execution Time (s) Speedup

CPU Serial 20.6 --

CPU 2 OpenMP threads 10.3 2.0

CPU 4 OpenMP threads 5.2 4.0

CPU 8 OpenMP threads 2.6 7.9

CPU 16 OpenMP threads 1.4 14.7

CPU 32 OpenMP threads 0.80 25.7

CPU 64 OpenMP threads
0.72 28.6

CPU 128 OpenMP threads 1.4 14.7

OpenACC GPU 32.4 0.6x

Using NVHPC 21.2 on a V100 



What’s with the OpenMP?

We can compare our GPU results to the best the multi-core CPUs can do.

If you are familiar with OpenMP, or even if you are not, you can compile and run the 

OpenMP enabled versions in your OpenMP directory as:

nvc –mp laplace_omp.c or    nvfortran -mp laplace_omp.f90

then to run on 8 threads do:

export OMP_NUM_THREADS=8

a.out

Note that you probably only have 8 real cores if you are still on a GPU node.  Do 

something like “interact –n28” if you want a full node of cores.



What went wrong?
export PGI_ACC_TIME=1 to activate profiling and run again:

Accelerator Kernel Timing data
/home/urbanic/laplace_bad_acc.c

main  NVIDIA  devicenum=0
time(us): 12,095,531
62: compute region reached 3372 times

64: kernel launched 3372 times
grid: [32x250]  block: [32x4]
device time(us): total=127,989 max=48 min=37 avg=37

elapsed time(us): total=241,221 max=1,407 min=61 avg=71
62: data region reached 6744 times

62: data copyin transfers: 3372
device time(us): total=2,446,765 max=972 min=712 avg=725

70: data copyout transfers: 3372
device time(us): total=2,098,635 max=835 min=616 avg=622

73: compute region reached 3372 times
73: data copyin transfers: 3372

device time(us): total=32,465 max=71 min=6 avg=9
75: kernel launched 3372 times

grid: [32x250]  block: [32x4]
device time(us): total=179,342 max=63 min=52 avg=53

elapsed time(us): total=294,686 max=407 min=76 avg=87
75: reduction kernel launched 3372 times

grid: [1]  block: [256]
device time(us): total=50,490 max=23 min=14 avg=14

elapsed time(us): total=137,910 max=549 min=34 avg=40
75: data copyout transfers: 3372

device time(us): total=60,080 max=266 min=13 avg=17
73: data region reached 6744 times

73: data copyin transfers: 6744
device time(us): total=5,004,411 max=1,005 min=716 avg=742

82: data copyout transfers: 3372
device time(us): total=2,095,354 max=854 min=616 avg=621

2.4 seconds

2.0 seconds
0.3 seconds

0.2 seconds

0.1 seconds
5.0 seconds

2.0 seconds



Basic Concept
Simplified, but sadly true

PCI Bus GPU

GPU Memory

CPU

CPU Memory

> 200 GB/s < 1TB/s

16 GB/s (PCI Gen 3)

80 GB/s (NVLink 1)

150 GB/s (NVLink 2)

All bandwidths one-direction.



Multiple Times Each Iteration

PCI Bus

CPU Memory GPU Memory

CPU GPU

A(i,j) A(i+1,j)A(i-1,j)
A(i,j-1)

A(i+1,j)

A(i,j) A(i+1,j)A(i-1,j)

A(i,j-1)

A(i+1,j)

A(i,j) A(i+1,j)A(i-1,j)

A(i,j-1)

A(i+1,j)



Excessive Data Transfers
while ( dt > MAX_TEMP_ERROR && iteration <= max_iterations ) {

#pragma acc kernels
for(i = 1; i <= ROWS; i++) {

for(j = 1; j <= COLUMNS; j++) {
Temperature[i][j] = 0.25 * (Temperature_old[i+1][j] + …

}
}

Temperature, Temperature_old

resident on host

Temperature, Temperature_old

resident on host

Temperature, Temperature_old

resident on device

Temperature, Temperature_old

resident on device
4 copies happen 

every iteration of 

the outer while 

loop!

#pragma acc kernels
for(i = 1; i <= ROWS; i++) {

for(j = 1; j <= COLUMNS; j++) {
Temperature[i][j] = 0.25 * (Temperature_old[i+1][j] + …

}
}

Temperature, Temperature_old

resident on host

Temperature, Temperature_old

resident on host

Temperature, Temperature_old

resident on device

Temperature, Temperature_old

resident on device

}

dt = 0.0;



Data Management

The First, Most Important, and Possibly Only OpenACC Optimization



Scoped Data Construct Syntax

Fortran

!$acc data [clause …]

structured block

!$acc end data

C

#pragma acc data [clause …]

{

structured block

}



Data Clauses

copy( list ) Allocates memory on GPU and copies data from host to GPU when 

entering region and copies data to the host when exiting region.

Principal use: For many important data structures in your code, this 

is a logical default to input, modify and return the data.

copyin( list ) Allocates memory on GPU and copies data from host to GPU when 

entering region.

Principal use: Think of this like an array that you would use as  just 

an input to a subroutine.

copyout( list ) Allocates memory on GPU and copies data to the host when exiting 

region.

Principal use: A result that isn’t overwriting the input data structure.

create( list ) Allocates memory on GPU but does not copy.

Principal use: Temporary arrays.



Array Shaping

Compilers sometimes cannot determine the size of arrays, so we must specify 

explicitly using data clauses with an array “shape”.  The compiler will let you know 

if you need to do this.  Sometimes, you will want to for your own efficiency reasons.

C

#pragma acc data copyin(a[0:size]), copyout(b[s/4:3*s/4])

Fortran

!$acc data copyin(a(1:size)), copyout(b(s/4:3*s/4))

Fortran uses start:end and C uses start:length

Data clauses can be used on data, kernels or parallel



Compiler will (increasingly) often make a good guess…

int main(int argc, char *argv[]) {

int i;
double A[2000], B[1000], C[1000];
.
.
.

#pragma acc kernels
for (i=0; i<1000; i++){

A[i] = 4 * i;
B[i] = B[i] + 2;
C[i] = A[i] + 2 * B[i];

}
.
.
.

}

Smart

nvc -acc -Minfo=accel loops.c
main:

6, Generating present_or_copyout(C[:])
Generating present_or_copy(B[:])
Generating present_or_copyout(A[:1000])
Generating NVIDIA code

7, Loop is parallelizable
Accelerator kernel generated

Smarter

Smartest



int main(int argc, char** argv){

float A[1000];

#pragma acc kernels

for( int iter = 1; iter < 1000 ; iter++){

A[iter] = 1.0;

}

A[10] = 2.0;

printf("A[10] = %f", A[10]);

}

Data Regions Have Real Consequences

Simplest Kernel With Global Data Region

Output:

A[10] = 2.0 

int main(int argc, char** argv){

float A[1000];

#pragma acc kernels

for( int iter = 1; iter < 1000 ; iter++){

A[iter] = 1.0;

}

A[10] = 2.0;

printf("A[10] = %f", A[10]);

}

Output:

A[10] = 1.0 

A[]

Copied

To GPU

A[]

Copied

To Host

Runs

On

Host

#pragma acc data copy(A)

{

}

A[]

Copied

To GPU

Still

Runs On

Host

A[]

Copied

To Host



int main(int argc, char** argv){

float A[1000];

#pragma acc kernels

for( int iter = 1; iter < 1000 ; iter++){

A[iter] = 1.0;

}

A[10] = 2.0;

printf("A[10] = %f", A[10]);

}

Data Regions Are Different Than Compute Regions

Output:

A[10] = 1.0 

#pragma acc data copy(A)

{

}

Data

Region

Compute

Region



Data Movement Decisions

Much like loop data dependencies, sometime the compiler needs your human 

intelligence to make high-level decisions about data movement.  Otherwise, it 

must remain conservative – sometimes at great cost.

