
Parallel Computing

John Urbanic

Parallel Computing Scientist

Pittsburgh Supercomputing Center

Distinguished Service Professor

Carnegie Mellon University

Copyright 2025

Who am I?

Distinguished Service Professor

Carnegie Mellon University

 Undergrad Advanced Computational Physics

 Graduate Large Scale Computing

 Data Science Capstone Projects

Parallel Computing Scientist

Pittsburgh Supercomputing Center

 Code, code, code, on

 Parallel platforms: MPI, OpenMP, OpenACC, ...

 Big Data platforms: Spark, ...

 Machine Learning: Spark, TensorFlow, PyTorch, ...

John Urbanic

This Module

Why is parallel computing so important?

What does it look like today?

How do we take advantage of it?

Where is it headed?

Let's try a few things...

in preparation for the upcoming programming modules.

Compute bound problems abound: Climate change analysis

Simulations Extreme data

• Cloud resolution, quantifying uncertainty,
understanding tipping points, etc., will
drive climate to exascale platforms

• New math, models, and systems support
will be needed

• “Reanalysis” projects need 100 more computing
to analyze observations

• Machine learning and other analytics
are needed today for petabyte data sets

• Combined simulation/observation will empower
policy makers and scientists

Courtesy Horst Simon, LBNL

Exascale is needed at all scales: combustion simulations

⚫ Goal: 50% improvement in engine efficiency

⚫ Center for Exascale Simulation of Combustion
in Turbulence (ExaCT)

– Combines simulation and experimentation

– Uses new algorithms, programming
models, and computer science

Courtesy Horst Simon, LBNL

The list is long, and growing.

⚫ Molecular-scale Processes: atmospheric aerosol simulations

⚫ AI-Enhanced Science: predicting disruptions in tokomak fusion reactors

⚫ Hypersonic Flight

⚫ Modeling Thermonuclear X-ray Bursts: 3D simulations of a neutron star surface or supernovae

⚫ Quantum Materials Engineering: electrical conductivity photovoltaic and plasmonic devices

⚫ Physics of Fundamental Particles: mass estimates of the bottom quark

⚫ Digital Cells

These and others are in an appendix at the end of our Outro To Parallel Computing talk.

And many of you doubtless brought your own immediate research concerns. Great!

Where are those 10 or 12 orders of
magnitude?

How do we get there from here?

IBM 709

12 kiloflops

vs.
BTW, that's a

bigger gap than

Moore's Law abandoned serial programming around 2004

Courtesy Liberty Computer Architecture Research Group

But Moore’s Law is only beginning to stumble now.

High Volume
Manufacturing

2004 2006 2008 2010 2012 2014 2018 2021

Feature Size 90nm 65nm 45nm 32nm 22nm 14nm 10nm 7nm

Integration Capacity
(Billions of
Transistors)

2 4 8 16 32 64 128 256

Intel process technology capabilities

50nm

Transistor for
90nm Process

Source: Intel

Influenza Virus
Source: CDC

And at end of day we keep using getting more transistors.

And run into the real problem. This is the central driver of 21st century computing!

Source: Kogge and Shalf, IEEE CISE

Courtesy Horst Simon, LBNL

Fun fact: At 100+ Watts and <1V, currents are beginning to exceed 100A at the point of load!

Even when you go extreme...

Going for the record.

These are CPUs you can buy.

https://hwbot.org/benchmark/cpu_frequency/halloffame

Complex liquid cooling on a consumer GPU.

For those of you thinking, "Well, at least my CPU runs at 4+ GHz."

Maybe sometimes.

Not a new problem…just ubiquitous.

CPU
Power

W)

Cray-2 with cooling tower in foreground, circa 1985

Starting to see 200KW per cabinet in datacenters.

And how to get more performance from more transistors with the same
power.

Area = 1

Voltage = 1

Freq = 1

Power = 1

Perf = 1

Area = 2

Voltage = 0.85

Freq = 0.85

Power = 1

Perf = ~1.8

Frequency

Reduction

Power

Reduction

Performance

Reduction

15% 45% 10%

A 15%

Reduction

In Voltage

Yields

Die shot of the Intel® Pentium® M Processor (formerly codenamed Banias), part of Intel® Centrino™ Mobile
Technology

Die shot of the Intel® Pentium® M Processor (formerly codenamed Banias), part of Intel® Centrino™ Mobile
Technology

Die shot of the Intel® Pentium® M Processor (formerly codenamed Banias), part of Intel® Centrino™ Mobile
Technology

SINGLE CORE DUAL CORE

RULE OF THUMB

ftp://download.intel.com/pressroom/images/centrino_dieshot.zip
ftp://download.intel.com/pressroom/images/centrino_dieshot.zip
ftp://download.intel.com/pressroom/images/centrino_dieshot.zip

Processor Year Vector Bits SP FLOPs / core /

cycle
Cores FLOPs/cycle

Pentium III 1999 SSE 128 3 1 3

Pentium IV 2001 SSE2 128 4 1 4

Core 2006 SSE3 128 8 2 16

Nehalem 2008 SSE4 128 8 10 80

Sandybridge 2011 AVX 256 16 12 192

Haswell 2013 AVX2 256 32 18 576

KNC 2012 AVX512 512 32 64 2048

KNL 2016 AVX512 512 64 72 4608

Skylake 2017 AVX512 512 96 28 2688

Single Socket Parallelism

Putting It All Together

Parallel Computing

One woman can make a baby in 9 months.

