
Compiling
We will be using standard Fortran and C compilers on this Pathway. They should look familiar.

We will slightly prefer the NVIDIA compilers (the Intel or gcc or AMD or Clang ones would also be
fine).

Note that on Delta you would normally have to enable this compiler with

module load nvhpc/24.1

I have put that in the .bashrc file that we will all use.

Let’s get the boring stuff out of the way now. This will configure your environment by copying

over the exercise files and setting up your .bashrc so that you can do our initial exercises, as

well as exercises for the following two modules.

⚫ Log on to Delta.

⚫ Run the setup script that will copy over the Exercises directory we will all use. It will also

automatically load the right compiler using your .bashrc script whenever you login. Note

that linux shells are case sensitive.

 /projects/becs/urbanic/Setup

⚫ As told, logout and log back on again to complete the setup. You won’t need to do that in

the future.

Configure Your Environment

Our Files For This Pathway

After you run the setup script, you will have the following directories in your
home directory. We will be using them in future modules.

/Exercises

 /Test

 /OpenMP

 /OpenACC

 /MPI

Our Foundation Exercise: Laplace Solver

I’ve been using this for MPI, OpenMP and now OpenACC. It is a great simulation problem, not rigged for MPI.

In this most basic form, it solves the Laplace equation: 𝛁𝟐𝒇(𝒙, 𝒚) = 𝟎
The Laplace Equation applies to many physical problems, including:

Electrostatics

Fluid Flow

Temperature

For temperature, it is the Steady State Heat Equation:

Metal

Plate

Heating

Element

Initial Conditions Final Steady State

Metal

Plate

Exercise Foundation: Jacobi Iteration

The Laplace equation on a grid states that each grid point is the average of its

neighbors.

We can iteratively converge to that state by repeatedly computing new values at

each point from the average of neighboring points.

We just keep doing this until the difference from one pass to the next is small

enough for us to tolerate.

A(i,j) A(i+1,j)A(i-1,j)

A(i,j-1)

A(i,j+1)

𝐴𝑘+1 𝑖, 𝑗 =
𝐴𝑘(𝑖 − 1, 𝑗) + 𝐴𝑘 𝑖 + 1, 𝑗 + 𝐴𝑘 𝑖, 𝑗 − 1 + 𝐴𝑘 𝑖, 𝑗 + 1

4

while (dt > MAX_TEMP_ERROR && iteration <= max_iterations) {

 for(i = 1; i <= ROWS; i++) {
 for(j = 1; j <= COLUMNS; j++) {
 Temperature[i][j] = 0.25 * (Temperature_last[i+1][j] + Temperature_last[i-1][j] +
 Temperature_last[i][j+1] + Temperature_last[i][j-1]);
 }
 }

 dt = 0.0;

 for(i = 1; i <= ROWS; i++){
 for(j = 1; j <= COLUMNS; j++){
 dt = fmax(fabs(Temperature[i][j]-Temperature_last[i][j]), dt);
 Temperature_last[i][j] = Temperature[i][j];
 }
 }

 if((iteration % 100) == 0) {
 track_progress(iteration);
 }

 iteration++;

}

Serial C Code (kernel)

Calculate

Update

temp

array and

find max

change

Output

Done?

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <sys/time.h>

// size of plate
#define COLUMNS 1000
#define ROWS 1000

// largest permitted change in temp (This value takes about 3400 steps)
#define MAX_TEMP_ERROR 0.01

double Temperature[ROWS+2][COLUMNS+2]; // temperature grid
double Temperature_last[ROWS+2][COLUMNS+2]; // temperature grid from last iteration

// helper routines
void initialize();
void track_progress(int iter);

int main(int argc, char *argv[]) {

 int i, j; // grid indexes
 int max_iterations; // number of iterations
 int iteration=1; // current iteration
 double dt=100; // largest change in t
 struct timeval start_time, stop_time, elapsed_time; // timers

 printf("Maximum iterations [100-4000]?\n");
 scanf("%d", &max_iterations);

 gettimeofday(&start_time,NULL); // Unix timer

 initialize(); // initialize Temp_last including boundary conditions

 // do until error is minimal or until max steps
 while (dt > MAX_TEMP_ERROR && iteration <= max_iterations) {