You must think about when data truly needs to migrate, and see if that is better 

than the default.

Besides the scope-based data clauses, there are OpenACC options to let us manage 

data movement more intensely or asynchronously.  We could manage the above 

behavior with the update construct:

Fortran : C:
!$acc update [host(), device(), …] #pragma acc update [host(), device(), …]

Ex: #pragma acc update host(Temp_array)  //Get host a copy from device



Exercise 2: Use acc data to minimize transfers
(about 40 minutes)

Q: What speedup can you get with data + kernels directives? 

• Start with your Exercise 1 solution or grab laplace_bad_acc.c/f90 from the Solutions 

subdirectory.  This is just the solution of the last exercise.

• Add data directives where it helps.

• Think: when should I move data between host and GPU?  Think how you would do it by 

hand, then determine which data clauses will implement that plan.

• Hint: you may find it helpful to ignore the output at first and just concentrate on getting  

the solution to converge quickly (at 3372 steps).  Then worry about updating the printout.



Exercise 2 C Solution
#pragma acc data copy(Temperature_last, Temperature)
while ( dt > MAX_TEMP_ERROR && iteration <= max_iterations ) {

// main calculation: average my four neighbors
#pragma acc kernels
for(i = 1; i <= ROWS; i++) {

for(j = 1; j <= COLUMNS; j++) {
Temperature[i][j] = 0.25 * (Temperature_last[i+1][j] + Temperature_last[i-1][j] +

Temperature_last[i][j+1] + Temperature_last[i][j-1]);
}

}

dt = 0.0; // reset largest temperature change

// copy grid to old grid for next iteration and find latest dt
#pragma acc kernels
for(i = 1; i <= ROWS; i++){

for(j = 1; j <= COLUMNS; j++){
dt = fmax( fabs(Temperature[i][j]-Temperature_last[i][j]), dt);
Temperature_last[i][j] = Temperature[i][j];

}
}

// periodically print test values
if((iteration % 100) == 0) {

#pragma acc update host(Temperature)
track_progress(iteration);

}

iteration++;
}

No data movement in 

this block.

Except once in a while 

here.



Exercise 2, Slightly better solution

#pragma acc data copy(Temperature_last), create(Temperature)
while ( dt > MAX_TEMP_ERROR && iteration <= max_iterations ) {

// main calculation: average my four neighbors
#pragma acc kernels
for(i = 1; i <= ROWS; i++) {

for(j = 1; j <= COLUMNS; j++) {
Temperature[i][j] = 0.25 * (Temperature_last[i+1][j] + Temperature_last[i-1][j] +

Temperature_last[i][j+1] + Temperature_last[i][j-1]);
}

}

dt = 0.0; // reset largest temperature change

// copy grid to old grid for next iteration and find latest dt
#pragma acc kernels
for(i = 1; i <= ROWS; i++){

for(j = 1; j <= COLUMNS; j++){
dt = fmax( fabs(Temperature[i][j]-Temperature_last[i][j]), dt);
Temperature_last[i][j] = Temperature[i][j];

}
}

// periodically print test values
if((iteration % 100) == 0) {

#pragma acc update host(Temperature)
track_progress(iteration);

}

iteration++;
}

Temperature is purely 

temporary.



Slightly better still solution

#pragma acc data copy(Temperature_last), create(Temperature)
while ( dt > MAX_TEMP_ERROR && iteration <= max_iterations ) {

// main calculation: average my four neighbors
#pragma acc kernels
for(i = 1; i <= ROWS; i++) {

for(j = 1; j <= COLUMNS; j++) {
Temperature[i][j] = 0.25 * (Temperature_last[i+1][j] + Temperature_last[i-1][j] +

Temperature_last[i][j+1] + Temperature_last[i][j-1]);
}

}

dt = 0.0; // reset largest temperature change

// copy grid to old grid for next iteration and find latest dt
#pragma acc kernels
for(i = 1; i <= ROWS; i++){

for(j = 1; j <= COLUMNS; j++){
dt = fmax( fabs(Temperature[i][j]-Temperature_last[i][j]), dt);
Temperature_last[i][j] = Temperature[i][j];

}
}

// periodically print test values
if((iteration % 100) == 0) {

#pragma acc update host(Temperature[ROWS-4:5][COLUMNS-4:5])
track_progress(iteration);

}

iteration++;
}

Only need corner 

elements.



Exercise 2 Fortran Solution
!$acc data copy(temperature_last), create(temperature)
do while ( dt > max_temp_error .and. iteration <= max_iterations)

!$acc kernels
do j=1,columns

do i=1,rows
temperature(i,j)=0.25*(temperature_last(i+1,j)+temperature_last(i-1,j)+ &

temperature_last(i,j+1)+temperature_last(i,j-1) )
enddo

enddo
!$acc end kernels

dt=0.0

!copy grid to old grid for next iteration and find max change
!$acc kernels
do j=1,columns

do i=1,rows
dt = max( abs(temperature(i,j) - temperature_last(i,j)), dt )
temperature_last(i,j) = temperature(i,j)

enddo
enddo
!$acc end kernels

!periodically print test values
if( mod(iteration,100).eq.0 ) then

!$acc update host(temperature)
call track_progress(temperature, iteration)

endif

iteration = iteration+1

enddo
!$acc end data

Keep these on GPU

Except bring back a copy 

here

Extra efficient:

!$acc update host(temperature(columns-5:columns,rows-5:rows))



Exercise 1: Performance
3372 steps to convergence

Execution Time (s) Speedup

CPU Serial 20.6 --

CPU 2 OpenMP threads 10.3 2.0

CPU 4 OpenMP threads 5.2 4.0

CPU 8 OpenMP threads 2.6 7.9

CPU 16 OpenMP threads 1.4 14.7

CPU 32 OpenMP threads 0.80 25.7

CPU 64 OpenMP threads
0.72 28.6

CPU 128 OpenMP threads 1.4 14.7

OpenACC GPU 32.4 0.6x

Using NVHPC 21.2 on a V100 



OpenACC or OpenMP?

Don’t draw any grand conclusions yet.  We have gotten impressive 

speedups from both approaches.  But our problem size is pretty small. 

Our main data structure is:

1000 x 1000 = 1M elements = 8MB of memory

We have 2 of these (temperature and temperature_last) so we are 

using roughly 16 MB of memory.  Not very large.  When divided over 

cores it gets even smaller and can easily fit into cache.

The algorithm is realistic, but the problem size is tiny and hence the 

memory bandwidth stress is very low.



OpenACC or OpenMP on Larger Data?

We can easily scale this problem up, so why don’t I? Because it is nice to have exercises that finish 

in a few minutes or less.

We scale this up to 10K x 10K (1.6 GB problem size) for the hybrid challenge.  These numbers start 

to look a little more realistic.  But the serial code takes over 30 minutes to finish.  That would have 

gotten us off to a slow start!

