
Compiling
We will be using standard Fortran and C compilers on this Pathway.  They should look familiar.

We will slightly prefer the NVIDIA compilers (the Intel or gcc or AMD or Clang ones would also be 
fine).

Note that on Delta you would normally have to enable this compiler with

module load nvhpc/24.1

I have put that in the .bashrc file that we will all use.



Let’s get the boring stuff out of the way now. This will configure your environment by copying 

over the exercise files and setting up your .bashrc so that you can do our initial exercises, as 

well as exercises for the following two modules.

⚫ Log on to Delta.

⚫ Run the setup script that will copy over the Exercises directory we will all use. It will also 

automatically load the right compiler using your .bashrc script whenever you login. Note 

that linux shells are case sensitive.

 /projects/becs/urbanic/Setup

⚫ As told, logout and log back on again to complete the setup.  You won’t need to do that in 

the future.

Configure Your Environment



Our Files For This Pathway

After you run the setup script, you will have the following directories in your 
home directory. We will be using them in future modules.

/Exercises

 /Test

 /OpenMP

 /OpenACC

 /MPI



Our Foundation Exercise: Laplace Solver

I’ve been using this for MPI, OpenMP and now OpenACC.  It is a great simulation problem, not rigged for MPI.

In this most basic form, it solves the Laplace equation:    𝛁𝟐𝒇(𝒙, 𝒚) = 𝟎
The Laplace Equation applies to many physical problems, including:

Electrostatics

Fluid Flow

Temperature

For temperature, it is the Steady State Heat Equation:
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Exercise Foundation: Jacobi Iteration

The Laplace equation on a grid states that each grid point is the average of its 

neighbors.

We can iteratively converge to that state by repeatedly computing new values at 

each point from the average of neighboring points.

We just keep doing this until the difference from one pass to the next is small 

enough for us to tolerate.
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while ( dt > MAX_TEMP_ERROR && iteration <= max_iterations ) {

     for(i = 1; i <= ROWS; i++) {
          for(j = 1; j <= COLUMNS; j++) {
                Temperature[i][j] = 0.25 * (Temperature_last[i+1][j] + Temperature_last[i-1][j] +
                                            Temperature_last[i][j+1] + Temperature_last[i][j-1]);
          }
     }
        
     dt = 0.0;

     for(i = 1; i <= ROWS; i++){
          for(j = 1; j <= COLUMNS; j++){
     dt = fmax( fabs(Temperature[i][j]-Temperature_last[i][j]), dt);
     Temperature_last[i][j] = Temperature[i][j];
          }
     }

     if((iteration % 100) == 0) {
          track_progress(iteration);
     }

     iteration++;

}

Serial C Code (kernel)
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#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <sys/time.h>

// size of plate
#define COLUMNS    1000
#define ROWS       1000

// largest permitted change in temp (This value takes about 3400 steps)
#define MAX_TEMP_ERROR 0.01

double Temperature[ROWS+2][COLUMNS+2];      // temperature grid
double Temperature_last[ROWS+2][COLUMNS+2]; // temperature grid from last iteration

//   helper routines
void initialize();
void track_progress(int iter);

int main(int argc, char *argv[]) {

    int i, j;                                            // grid indexes
    int max_iterations;                                  // number of iterations
    int iteration=1;                                     // current iteration
    double dt=100;                                       // largest change in t
    struct timeval start_time, stop_time, elapsed_time;  // timers

    printf("Maximum iterations [100-4000]?\n");
    scanf("%d", &max_iterations);

    gettimeofday(&start_time,NULL); // Unix timer

    initialize();                   // initialize Temp_last including boundary conditions

    // do until error is minimal or until max steps
    while ( dt > MAX_TEMP_ERROR && iteration <= max_iterations ) {