 // main calculation: average my four neighbors
 for(i = 1; i <= ROWS; i++) {
 for(j = 1; j <= COLUMNS; j++) {
 Temperature[i][j] = 0.25 * (Temperature_last[i+1][j] + Temperature_last[i-1][j] +
 Temperature_last[i][j+1] + Temperature_last[i][j-1]);
 }
 }

 dt = 0.0; // reset largest temperature change

 // copy grid to old grid for next iteration and find latest dt
 for(i = 1; i <= ROWS; i++){
 for(j = 1; j <= COLUMNS; j++){
 dt = fmax(fabs(Temperature[i][j]-Temperature_last[i][j]), dt);
 Temperature_last[i][j] = Temperature[i][j];
 }
 }

 // periodically print test values
 if((iteration % 100) == 0) {
 track_progress(iteration);
 }

 iteration++;
 }

Whole C Code

 gettimeofday(&stop_time,NULL);
 timersub(&stop_time, &start_time, &elapsed_time); // Unix time subtract routine

 printf("\nMax error at iteration %d was %f\n", iteration-1, dt);
 printf("Total time was %f seconds.\n", elapsed_time.tv_sec+elapsed_time.tv_usec/1000000.0);

}

// initialize plate and boundary conditions
// Temp_last is used to to start first iteration
void initialize(){

 int i,j;

 for(i = 0; i <= ROWS+1; i++){
 for (j = 0; j <= COLUMNS+1; j++){
 Temperature_last[i][j] = 0.0;
 }
 }

 // these boundary conditions never change throughout run

 // set left side to 0 and right to a linear increase
 for(i = 0; i <= ROWS+1; i++) {
 Temperature_last[i][0] = 0.0;
 Temperature_last[i][COLUMNS+1] = (100.0/ROWS)*i;
 }

 // set top to 0 and bottom to linear increase
 for(j = 0; j <= COLUMNS+1; j++) {
 Temperature_last[0][j] = 0.0;
 Temperature_last[ROWS+1][j] = (100.0/COLUMNS)*j;
 }
}

// print diagonal in bottom right corner where most action is
void track_progress(int iteration) {

 int i;

 printf("---------- Iteration number: %d ------------\n", iteration);
 for(i = ROWS-5; i <= ROWS; i++) {
 printf("[%d,%d]: %5.2f ", i, i, Temperature[i][i]);
 }
 printf("\n");
}

program serial
 implicit none

 !Size of plate
 integer, parameter :: columns=1000
 integer, parameter :: rows=1000
 double precision, parameter :: max_temp_error=0.01

 integer :: i, j, max_iterations, iteration=1
 double precision :: dt=100.0
 real :: start_time, stop_time

 double precision, dimension(0:rows+1,0:columns+1) :: temperature, temperature_last

 print*, 'Maximum iterations [100-4000]?'
 read*, max_iterations

 call cpu_time(start_time) !Fortran timer

 call initialize(temperature_last)

 !do until error is minimal or until maximum steps
 do while (dt > max_temp_error .and. iteration <= max_iterations)

 do j=1,columns
 do i=1,rows
 temperature(i,j)=0.25*(temperature_last(i+1,j)+temperature_last(i-1,j)+ &
 temperature_last(i,j+1)+temperature_last(i,j-1))
 enddo
 enddo

 dt=0.0

 !copy grid to old grid for next iteration and find max change
 do j=1,columns
 do i=1,rows
 dt = max(abs(temperature(i,j) - temperature_last(i,j)), dt)
 temperature_last(i,j) = temperature(i,j)
 enddo
 enddo