Execution Time (s) Speedup

CPU Serial 2187 --

CPU 16 OpenMP threads 183 12

CPU 28 OpenMP threads 162 13.5

OpenACC 103 21

10K x 10K Problem Size

Obvious cusp for core

scaling appears



Latest Happenings In Data Management

Unified Memory

Unified address space allows us to pretend we have 

shared memory

Skip data management, hope it works, and then 

optimize if necessary

For dynamically allocated memory can eliminate need 

for pointer clauses

NVLink

One route around PCI bus (with multiple GPUs)



Further speedups

OpenACC gives us even more detailed control over parallelization

Via gang, worker, and vector clauses

By understanding more about OpenACC execution model and GPU 

hardware organization, we can get higher speedups on this code

By understanding bottlenecks in the code via profiling, we can 

reorganize the code for higher performance

But you have already gained most of any potential speedup, and 

you did it with a few lines of directives!



Is OpenACC Living Up To My Claims?

High-level.  No involvement of OpenCL, CUDA, etc.

Single source.  No forking off a separate GPU code.  Compile the same program 

for accelerators or serial; non-GPU programmers can play along.

Efficient.  Experience shows very favorable comparison to low-level 

implementations of same algorithms.  kernels is magical!

Performance portable.  Supports GPU accelerators and co-processors from 

multiple vendors, current and future versions.

Incremental.  Developers can port and tune parts of their application as 

resources and profiling dictates. No wholesale rewrite required.  Which can be 

quick.



In Conclusion…

OpenMP

OpenACC

MPI
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Targeting the Architecture

(But Not Admitting It)

Part of the awesomeness of OpenACC has been that you have been able to 

ignore the hardware specifics.  But, now that you know a little bit more 

about CUDA/GPU architecture, you might suspect that you can give the 

compiler still more help in optimizing.  In particular, you might know the 

hardware specifics of a particular model.  The compiler might only know 

which “family” it is compiling for (Fermi, Kepler, Pascal etc.).

Indeed, the OpenACC spec has methods to target architecture 

hierarchies, and not just GPUs (think Intel MIC).  Let’s see how they map 

to what we know about GPUs.



85

x

V100 GPU and SM

From NVIDIA Tesla V100 GPU Architecture 

Volta GV100 GPU with 85 Streaming Multiprocessor (SM) units Volta GV100 SM
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x

Turing Memory Hierarchy

From NVIDIA Tesla V100 GPU Architecture 



Software Hardware

Threads are executed by CUDA cores

Thread

CUDA

core

Thread Block
Multiprocessor (SM)

Thread blocks are executed on multiprocessors (SM)

▪ Thread blocks do not migrate

▪ Several concurrent thread blocks can reside on 

one multiprocessor - limited by multiprocessor 

resources (shared memory and register file)

...

Grid Device

A kernel is launched as a grid of thread blocks

CUDA Execution Model

Blocks and grids can be multi dimensional (x,y,z) 



Thread 

Block Multiprocessor

32 Threads

32 Threads

32 Threads

...

Warps

• A thread block consists of  one or more warps

• A warp is executed physically in parallel 

(SIMD) on a multiprocessor

• The SM creates, manages, schedules and 

executes threads at warp granularity

• All threads in a warp execute the same 

instruction. If threads of a warp diverge the 

warp serially executes each branch path 

taken.

• When a warp executes an instruction that 

accesses global memory it coalesces the 

memory accesses of the threads within the 

warp into as few transactions as possible

• Currently all NVIDIA GPUs use a warp size of 

32

=

Quantum of independence: Warps



But Every Generation and Manufacturer Is Different

From Exascale Computing Program Annual Meeting: SYCL Programming Model for Aurora



And The Terminology Changes

From Exascale Computing Program Annual Meeting: SYCL Programming Model for Aurora



Rapid Evolution
Fermi

GF100

Fermi

GF104

Kepler

GK104

Kepler

GK110

Maxwell

GM107

Pascal

GP100

Compute Capability 2.0 2.1 3.0 3.5 5.0 6.0

Threads / Warp 32 32 32 32 32 32

Max Warps / Multiprocessor 48 48 54 64 64 64

Max Threads / 

Multiprocessor
1536 1536 2048 2048 2048 2048

Max Thread Blocks / 

Multiprocessor
8 8 16 16 32 32

32‐bit Registers / 

Multiprocessor
32768 32768 65536 131072 65536 65536

Max Registers / Thread 63 63 63 255 255 255

Max Threads / Thread Block 1024 1024 1024 1024 1024 1024

Shared Memory Size 

Configurations
16k/48k 16k/48k 16k/32k/48k 16k/32k/48k 96k 64K

Max X Grid Dimension 2^16 2^16 2^32 2^32 2^32 2^32

Hyper‐Q No No No Yes Yes Yes

Dynamic Parallelism No No No Yes Yes Yes

• Do you want to have to keep 

up with this?

• Maybe the compiler knows 

more about this than you? Is 

that possible?

• CUDA programmers do have 

to worry about all of this, 

and much more.

• But doesn’t hurt much to try.

Evolution continues with:

Turing

Ampere

Hopper



This is a good

thing.

• Don't put yourself in a 

situation where this becomes 

a maintenance nightmare.

• Leave that problem to the 

compiler writers.



OpenACC Task Granularity
The OpenACC execution model has three levels: gang, worker and vector

This is supposed to map to any architecture that is a collection of Processing Elements (PEs) where each PE is 

multithreaded and each thread can execute vector instructions.

Worker

Gang Worker

Worker

Worker

Gang Worker

Worker

Vector

Vector

Vector

Vector

Vector

Vector



Targeting the Architecture

As we said, OpenACC  assumes a device will contain multiple processing elements 

(PEs) that run in parallel. Each PE also has the ability to efficiently perform 

vector-like operations. For NVIDIA GPUs, it is reasonable to think of a PE as a 

streaming multiprocessor (SM).  Then an OpenACC gang is a threadblock, a worker

is effectively a warp, and an OpenACC vector is a CUDA thread.  Phi, or similar 

Intel SMP architectures also map in a logical, but different, fashion.

Vector

Worker

Gang

GPU

Thread

Warp

SM

SMP (Phi)

SSE Vector

Core

CPU



Kepler, for example

Block Size Optimization:

32 thread wide blocks are good for Kepler, since warps are allocated by row first.

32 thread wide blocks will mean all threads in a warp are reading and writing contiguous pieces of 

memory

Coalescing  

Try to keep total threads in a block to be a multiple of 32 if possible

Non-multiples of 32 waste some resources & cycles

Total number of threads in a block: between 256 and 512 is usually a good number.

Grid Size Optimization:

Most people start with having each thread do one unit of work

Usually better to have fewer threads so that each thread could do multiple pieces of work.

What is the limit to how much smaller we can make the number of total blocks?

We still want to have at least as many threads as can fill the GPU many times over (for example 4 times). 

That means we need  at least 2880 x 15 x 4 = ~173,000 threads

Experiment by decreasing the number of threads



Mapping OpenACC to CUDA Threads and Blocks

#pragma acc kernels

for( int i = 0; i < n; ++i )

y[i] += a*x[i]; 

#pragma acc kernels loop gang(100) vector(128)

for( int i = 0; i < n; ++i ) 

y[i] += a*x[i];

#pragma acc parallel num_gangs(100) vector_length(128) 

{

#pragma acc loop gang vector

for( int i = 0; i < n; ++i ) y[i] += a*x[i];

}

100 thread blocks, each with 128 

threads, each thread executes one 

iteration of the loop.

100 thread blocks, each with 128 

threads, each thread executes one 

iteration of the loop, using parallel

16  blocks, 256 threads each.