        // main calculation: average my four neighbors
        for(i = 1; i <= ROWS; i++) {
            for(j = 1; j <= COLUMNS; j++) {
                Temperature[i][j] = 0.25 * (Temperature_last[i+1][j] + Temperature_last[i-1][j] +
                                            Temperature_last[i][j+1] + Temperature_last[i][j-1]);
            }
        }
        
        dt = 0.0; // reset largest temperature change

        // copy grid to old grid for next iteration and find latest dt
        for(i = 1; i <= ROWS; i++){
            for(j = 1; j <= COLUMNS; j++){
              dt = fmax( fabs(Temperature[i][j]-Temperature_last[i][j]), dt);
              Temperature_last[i][j] = Temperature[i][j];
            }
        }

        // periodically print test values
        if((iteration % 100) == 0) {
            track_progress(iteration);
        }

        iteration++;
    }

Whole C Code

    gettimeofday(&stop_time,NULL);
    timersub(&stop_time, &start_time, &elapsed_time); // Unix time subtract routine

    printf("\nMax error at iteration %d was %f\n", iteration-1, dt);
    printf("Total time was %f seconds.\n", elapsed_time.tv_sec+elapsed_time.tv_usec/1000000.0);

}

// initialize plate and boundary conditions
// Temp_last is used to to start first iteration
void initialize(){

    int i,j;

    for(i = 0; i <= ROWS+1; i++){
        for (j = 0; j <= COLUMNS+1; j++){
            Temperature_last[i][j] = 0.0;
        }
    }

    // these boundary conditions never change throughout run

    // set left side to 0 and right to a linear increase
    for(i = 0; i <= ROWS+1; i++) {
        Temperature_last[i][0] = 0.0;
        Temperature_last[i][COLUMNS+1] = (100.0/ROWS)*i;
    }
    
    // set top to 0 and bottom to linear increase
    for(j = 0; j <= COLUMNS+1; j++) {
        Temperature_last[0][j] = 0.0;
        Temperature_last[ROWS+1][j] = (100.0/COLUMNS)*j;
    }
}

// print diagonal in bottom right corner where most action is
void track_progress(int iteration) {

    int i;

    printf("---------- Iteration number: %d ------------\n", iteration);
    for(i = ROWS-5; i <= ROWS; i++) {
        printf("[%d,%d]: %5.2f  ", i, i, Temperature[i][i]);
    }
    printf("\n");
}



program serial
      implicit none

      !Size of plate
      integer, parameter             :: columns=1000
      integer, parameter             :: rows=1000
      double precision, parameter    :: max_temp_error=0.01

      integer                        :: i, j, max_iterations, iteration=1
      double precision               :: dt=100.0
      real                           :: start_time, stop_time

      double precision, dimension(0:rows+1,0:columns+1) :: temperature, temperature_last

      print*, 'Maximum iterations [100-4000]?'
      read*,   max_iterations

      call cpu_time(start_time)      !Fortran timer

      call initialize(temperature_last)

      !do until error is minimal or until maximum steps
      do while ( dt > max_temp_error .and. iteration <= max_iterations)

         do j=1,columns
            do i=1,rows
               temperature(i,j)=0.25*(temperature_last(i+1,j)+temperature_last(i-1,j)+ &
                                      temperature_last(i,j+1)+temperature_last(i,j-1) )
            enddo
         enddo

         dt=0.0

         !copy grid to old grid for next iteration and find max change
         do j=1,columns
            do i=1,rows
               dt = max( abs(temperature(i,j) - temperature_last(i,j)), dt )
               temperature_last(i,j) = temperature(i,j)
            enddo
         enddo

         !periodically print test values
         if( mod(iteration,100).eq.0 ) then
            call track_progress(temperature, iteration)
         endif

         iteration = iteration+1

      enddo

      call cpu_time(stop_time)

      print*, 'Max error at iteration ', iteration-1, ' was ',dt
      print*, 'Total time was ',stop_time-start_time, ' seconds.'

end program serial

Whole Fortran Code

! initialize plate and boundery conditions
! temp_last is used to to start first iteration
subroutine initialize( temperature_last )
      implicit none

      integer, parameter             :: columns=1000
      integer, parameter             :: rows=1000
      integer                        :: i,j

      double precision, dimension(0:rows+1,0:columns+1) :: temperature_last

      temperature_last = 0.0

      !these boundary conditions never change throughout run

      !set left side to 0 and right to linear increase
      do i=0,rows+1
         temperature_last(i,0) = 0.0
         temperature_last(i,columns+1) = (100.0/rows) * i
      enddo

