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This project attempts to circumvent the inherent complexity of mesh generation by lever- |
aging deep convolutional neural networks to predict mesh densities for arbitrary geometries.

1 Uploads per Simulation: 3 cupa processing per best leration:

An automated pipeline was created to generate random geometries and run CFD simula-
. . . . . g s v s g o s Raw data (residuals, drag etc.
tions, iteratively performing targetted mesh refinement utilizing adjoint sensitivies. " Imagos (Goomery Meshy

« Additional quantities (Velocity / Pressure etc.)
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A comprehensive 6TB dataset consisting of 65,000 geometry-mesh pairs was assembled

via an extensive post-processing and evaluation setup. _. _ﬁ_ —
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Current literature indicated that the UNet architecture extended by Thuerey et al.l was 2 Roport procossing por Simulation
suitable to predict flow-related quantities, but had never been used for mesh prediction. In [ Selom bost (comargorts cxtrion)
this work, we present a deep, fully convolutional network that estimates mesh densities

based off geometry data. The most recent model, tuned with network depth, channel size

and kernel size, had an accuracy of 98% on our testing dataset.

* Masked blurring (custom gaussian blur)
¢ Downsample (4k x 4k ——> 128 x 128)

4 Network Training per config:

» Train config on selected dataset
» Save raw
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Drag, Residuals & #Cells vs. lteration Number

Refinement strategy based on adjoint error calculations - . .
Best iteration is lowest error simulation with: (a) Original Image (b) Mod. Gaussian Blur  (c) Mod. Downsampling

a) Converged Drag b) Converged Primal c¢) Converged Adjoint A Gaussian blur kernel is applied to remove noise from input images.
- o Force Solution Solution Modified kernel ignores geometry edges, preserving flow information.
e Resulting output is downsampled, similarly preserving edge information.
Cluster level Up tp 50 npdes simultaenously + CUDA kernel achieved 2000X
Node level 10 simulations per node speedup
1. Determine adjoint error to identify cells to refinement S'mu!atlon level 4.4 'Ferat'ons per S'.mmat'on N e 3s processing time per image @nvl')';'\A
2. Perform refinement by reducing cell size in region lteration level 10 pictures of physical quantities « MongoDB Database exploited to CU
i adioi - - - - . allow concurrent data processin
3. Repeat until adjoint error becomes uniform in domain Total data produced 6 TB, 4 Million Files on multinle machines P d
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1.8 x 10! . . .
1.6 x 10" staircase U-Net training
Skip Connections pass information from earlier convolutional layers to later; this pre- 1.4x10: staircase U-Net evaluation
serves the gradient of the loss function for earlier layers, allowing for easier training. 1.2 "‘01'
10"
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Scalar Highway: combines output of layers (5 and U, using a single scalar variable
x 100 ' ' - ' - -
y = tCy + (1 _ t) Us, t € [0, 1] 21074 5000 10000 15000 20000 25000

Step Number

Tensor Highway: combines output of layers C; and U, with a separate scalar variable

Total of 177 individual configurations tested, modifying channel width, kernel size,
for each channel

learning rate, Leaky Relu alpha parameters, Adam Optimizer Beta values etc. UNet

Y = T o 02 14 (1 _ T) o UQ, 0< t <1VteT Staircase model achieved highest accuracy of >98.7% accuracy on evalation set of
-

’ 4,000+ images.
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The UNet Architecture with custom skip-connections is implemented using Tensorflow,
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extending the model used by Theurey et. al." A new staircase design is explored,
using multiple convolutions at each layer; passed data can then undergo at least one

. . . 0.0 0.2 0.4 0.6 0.8 1.0
convolution prior to upsampling.
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