SAXPY Returns For Some Fine Tuning

The default (will work OK):

#pragma acc kernels loop
for( int i = 0; i < n; ++i )

y[i] += a*x[i];

Some suggestions to the compiler:

#pragma acc kernels loop gang(100), vector(128)
for( int i = 0; i < n; ++i )

y[i] += a*x[i];

Specifies that the kernel will use 100 thread blocks, each with 128 threads, where each thread 

executes one iteration of the loop.  This beat the default by ~20% last time I tried…



Parallel Regions vs. Kernels

We have been using kernels thus far, to great effect.  However OpenACC allows us to very 

explicitly control the flow and allocation of tasks using parallel regions.

These approaches come from different backgrounds.

PGI Accelerator

Region*

OpenMP

parallel

OpenACC

kernels

OpenACC

parallel

*Similar philosophy to preferring OpenMP omp parallel for



Parallel Regions

When you start an accelerator parallel region, one or more gangs of workers are 

created to execute the accelerator parallel region. The number of gangs, and the 

number of workers in each gang and the number of vector lanes per worker remain 

constant for the duration of that parallel region.

Each gang begins executing the code in the structured block in gang-redundant mode. 

This means that code within the parallel region, but outside of a loop construct with 

gang-level worksharing, will be executed redundantly by all gangs. One worker in each 

gang begins executing the code in the structured block of the construct.

This means you are setting the cores free, allowing them to attack the work with 

maximum efficiency. Now it is up to you to coral them into some kind of sensible 

activity!



Parallel Construct

Fortran
!$acc parallel [clause …]

structured block
!$acc end parallel

Clauses
if( condition )

async( expression )

num_gangs( expression )

num_workers( expression )

vector_length( expression )

C
#pragma acc parallel [clause …]

{ structured block }

private( list )

firstprivate( list )

reduction( operator:list )

.

.

Also any data clause



Parallel Clauses

num_gangs(expression) Controls how many parallel gangs are created.

num_workers(expression) Controls how many workers are created in each gang.

vector_length(list) Controls vector length of each worker.

private(list) A copy of each variable in list is allocated to each gang.

firstprivate(list) Private variables initialized from host.

reduction(operator:list) Private variables combined across gangs.

copy(),copyin(),copyout(),create() Same behavior we already know. 

present(list) Variable already there from some other data clause. 

Suppress any desire of compiler to copy and do nothing.

asynch()/wait() Just getting to this in a few slides...



Parallel Regions

As in OpenMP, the OpenACC parallel construct creates a number of parallel gangs that 

immediately begin executing the body of the construct redundantly. When a gang 

reaches a work-sharing loop, that gang will execute a subset of the loop iterations. 

One major difference between the OpenACC parallel construct and OpenMP is that 

there is no barrier at the end of a work-sharing loop in a parallel construct. 

SAXPY as a parallel region

#pragma acc parallel num_gangs(100), vector_length(128)
{
#pragma acc loop gang, vector
for( int i = 0; i < n; ++i )

y[i] = y[i] + a*x[i];
}



Compare and Contrast
Let’s look at how this plays out in actual code.

This

#pragma acc kernels
{

for( i = 0; i < n; ++i )
a[i] = b[i] + c[i];

} 

Is the same as

#pragma acc parallel
{

#pragma acc loop
for( i = 0; i < n; ++i )

a[i] = b[i] + c[i];
} 



Don’t Do This

But not

#pragma acc parallel
{

for( i = 0; i < n; ++i )
a[i] = b[i] + c[i];

} 

By leaving out the loop directive, we get totally redundant execution of the 

loop by each gang.  This is not desirable, to say the least.



Parallel Regions vs. Kernels
From these simple examples you could get the impression that simply putting in 

loop directives everywhere would make parallel regions equivalent to kernels.  

That is not the case.

The sequence of loops here

#pragma acc kernels
{
for (i=0; i<n; i++)

a(i) = b(i)*c(i)
for (i=1; i<n-1; i++)

d(i) = a(i-1) + a(i+1)
}

does what you might think.  Two kernels are generated and the first completes 

before the second starts.



A parallel region will work differently

#pragma acc parallel
{
#pragma acc loop
for (i=0; i<n; i++)

a(i) = b(i)*c(i)
#pragma acc loop
for (i=1; i<n-1; i++)

d(i) = a(i-1) + a(i+1)
}

The compiler will start some number of gangs and then work-share the iterations of the first loop 

across those gangs, and work-share the iterations of the second loop across the same gangs. 

There is no synchronization between the first and second loop, so there's no guarantee that the 

assignment to a(i) from the first loop will be complete before its value is fetched by some other 

gang for the assignment in the second loop. This will result in incorrect results.

But the most common reason we use parallel regions is because we want to eliminate these 

wasted blocking cycles. So we just need some means of controlling them…

Straight from 

the pages of 

our OpenMP

lecture!



Controlling Waiting

#pragma acc parallel loop async(1)

for (i = 0; i < n; ++i) 

c[i] += a[i];

#pragma acc parallel loop async(2)

for (i = 0; i < n; ++i)

b[i] = expf(b[i]);

#pragma acc wait

// host waits here for all async activities to complete

Note that there is no sync available within a parallel region (or kernel)!

We can allow workers, or our CPU, to continue ahead while a loop is executing as

we wait at the appropriate times (so we don’t get ahead of our data arriving or a 

calculation finishing. We do this with asynch and wait statements.

We are combining the 

parallel region and 

loop directives 

together. A common 

idiom.



Using Separate Queues

#pragma acc parallel loop async(1) // on queue 1

for (i = 0; i < n; ++i) 

c[i] += a[i];

#pragma acc parallel loop async(2) // on queue 2

for (i = 0; i < n; ++i)

b[i] = expf(b[i]);

#pragma acc parallel loop async(1) wait(2) // waits for both

for (i = 0; i < n; ++i)

d[i] = c[i] + b[i];

// host continues executing while GPU is busy

We have up to 16 queues that we can use to manage completion 

dependencies.



Dependencies

#pragma acc kernels loop independent async(1)

for (i = 1; i < n-1; ++i) {

#pragma acc cache(b[i-1:3], c[i-1:3])

a[i] = c[i-1]*b[i+1] + c[i]*b[i] + c[i+1]*b[i-1];

}

#pragma acc parallel loop async(2) wait(1) // start queue 2

for (i = 0; i < n; ++i) // after 1

c[i] += a[i]; // need a to finish

#pragma acc parallel loop async(3) wait(1) // start queue 3

for (i = 0; i < n; ++i) // after 1

b[i] = expf(b[i]); // don’t mess with b

// host continues executing while GPU is busy

We can use 

these with 

kernels too.



Private Variables

integer nsteps, i

double precision step, sum, x

nsteps = ...

sum = 0

step = 1.0d0 / nsteps

!$acc parallel loop private(x) reduction(+:sum)

do i = 1, nsteps

x = (i + 0.5d0) * step

sum = sum + 1.0 / (1.0 + x*x)

enddo

pi = 4.0 * step * sum

One other important consideration for parallel regions is what happens with scaler (non-array) variables inside loops. 

Unlike arrays, which are divided up amongst the cores, the variables are shared by default. This is often not what you 

want.

If you have a scaler inside a parallel loop that is being changed, you probably want each core to have a private copy. This 

is similar to what we saw earlier with a reduction variable.

Consistent with this philosophy, scaler variables default to firstprivate inside of parallel regions where kernel regions 

default to copy. Both regions default to copy for aggregate types.



Loop Clauses

private (list) Each thread gets it own copy (implied for index variable).

reduction (operator:list) Also private, but combine at end. Your responsibility now!

gang/worker/vector( ) We’ve seen these.

independent Independent. Ignore any suspicions.

seq Opposite. Sequential, don’t parallelize.

auto Compiler’s call.

collapse() Says how many nested levels apply to this loop. Unrolls. Good for 

small inner loops.

tile(,) Opposite. Splits each specified level of nested loop into two. Good 

for locality.

device_type() For multiple devices.