      !set top to 0 and bottom to linear increase
      do j=0,columns+1
         temperature_last(0,j) = 0.0
         temperature_last(rows+1,j) = ((100.0)/columns) * j
      enddo

end subroutine initialize

!print diagonal in bottom corner where most action is
subroutine track_progress(temperature, iteration)
      implicit none

      integer, parameter             :: columns=1000
      integer, parameter             :: rows=1000
      integer                        :: i,iteration

      double precision, dimension(0:rows+1,0:columns+1) :: temperature

      print *, '---------- Iteration number: ', iteration, ' ---------------'
      do i=5,0,-1
         write (*,'("("i4,",",i4,"):",f6.2,"  ")',advance='no'), &
                   rows-i,columns-i,temperature(rows-i,columns-i)
      enddo
      print *
end subroutine track_progress



Our first exercises will be to compile, run and time the Laplace code using the two programming 

models in this Pathway: OpenMP and MPI.

This will get you familiar with the programming environment in preparation for our actual parallel 

programming in the next two modules.

It will also allow you to experience some parallel scaling first hand.

Specifically, our goal will be to compile the Laplace code in OpenMP and run it on varying 

numbers of threads to see how much it speeds up.

We will do the same thing using MPI to run with multiple processes.

Don't worry if it seems like we are skipping over some details today - we are. But those details 

will be made clear in our following modules.

Exercises For This Module.



Go into the OpenMP folder inside the Exercises folder. You will see codes there called 

laplace_omp.c and laplace_omp.f90. Select whichever language most interests you.

To compile with OpenMP we do either

 nvc -mp laplace_omp.c

 or

 nvfortran -mp laplace_omp.f90

Now we have an executable called a.out. But we need to ask for a compute node with multiple 

cores allocated in order to run. The Slurm command to get us a command line (--pty bash) on a 

compute node (--nodes=1 ) with 32 cores (--cpus-per-task=32 ) is:

srun --account=becs-delta-cpu --partition=cpu-interactive  --nodes=1 --cpus-per-task=32 --pty bash

*I am assuming the we all either have the same --account, or you know which one you should be using.

OpenMP (Exercise 1)



You will notice a few messages as Slurm find the resources, and then your command line will 

change to something with a compute node number in it.

From the command line on this compute node we can run up to 32 cores. OpenMP allows us to 

control core usage with the OMP_NUM_THREADS environment variable. You learned about these 

in the Intro to Delta module.

Set this variable to request 1 core ( export OMP_NUM_THREADS=1 ) and run with a.out to find 

the baseline run time for the Laplace code. If you select 4000 iterations, the code will run to a 

complete solution. It reports its own runtime for you.

Now, try varying number of cores up to 32 and see what kind of speedup you experience. Note 

that you do not need to recompile the code. Just change the environment variable and run a.out. 

Record these times for our discussion.

exit the compute node when you are finished. You should find yourself returned to the login node.

OpenMP



Now we will do a similar exercise using MPI. Go into the MPI folder inside the Exercises folder. 

You will see codes there called laplace_mpi.c and laplace_mpi.f. Select whichever language most 

interests you.

To compile with MPI we do either

 mpicc laplace_mpi.c

 or

 mpif90 laplace_mpi.f90

Again, you have an executable called a.out. Now you need to ask for a compute node with multiple 

processes allocated in order to run. Similar, but not identical, to the previous Slurm command, the 
one to get us a command line on a compute node with 4 processes ( --nodes=1 --tasks=4 -

-tasks-per-node=4 ) is:

srun --account=becs-delta-cpu --partition=cpu-interactive  --nodes=1 --tasks=4 --tasks-per-node=4 --pty bash

MPI (Exercise 2)



With MPI we will limit ourselves to a single timing run, using 4 processes. The command to 

run our a.out executable on our four available processes is

mpirun -n 4 a.out

Record this time for our later discussion.

Exit the compute node when you are finished.

MPI
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