 !periodically print test values
 if(mod(iteration,100).eq.0) then
 call track_progress(temperature, iteration)
 endif

 iteration = iteration+1

 enddo

 call cpu_time(stop_time)

 print*, 'Max error at iteration ', iteration-1, ' was ',dt
 print*, 'Total time was ',stop_time-start_time, ' seconds.'

end program serial

Whole Fortran Code

! initialize plate and boundery conditions
! temp_last is used to to start first iteration
subroutine initialize(temperature_last)
 implicit none

 integer, parameter :: columns=1000
 integer, parameter :: rows=1000
 integer :: i,j

 double precision, dimension(0:rows+1,0:columns+1) :: temperature_last

 temperature_last = 0.0

 !these boundary conditions never change throughout run

 !set left side to 0 and right to linear increase
 do i=0,rows+1
 temperature_last(i,0) = 0.0
 temperature_last(i,columns+1) = (100.0/rows) * i
 enddo

 !set top to 0 and bottom to linear increase
 do j=0,columns+1
 temperature_last(0,j) = 0.0
 temperature_last(rows+1,j) = ((100.0)/columns) * j
 enddo

end subroutine initialize

!print diagonal in bottom corner where most action is
subroutine track_progress(temperature, iteration)
 implicit none

 integer, parameter :: columns=1000
 integer, parameter :: rows=1000
 integer :: i,iteration

 double precision, dimension(0:rows+1,0:columns+1) :: temperature

 print *, '---------- Iteration number: ', iteration, ' ---------------'
 do i=5,0,-1
 write (*,'("("i4,",",i4,"):",f6.2," ")',advance='no'), &
 rows-i,columns-i,temperature(rows-i,columns-i)
 enddo
 print *
end subroutine track_progress

Our first exercises will be to compile, run and time the Laplace code using the two programming

models in this Pathway: OpenMP and MPI.

This will get you familiar with the programming environment in preparation for our actual parallel

programming in the next two modules.

It will also allow you to experience some parallel scaling first hand.

Specifically, our goal will be to compile the Laplace code in OpenMP and run it on varying

numbers of threads to see how much it speeds up.

We will do the same thing using MPI to run with multiple processes.

Don't worry if it seems like we are skipping over some details today - we are. But those details

will be made clear in our following modules.

Exercises For This Module.

Go into the OpenMP folder inside the Exercises folder. You will see codes there called

laplace_omp.c and laplace_omp.f90. Select whichever language most interests you.

To compile with OpenMP we do either

 nvc -mp laplace_omp.c

 or

 nvfortran -mp laplace_omp.f90

Now we have an executable called a.out. But we need to ask for a compute node with multiple

cores allocated in order to run. The Slurm command to get us a command line (--pty bash) on a

compute node (--nodes=1) with 32 cores (--cpus-per-task=32) is:

srun --account=becs-delta-cpu --partition=cpu-interactive --nodes=1 --cpus-per-task=32 --pty bash

*I am assuming the we all either have the same --account, or you know which one you should be using.

OpenMP (Exercise 1)

You will notice a few messages as Slurm find the resources, and then your command line will

change to something with a compute node number in it.

From the command line on this compute node we can run up to 32 cores. OpenMP allows us to

control core usage with the OMP_NUM_THREADS environment variable. You learned about these

in the Intro to Delta module.

Set this variable to request 1 core (export OMP_NUM_THREADS=1) and run with a.out to find

the baseline run time for the Laplace code. If you select 4000 iterations, the code will run to a

complete solution. It reports its own runtime for you.

Now, try varying number of cores up to 32 and see what kind of speedup you experience. Note

that you do not need to recompile the code. Just change the environment variable and run a.out.

Record these times for our discussion.

exit the compute node when you are finished. You should find yourself returned to the login node.

OpenMP

Now we will do a similar exercise using MPI. Go into the MPI folder inside the Exercises folder.

You will see codes there called laplace_mpi.c and laplace_mpi.f. Select whichever language most

interests you.