Kernels vs. Parallel

Advantages of kernels

compiler autoparallelizes

best with nested loops and no 

procedure calls

one construct around many 

loop nests can create many 

device kernels

Advantages of parallel

some compilers are bad at 

parallelization

more user control, esp. with 

procedure calls

one construct generates one 

device kernel

similar to OpenMP



Parallel Regions vs. Kernels

(Which is best?)

To put it simply, kernels leave more decision making up to the compiler.  There is 

nothing wrong with trusting the compiler (“trust but verify”), and that is probably a 

reasonable place to start.

If you are an OpenMP programmer, you will notice a strong similarity between the 

tradeoffs of kernels and regions and that of OpenMP parallel for/do versus parallel 

regions.  We will discuss this later when we talk about OpenMP 4.0.

As you gain experience, you may find that the parallel construct allows you to apply 

your understanding more explicitly.  On the other hand, as the compilers mature, 

they will also be smarter about just doing the right thing.  History tends to favor this 

second path heavily.



Data Management

enter data Like copyin except that they do not need to apply to a structured block or 

scope.  Could just stick one in some initialization routine. Clauses can be 

async, wait, copyin or create.

exit data Bookend of above, but in addition to async and wait has copyout, and delete

(decrement reference count) and finalize (force count to zero).

update As used earlier, but has async, wait and some other clauses.

Again, as you get farther from a simple program, you may find yourself needing to manage data transfers in 

a more explicit manner.  We restricted ourselves to the data copy type commands for our initial work, but 

still found update to be necessary. In general you won’t find yourself frustrated for lack of a convenient data 

movement action.



Dynamic Memory

C

tmp = (double *) malloc(count*sizeof(double));

#pragma acc enter data create(tmp[0:count])

.

.

.

#pragma acc exit data delete(tmp)

free(tmp)

You may have wondered how these data transfers cope with dynamic memory. The answer is, very 

naturally as OpenACC is intended for serious codes which usually use dynamic allocation. Here is one way 

that you might find yourself allocating/deallocating a dynamic structure on both the host and device.

Fortran

allocate(tmp(count))

!$acc enter data create(tmp)

.

.

.

!$acc exit data delete(tmp)

deallocate(tmp)



Declare Directive

You can put your data movement specification close to your natural variable declarations.

declare create create on host and device, you will 

probably use update to manage 

declare device_resident create on device only, only accessible in 

compute regions 

declare link and declare create (pointer) pointers are created for data to be copied



Data Structures

Somebody has probably asked this by now, but if not, it is important for me to note that complex 

data structures are just fine for OpenACC. Feel free to use:

• Complex structs

• C++ classes

• Fortran derived types

• Dynamically allocated memory

• STL?   Yes and No

The major caveat is that pointer based structures will not naturally move from CPU to GPU. This 

should be no surprise. You must do you own “deep copy” if you need to move such data.



Cache Directive

real temp(64)

!$acc parallel loop gang vector_length(64) private(temp)

do i = 1, n

!$acc cache(temp)

!$acc loop vector

do j = 1, 64

temp(j) = a(i,j)

....

CUDA programmers always want to know how to access CUDA shared memory. All of you should be 

interested in how you can utilize this small (~48KB) shared (by the gang) memory for items that 

should be kept close at hand.



CUDA Unified Memory*

Speaking of memory, a few realistic words are in order concerning the awesome sounding 

Unified Memory. No more data management?

GPU Memory Mapping CPU Memory Mapping

Interconnect

Page 
Fault

Page 
Fault

cudaMallocManaged(&array, size);

memset(array, size);

array array

__global__
Void setValue(char *ptr, int index, char val) 
{
ptr[index] = val;

}
setValue<<<...>>>(array, size/2, 5);

GPU Code CPU Code

* “CUDA 8 and Beyond”, Mark Harris, GPU Technology Conference, April 4-7, 2016



OpenACC 2.0, 2.5, 2.7 & 3.0
Things you didn’t know were missing.

The latest versions of the specification have a lot of improvements.  The most 

anticipated ones remove limitations that you, as new users, might not have known 

about.  

Procedure Calls

Nested Parallelism

As well as some other things that you might not have thought about

Device specific tuning

Multiple host thread support

Don’t be afraid to review the full spec at

https://www.openacc.org/sites/default/files/inline-files/OpenACC.2.7.pdf



Procedure Calls

In OpenACC 1.0, all procedures had to be inlined.  This limitation has been removed, but 

you do need to follow some rules.

#pragma acc routine worker
extern void solver(float* x, int n);
.
.
.
#pragma acc parallel loop num_gangs(200)
for( int index = 0; index < N; index++ ){

solver( X, n);
.
.

}

#pragma acc routine worker
void solver(float* x, int n){
.
.

#pragma acc loop
for( int index = 0; index < n; index++ ){

x[index] = x[index+2] * alpha;
.
.

}
.

}

In this case, the directive tells the compiler that “solver” will be a device executable and 

that it may have a loop at the worker level.  No caller can do worker level parallelism.



Nested Parallelism

The previous example had gangs invoking workers.  But it is now possible to have kernels 

actually launch new kernels.

#pragma acc routine
extern void solver(float* x, int n);
.
.
#pragma acc parallel loop
for( int index = 0; index < N; index++ ){

solver( X, index);
}

#pragma acc routine
void solver(float* x, int n){

#pragma acc parallel loop
for( int index = 0; index < n; index++ ){

x[index] = x[index+2] * alpha
.
.

}
.

}

Having thousands of lightweight threads launching lightweight threads is probably not the 

most likely scenario.



Nested Parallelism

This is a more useful case.  We have a single thread on the device launching parallelism 

from its thread.

#pragma acc routine
extern void solver(float* x, int n);
.
.
#pragma acc parallel num_gangs(1)
{

solver( X, n1 );
solver( Y, n2 );
solver( Z, n3 );

}

#pragma acc routine
void solver(float* x, int n){

#pragma acc parallel loop
for( int index = 0; index < n; index++){

x[index] = x[index+2] * alpha;
.
.

}
.

}

The objective is to move as much of the application to the accelerator and minimize 

communication between it and the host.



Device Specific Tuning

I hope from our brief detour into GPU hardware specifics that you have some 

understanding of how hardware specific these optimizations can be.  Maybe one more 

reason to let kernel do its thing.  However, OpenACC does have ways to allow you to 

account for various hardware details.  The most direct is device_type().

#pragma acc parallel loop  device_type(nvidia) num_gangs(200) \
device_type(radeon) num_gangs(800)

for( index = 0; index < n; index++ ){
x[i] += y[i];
solver( x, y, n );

}

Line continuation syntax

(in case we haven't see this yet)



Multiple Devices and Multiple Threads

Multiple threads and one device: fine.  You are responsible for making sure that the data is on 

the multi-core host when it needs to be, and on the accelerator when it needs to be there.  But, 

you have those data clauses in hand already (present_or_copy will be crucial), and OpenMP has 

its necessary synchronization ability.

Multiple threads and multiple devices.  One might hope that the compilers will eventually make 

this transparent (i.e. logically merge devices into one), but at the moment you need to:

Assign threads to devices:

omp_get_thread_num

call acc_set_device_num

Manually break up the data structure into several pieces:

!$acc kernels loop copyin(x(offs(i)+1:offs(i)+nsec),y(offs(i)+1:offs(i)+nsec))

From excellent example on Page 25 of the PGI 2016 OpenACC Getting Started Guide



Profiling

So, how do you recognize these problems (opportunities!) besides the relatively 

simple timing output we have used in this class?

