Big Data assimilation for weather forecasting

Arata Amemiya (RIKEN Center for Computational Science, Data assimilation research team)

Simulation of the global atmosphere with 850m horizontal resolution

(Miyamoto et al., 2013)

Data assimilation combines observation and model simulation

Data Assimilation

Kalman filter

$$x^{a} = x^{f} + \mathbf{K}(y - \mathbf{H}x)$$
$$\mathbf{K} = \mathbf{B}\mathbf{H}^{\mathrm{T}}(\mathbf{H}\mathbf{B}\mathbf{H}^{\mathrm{T}} + \mathbf{R})^{-1}$$

- **B** : background covariance matrix $(N \times N)$
- **R** : observation covariance matrix $(M \times M)$
- **H** : observation operator ($N \times M$)

Parallelization 1: Domain decomposition

Most atmospheric processes are vertically coupled

- Cloud and precipitation
- Radiation
- \rightarrow efficient horizontal 2-D decomposition

Parallelization 2: Ensemble forecast

Multiple domains × Multiple ensemble members \downarrow O(100)~O(1000) processes