To compile with MPI we do either

 mpicc laplace_mpi.c

 or

 mpif90 laplace_mpi.f90

Again, you have an executable called a.out. Now you need to ask for a compute node with multiple

processes allocated in order to run. Similar, but not identical, to the previous Slurm command, the
one to get us a command line on a compute node with 4 processes (--nodes=1 --tasks=4 -

-tasks-per-node=4) is:

srun --account=becs-delta-cpu --partition=cpu-interactive --nodes=1 --tasks=4 --tasks-per-node=4 --pty bash

MPI (Exercise 2)

With MPI we will limit ourselves to a single timing run, using 4 processes. The command to

run our a.out executable on our four available processes is

mpirun -n 4 a.out

Record this time for our later discussion.

Exit the compute node when you are finished.

MPI

	Slide 1: Parallel Computing
	Slide 2: Who am I?
	Slide 3: This Module
	Slide 4: Compute bound problems abound: Climate change analysis
	Slide 5: Exascale is needed at all scales: combustion simulations
	Slide 6: The list is long, and growing.
	Slide 7
	Slide 8: Where are those 10 or 12 orders of magnitude?
	Slide 9: Moore's Law abandoned serial programming around 2004
	Slide 10: But Moore’s Law is only beginning to stumble now.
	Slide 11: And at end of day we keep using getting more transistors.
	Slide 12: And run into the real problem. This is the central driver of 21st century computing!
	Slide 13: Even when you go extreme...
	Slide 14: For those of you thinking, "Well, at least my CPU runs at 4+ GHz."
	Slide 15: Not a new problem…just ubiquitous.
	Slide 16: And how to get more performance from more transistors with the same power.
	Slide 17: Single Socket Parallelism
	Slide 18: Putting It All Together
	Slide 19: Parallel Computing
	Slide 20
	Slide 21
	Slide 22
	Slide 23: V100 GPU and SM
	Slide 24: Huang's Law
	Slide 25: Why Video Gaming Cards?
	Slide 26: Heroic Efforts
	Slide 27: Weather Model: Accelerator (OpenACC)
	Slide 28
	Slide 29: The pieces fit like this…
	Slide 30: Cores, Nodes, Processors, PEs?
	Slide 31: Many Levels and Types of Parallelism
	Slide 32: MPPs (Massively Parallel Processors)
	Slide 33: Top 10 Systems as of November 2024
	Slide 34: The word is Heterogeneous
	Slide 35: Networks
	Slide 36: Ethernet with Workstations
	Slide 37: Complete Connectivity
	Slide 38: Crossbar
	Slide 39: Binary Tree
	Slide 40: Fat Tree
	Slide 41: Other Fat Trees
	Slide 42: Dragonfly
	Slide 43: Parallel IO (RAID…)
	Slide 44: The Future Is Now!
	Slide 45: Today
	Slide 46
	Slide 47
	Slide 48: The path to Exascale has not been incremental.
	Slide 49: Is Silicon Photonics a game changer?
	Slide 50: It is not just “exaflops” – we are changing the whole computational model Current programming systems have WRONG optimization targets
	Slide 51: End of Moore’s Law Will Lead to New Architectures
	Slide 52
	Slide 53: We can do better. We have a role model.
	Slide 54: Why you should be (extra) motivated.
	Slide 55: In Conclusion…
	Slide 56: Compiling
	Slide 57: Configure Your Environment
	Slide 58: Our Files For This Pathway
	Slide 59: Our Foundation Exercise: Laplace Solver
	Slide 60: Exercise Foundation: Jacobi Iteration
	Slide 61: Serial C Code (kernel)
	Slide 62: Whole C Code
	Slide 63: Whole Fortran Code
	Slide 64: Exercises For This Module.
	Slide 65: OpenMP (Exercise 1)
	Slide 66: OpenMP
	Slide 67: MPI (Exercise 2)
	Slide 68: MPI