One benefit of the NVIDIA ecosystem is the large number of tools from the CUDA 

community that we get to piggyback upon.

The following uses the NVIDIA Visual Profiler which is part of the CUDA Toolkit.



Visual Profiler and our Laplace first attempt.

▪ We zoom in to get a better view of the timeline. As expected, it looks like our program is 

spending a significant amount of time transferring data between the host and device. We also 

see that the compute regions are very small, with a lot of distance between them.

CPU overhead time including:

- Device data creation and deletion

- Host Memory Copy

Device Memory Transfers Compute on the 

Device



After our data management fix.

Host memory copyUpdate to hostDevice 

compute

After adding the data region, we see lots of compute and data movement only when we update.



Mandlebrot Code

This is for an OpenACC Mandlebrot set image generation code from NVIDIA .  You can grab it 

at

https://github.com/NVIDIA-OpenACC-Course/nvidia-openacc-course-sources

https://github.com/NVIDIA-OpenACC-Course/nvidia-openacc-course-sources


Step 1 Profile

Half of our time is copying, 

none of it is overlapped.

We’re still much faster than the 

CPU because there’s a lot of 

work.

PCIe Transfers
PCIe

Transfers

Lots of Data Transfer Time



Pipelining with 32 blocks

Broken Into Blocks With Asynchronous Transfers



Optimized In A Few Well-Informed Stages

1.00X

4.23X

7.38X 7.36X

9.78X

1.00X

2.00X

3.00X

4.00X

5.00X

6.00X

7.00X

8.00X

9.00X

10.00X

11.00X

Baseline runs 

in parallel on 

16 cores

1. Parallelized

2. Blocked

4. 

Asynchronous

3. Update 

Added



OpenACC Things Not Covered

Language specific features: C dynamic arrays, C++ classes, Fortran derived types.  These particular items 
are well supported.  An excellent guide to this topic is the PGI OpenACC Getting Started Guide 
(http://www.pgroup.com/doc/openacc_gs.pdf).

Environment variables: useful for different hardware configurations

if clauses, macros and conditional compilation: allow both runtime and compile time control over host or 
device control flow.

API versions of nearly all directives and clauses

Hybrid programming.  Works great!  Don’t know how meaningful this is to you…

The OpenACC specification has grown quite accommodating as of Version 2.5.  You have already seen 

some redundancy between directives, clauses and APIs, so I have made no attempt to do “laundry lists” 

of every option along the way.  It would be quite repetitive.  I think you are well prepared to glance at 

the OpenACC Specification and grasp just about all of it.

We have omitted various and sundry peripheral items.  Without attempting to be comprehensive, here 

are a few topics of potential interest to some of you.

http://www.pgroup.com/doc/openacc_gs.pdf


Should I Learn CUDA?

So, the answer is increasingly “probably not”.  I will guess most of you fall on the “no” side.  Just like ML, you aren’t really an “expert” unless you 

do understand what the compiler is doing with your high level approach, but that may not be necessary for your purposes.

A very important principle that remains valid is that any performant approach must allow you to understand what you are ultimately asking the 

hardware to do at the low level.  A programmer that knows assembly knows fairly well what the C statement

X = X + 1

will become in ML:  It will take a some cycles to fetch a value from memory/cache into a register and add a 1 to it.  If you know how Python works, 

then you know that this same instruction might well take many hundreds of cycles, and it may be impossible to tell.  If you know C++,  this same 

line might generate exactly the same instructions as C, or it might involve an object and take a thousands of instructions (although you can almost 

always tell by closer inspection with C++).

The situation today has a very similar historical precedent.  Namely the evolution away from machine languages (“assembly”) to C.  To use PCs as a 

particular example.

1980’s 1990’s

DOS (Machine Language) Windows, Linux (C)

Games (Machine Language) Games (C)

Desktop Apps (C, Pascal, Basic) Desktop Apps (C, C++, VB)
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Classic OpenMP

OpenMP was designed to replace low-level and tedious multi-threaded programming solutions like POSIX 

threads, or Pthreads.

OpenMP was originally targeted towards controlling capable and completely independent processors, with 

shared memory. The most common such configurations today are the many multi-cored chips we all use. You 

might have dozens of threads, each of which takes some time to start or complete.

In return for the flexibility to use those processors to their fullest extent, OpenMP assumes that you know 

what you are doing. You prescribe what how you want the threads to behave and the compiler faithfully 

carries it out.



Then Came This

PCI Bus

CPU Memory GPU Memory

CPU GPU

A(i,j) A(i+1,j)A(i-1,j)
A(i,j-1)

A(i+1,j)

A(i,j) A(i+1,j)A(i-1,j)

A(i,j-1)

A(i+1,j)

A(i,j) A(i+1,j)A(i-1,j)

A(i,j-1)

A(i+1,j)



GPUs are not CPUs

GPU require memory management. We do not simply have a single shared dataspace.

GPUs have thousands of cores.

But they aren't independent.

And they can launch very lightweight threads.

But it seems like the OpenMP approach provides a good starting point to get away from the low-level and 

tedious CUDA API...



Original Intention

OpenMP 3 OpenMP 4.5 OpenMP 5OpenMP 4

OpenACC 1 OpenACC 2 OpenACC 2.5

Let OpenACC evolve rapidly without disturbing the mature OpenMP standard.

They can merge somewhere around version 4.0.



Meanwhile...

Since the days of RISC vs. CISC, 

Intel has mastered the art of 

figuring out what is important 

about a new processing 

technology and saying “why can’t 

we do this in x86?”

The Intel Many Integrated Core 

(MIC) architecture is about large 

die, simpler circuit, and much 

more parallelism, in the x86 line.

Courtesy Dan Stanzione, TACC



What is was MIC?

Basic Design Ideas:

• Leverage x86 architecture (a CPU with many cores)

• Use x86 cores that are simpler, but allow for more compute throughput

• Leverage existing x86 programming models

• Dedicate much of the silicon to floating point ops., keep some cache(s)

• Keep cache-coherency protocol

• Increase floating-point throughput per core

• Implement as a separate device

• Strip expensive features (out-of-order execution, branch prediction, etc.)

• Widened SIMD registers for more throughput (512 bit)

• Fast (GDDR5) memory on card

Courtesy Dan Stanzione, TACC



Latest last MIC Architecture

• Many cores on the die

• L1 and L2 cache

• Bidirectional ring 

network for L2 Memory 

and PCIe connection

Courtesy Dan Stanzione, TACC



Implications for the OpenMP/OpenACC Merge

OpenMP 3

OpenMP 4.5 OpenMP 5OpenMP 4

OpenACC 1 OpenACC 2 OpenACC 2.5

Intel and NVIDIA have both influenced their favored approached to make them more amenable

to their own devices.

NVIDIA

Intel

OpenMP ?

OpenACC 2.7 OpenACC 3.0



OpenMP 4.0

The OpenMP 4.0 standard did incorporate the features needed for accelerators, with an emphasis on Intel-

like devices. We are left with some differences.

OpenMP takes its traditional prescriptive approach ("this is what I want you to do"), while OpenACC could 

afford to start with a more modern (compilers are smarter) descriptive approach ("here is some 

parallelizable stuff, do something smart"). This is practically visible in such things as OpenMP's insistence 

that you identify loop dependencies, versus OpenACC's kernel directive, and its ability to spot them for you.

OpenMP assumes that every thread has its own synchronization control (barriers, locks), because real 

processors can do whatever they want, whenever.  GPUs do not have that at all levels.  For example, NVIDIA 

GPUs have synchronization at the warp level, but not the thread block level.  There are implications 

regarding this difference such as no OpenACC async/wait in parallel regions or kernels.

In general, you might observe that OpenMP was built when threads were limited and start up overhead was 

considerable (as it still is on CPUs).  The design reflects the need to control for this.  OpenACC starts with 

devices built around thousands of very, very lightweight threads.

They are also complementary and can be used together very well.



OpenMP 4.0 Data Migration

The most obvious improvements for accelerators are the data migration 

commands. These look very similar to OpenACC.

#pragma omp target device(0) map(tofrom:B) 



OpenMP vs. OpenACC Data Constructs

OpenMP

target data

target enter data

target exit data

target update

declare target

OpenACC

data

enter data

exit data

update

declare



OpenMP vs. OpenACC Data Clauses

OpenMP

map(to:...)

map(from:...)

map(tofrom:...)

map(alloc:...)

map(release:...)

map(delete:...)

OpenACC

copyin(...)

copyout(...)

copy(...)

create(...)

delete(...)

delete(...) finalize

OpenMP 5 has also embraced the NVIDIA "unified shared memory" paradigm

#pragma omp requires unified_shared_memory

complex_deep_data * cdp = create_array_of_data();

#pragma omp target    //Notice no mapping clauses!
operate_on_data( cdp );

Just like with NVIDIA Unified Memory, this is hopelessly naïve and is not used in production 
code. It is often recommended for a "first pass" (but I find that counter-productive).

The closely related deep copy directives (declare mapper) can be useful to aid in moving 
pointer-based data. As can the allocate clauses.



OpenMP vs. OpenACC Compute Constructs

OpenMP

target

teams

distribute

parallel

for / do

simd

is_device_ptr(...)

OpenACC

parallel / kernels

parallel / kernels

loop gang

parallel / kernels

loop worker or loop gang

loop vector

deviceptr(...)



OpenMP vs. OpenACC Differences

OpenMP

device(n)

depend(to:a)

depend(from:b)

nowait

loops, tasks, sections

atomic

master, single, critical, barrier, 

locks, ordered, flush, cancel

OpenACC

---

async(n)

async(n)

async

loops

atomic

---



SAXPY in OpenMP 4.0 on NVIDIA

int main(int argc, const char* argv[]) {
int n = 10240; floata = 2.0f; floatb = 3.0f;
float*x = (float*) malloc(n * sizeof(float));
float*y = (float*) malloc(n * sizeof(float));

// Run SAXPY TWICE inside data region
#pragma omp target data map(to:x)
{
#pragma omp target map(tofrom:y)
#pragma omp teams
#pragma omp distribute
#pragma omp parallel for

for(inti = 0; i < n; ++i){
y[i] = a*x[i] + y[i];

}
#pragma omp target map(tofrom:y)
#pragma omp teams
#pragma omp distribute
#pragma omp parallel for

for(inti = 0; i < n; ++i){
y[i] = b*x[i] + y[i];

}
}
}

Courtesy Christian Terboven



Comparing OpenACC with OpenMP 4.0 on NVIDIA & Phi

#pragma omp target device(0) map(tofrom:B)
#pragma omp parallel for
for (i=0; i<N; i++)

B[i] += sin(B[i]); 

First two examples

Courtesy Christian Terboven

#pragma omp target device(0) map(tofrom:B)
#pragma omp teams num_teams(num_blocks) num_threads(bsize)
#pragma omp distribute
for (i=0; i<N; i += num_blocks)

#pragma omp parallel for
for (b = i; b < i+num_blocks; b++)

B[b] += sin(B[b]); 

#pragma acc kernels
for (i=0; i<N; ++i)

B[i] += sin(B[i]); 

OpenMP 4.0 for Intel Xeon Phi

OpenMP 4.0 for NVIDIA GPU

OpenACC for NVIDIA GPU



OpenMP 4.0 Across Architectures

#if defined FORCPU

#pragma omp parallel for simd

#elif defined FORKNC

#pragma omp target teams distribute parallel for simd

#elif defined FORGPU

#pragma omp target teams distribute parallel for \

schedule(static,1)

#elif defined FORKNL

#pragma omp parallel for simd schedule(dynamic)

#endif

for( int j = 0; j < n; ++j )

x[j] += a*y[j];

Courtesy Michael Wolfe 

OpenMP now has a number of OpenACC-like metadirectives to help cope with this confusion:

#pragma omp target map(to:a,b) map(from:c)
#pragma omp metadrictive when (device={arch(nvptx)}: teams loop) default (parallel loop)
for (i = 1; i<n; i++)

c[i] = a[i] * b[i]

And also variant functions to substitute code for different targets.

#pragma omp declare target
int some_routine(int a){

//do things in serial way
}

#pragma omp declare variant ( int some_routine(int a) ) match(context={target} \
device={arch(nvptx)} )

int some_routine_gpu(int a){
//gpu optimized code

}



OpenMP 4.0 Across Compilers

#pragma omp target teams distribute
for(int ii = 0; ii < y; ++ii)

Subtle and confusing? You bet.

For a nice discussion of these examples visit their authors at

https://www.openmp.org/wp-content/uploads/Matt_openmp-booth-talk.pdf

Cray C Compiler (v8.5)

Clang Compiler (alpha)

GCC C Compiler (v6.1))

Intel C Compiler (v16.0)

#pragma omp target teams distribute \
parallel for chedule(static,1)   

for(int ii = 0; ii < y; ++ii)

#pragma omp target teams distribute \
parallel for

for(int ii = 0; ii < y; ++ii)  

#pragma omp target
#pragma omp parallel
for for(int ii = 0; ii < y; ++ii)



Latest Data.
From the excellent paper Is OpenMP 4.5 Target Off-load Ready for Real Life? A Case Study of Three 

Benchmark Kernels (Diaz, Jost, Chandrasekaran, Pino) we have some recent data:

In summary, using NPB benchmarks (FFT, Gauss Seidel, Multi-Grid) on leadership class platforms (Titan 

and Summit) using multiple compilers (clang, gcc, PGI, Cray, IBM), OpenMP is not yet competitive with 

OpenACC on GPUs.

A very interesting side-note is that OpenACC kernels and loop performed the same.



So, at this time…

If you are using Phi Knights Corner or Knights Landing, you are probably going to be using the 

Intel OpenMP 4+ release. Unless you use it in cache mode, and then this is moot (more later).

If you are using NVIDIA GPUs, you are going to be using OpenACC.

Of course, there are other ways of programming both of these devices.  You might treat Phi as MPI 

cores and use CUDA on NVIDIA , for example.  But if the directive based approach is for you, then 

your path is clear.  I don’t attempt to discuss the many other types of accelerators here (AMD, DSPs, 

FPGAs, ARM), but these techniques apply there as well.

And as you should now suspect, even if it takes a while for these to merge as a standard, it is not a 

big jump for you to move between them.

The national labs have decided to deal with this by adding an additional layer of abstraction that will 

translate to the most usable lower level API with frameworks such as oneAPI (Includes DPC++ and 

extends SYCL) or Kokkos.
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Hybrid Programming



Assuming you know basic MPI

• This is a rare group that can discuss this topic meaningfully.

• I have mentioned MPI 3.0’s “improvements” to its hybrid capabilities.  These 
are primarily tying up loose ends and formally specifying that things work as 
you would expect, and as they largely do.  Your MPI 1/2 knowledge will be 
more than sufficient here.



Hybrid  OpenACC  Programming (Fast & Wrong)
#pragma acc data copy(Temperature_last), create(Temperature)
while ( dt_global > MAX_TEMP_ERROR && iteration <= max_iterations ) {

#pragma acc kernels    
for(i = 1; i <= ROWS; i++) {

for(j = 1; j <= COLUMNS; j++) {
Temperature[i][j] = 0.25 * (Temperature_last[i+1][j] + Temperature_last[i-1][j] +

Temperature_last[i][j+1] + Temperature_last[i][j-1]);
}

}

if(my_PE_num != npes-1){ 
MPI_Send(&Temperature[ROWS][1], COLUMNS, MPI_DOUBLE, my_PE_num+1, DOWN, MPI_COMM_WORLD);

}

if(my_PE_num != 0){
MPI_Recv(&Temperature_last[0][1], COLUMNS, MPI_DOUBLE, my_PE_num-1, DOWN, MPI_COMM_WORLD, &status);

}

if(my_PE_num != 0){        
MPI_Send(&Temperature[1][1], COLUMNS, MPI_DOUBLE, my_PE_num-1, UP, MPI_COMM_WORLD);

}

if(my_PE_num != npes-1){ 
MPI_Recv(&Temperature_last[ROWS+1][1], COLUMNS, MPI_DOUBLE, my_PE_num+1, UP, MPI_COMM_WORLD, &status);

}

dt = 0.0;

#pragma acc kernels    
for(i = 1; i <= ROWS; i++){

for(j = 1; j <= COLUMNS; j++){
dt = fmax( fabs(Temperature[i][j]-Temperature_last[i][j]), dt);
Temperature_last[i][j] = Temperature[i][j];

}
}

MPI_Reduce(&dt, &dt_global, 1, MPI_DOUBLE, MPI_MAX, 0, MPI_COMM_WORLD);
MPI_Bcast(&dt_global, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);

if((iteration % 100) == 0) {
if (my_PE_num == npes-1){

#pragma acc update host(Temperature) 
track_progress(iteration);

}
}

iteration++;
}

MPI

routines

using

host

data

0.9s



Hybrid  OpenACC  Programming (Slow and Right)
#pragma acc data copy(Temperature_last), create(Temperature)
while ( dt_global > MAX_TEMP_ERROR && iteration <= max_iterations ) {

#pragma acc kernels    
for(i = 1; i <= ROWS; i++) {

for(j = 1; j <= COLUMNS; j++) {
Temperature[i][j] = 0.25 * (Temperature_last[i+1][j] + Temperature_last[i-1][j] +

Temperature_last[i][j+1] + Temperature_last[i][j-1]);
}

}

#pragma acc update host(Temperature, Temperature_last)

if(my_PE_num != npes-1){ 
MPI_Send(&Temperature[ROWS][1], COLUMNS, MPI_DOUBLE, my_PE_num+1, DOWN, MPI_COMM_WORLD);

}

if(my_PE_num != 0){
MPI_Recv(&Temperature_last[0][1], COLUMNS, MPI_DOUBLE, my_PE_num-1, DOWN, MPI_COMM_WORLD, &status);

}

if(my_PE_num != 0){        
MPI_Send(&Temperature[1][1], COLUMNS, MPI_DOUBLE, my_PE_num-1, UP, MPI_COMM_WORLD);

}

if(my_PE_num != npes-1){ 
MPI_Recv(&Temperature_last[ROWS+1][1], COLUMNS, MPI_DOUBLE, my_PE_num+1, UP, MPI_COMM_WORLD, &status);

}

#pragma acc update device(Temperature, Temperature_last) 

dt = 0.0;

#pragma acc kernels    
for(i = 1; i <= ROWS; i++){

for(j = 1; j <= COLUMNS; j++){
dt = fmax( fabs(Temperature[i][j]-Temperature_last[i][j]), dt);
Temperature_last[i][j] = Temperature[i][j];

}
}

MPI_Reduce(&dt, &dt_global, 1, MPI_DOUBLE, MPI_MAX, 0, MPI_COMM_WORLD);
MPI_Bcast(&dt_global, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);

if((iteration % 100) == 0) {
if (my_PE_num == npes-1){

#pragma acc update host(Temperature) 
track_progress(iteration);

}
}

iteration++;
}

Update

data

entering

and

leaving

MPI

section

9.3 s



Hybrid  OpenACC  Programming (Much Better)#pragma acc data copy(Temperature_last), create(Temperature)
while ( dt_global > MAX_TEMP_ERROR && iteration <= max_iterations ) {

#pragma acc kernels    
for(i = 1; i <= ROWS; i++) {

for(j = 1; j <= COLUMNS; j++) {
Temperature[i][j] = 0.25 * (Temperature_last[i+1][j] + Temperature_last[i-1][j] +

Temperature_last[i][j+1] + Temperature_last[i][j-1]);
}

}

#pragma acc update host(Temperature[1:1][1:COLUMNS],Temperature[ROWS:1][1:COLUMNS])

if(my_PE_num != npes-1){ 
MPI_Send(&Temperature[ROWS][1], COLUMNS, MPI_DOUBLE, my_PE_num+1, DOWN, MPI_COMM_WORLD);

}

if(my_PE_num != 0){
MPI_Recv(&Temperature_last[0][1], COLUMNS, MPI_DOUBLE, my_PE_num-1, DOWN, MPI_COMM_WORLD, &status);

}

if(my_PE_num != 0){        
MPI_Send(&Temperature[1][1], COLUMNS, MPI_DOUBLE, my_PE_num-1, UP, MPI_COMM_WORLD);

}

if(my_PE_num != npes-1){ 
MPI_Recv(&Temperature_last[ROWS+1][1], COLUMNS, MPI_DOUBLE, my_PE_num+1, UP, MPI_COMM_WORLD, &status);

}

#pragma acc update device(Temperature_last[0:1][1:COLUMNS], Temperature_last[ROWS+1:1][1:COLUMNS]) 

dt = 0.0;

#pragma acc kernels    
for(i = 1; i <= ROWS; i++){

for(j = 1; j <= COLUMNS; j++){
dt = fmax( fabs(Temperature[i][j]-Temperature_last[i][j]), dt);
Temperature_last[i][j] = Temperature[i][j];

}
}

MPI_Reduce(&dt, &dt_global, 1, MPI_DOUBLE, MPI_MAX, 0, MPI_COMM_WORLD);
MPI_Bcast(&dt_global, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);

if((iteration % 100) == 0) {
if (my_PE_num == npes-1){

#pragma acc update host(Temperature) 
track_progress(iteration);

}
}

iteration++;
}

1.1s



• PGI Compile:
mpicc –acc laplace_hybrid.c
mpf90 –acc laplace_hybrid.f90
mpicc –mp –acc laplace_hybrid.c
etc…

• Running:
interact ?

–n 4
-N1 –n4
-p GPU –N1 –n4
-p GPU –N4 –n4
-N1 –n28
-N4 –n112
etc…

• Intel bonus detail:
export I_MPI_PIN_DOMAIN=omp (or you may not actually get multiple cores!)
Details at https://software.intel.com/en-us/articles/hybrid-applications-intelmpi-openmp

Mix and Match



Bottom Line…

• Each one of these approaches occupies its own space.

• If you understand this, you will not be confused as to how they fit together.

• Once again…



In Conclusion…

OpenMP

OpenACC

MPI