Can 9 women make a baby in 1 month?

But 9 women can make 9 babies in 9 months.

First two bullets are Brook’s Law. From The Mythical Man-Month.

A must-read for serious project programmers that includes many other classics such as:

"What one programmer can do in one month, two programmers can do in two months."

Prototypical Application:

Serial Weather Model

MEMORY

CPU

Courtesy John Burkhardt, Virginia Tech

First Parallel Weather Modeling Algorithm:

Richardson in 1917

Weather Model: Shared Memory

(OpenMP)

MEMORY

Core

Core

Core

Core

Four meteorologists in the same room sharing the map.

Fortran:

 !$omp parallel do

 do i = 1, n

 a(i) = b(i) + c(i)

 enddo

C/C++:

 #pragma omp parallel for

 for(i=1; i<=n; i++)

 a[i] = b[i] + c[i];

23

⚫x

V100 GPU and SM

From NVIDIA Tesla V100 GPU Architecture

Volta GV100 GPU with 85 Streaming Multiprocessor (SM) units Volta GV100 SM

Rapid evolution

continues with:

 Turing

 Ampere

 Hopper

Huang's Law

Source: NVIDIA

An observation/claim made by Jensen Huang, CEO of Nvidia, at

its 2018 GPU Technology Conference.

He observed that Nvidia’s GPUs were "25 times faster than five

years ago" whereas Moore's law would have expected only a

ten-fold increase.

In 2006 Nvidia's GPU had a 4x performance advantage over

other CPUs. In 2018 the Nvidia GPU was 20 times faster than a

comparable CPU node: the GPUs were 1.7x faster each year.

Moore’s law would predict a doubling every two years, however

Nvidia's GPU performance was more than tripled every two

years fulfilling Huang's law.

It is a little premature, and there are confounding factors at play,

so most people haven't yet elevated this to the status of Moore's

Law.

Why Video Gaming Cards?

By the turn of the century, the video gaming market has already

standardized around a few APIs for rendering 3D video games

in real-time.

None of these looked anything like scientific computing.

Heroic Efforts

An API in 2004 first demonstrated the potential use of this

latent floating point ability.

By 2007 NVIDIA supported a dedicated API for their own

hardware.

Note that these early devices were not at all engineered for

scientific computing and lacked several very fundamental

capabilities. In particular EEC and double precision.

Weather Model: Accelerator
(OpenACC)

PCI Bus

CPU Memory GPU Memory

CPU GPU

1 meteorologists coordinating 1000 math savants using tin cans and a string.

#pragma acc kernels

 for (i=0; i<N; i++) {

 double t = (double)((i+0.05)/N);

 pi += 4.0/(1.0+t*t);

 }

__global__ void saxpy_kernel(float a, float* x, float* y, int n){

 int i;

 i = blockIdx.x*blockDim.x + threadIdx.x;

 if(i <= n) x[i] = a*x[i] + y[i];

}

Weather Model: Distributed Memory

(MPI)

MEMORY

CPU
&

Memory

CPU
&

Memory

CPU
&

Memory
CPU

&
Memory

CPU
&

Memory

CPU
&

Memory

CPU
&

Memory

CPU
&

Memory

CPU
&

Memory

CPU
&

Memory

CPU
&

Memory

CPU
&

Memory

CPU
&

Memory

CPU
&

Memory

CPU
&

Memory

CPU
&

Memory
CPU

&
Memory

CPU
&

Memory

CPU
&

Memory

CPU
&

Memory

CPU
&

Memory

CPU
&

Memory

50 meteorologists using a telegraph.

call MPI_Send(numbertosend, 1, MPI_INTEGER, index, 10, MPI_COMM_WORLD, errcode)

.

.

call MPI_Recv(numbertoreceive, 1, MPI_INTEGER, 0, 10, MPI_COMM_WORLD, status, errcode)

.

.

.

call MPI_Barrier(MPI_COMM_WORLD, errcode)

.

The pieces fit like this…

OpenMP

OpenACC

MPI

Cores, Nodes, Processors, PEs?
⚫ A "core" can run an independent thread of code. Hence the temptation to

refer to it as a processor.

⚫ “Processors” refer to a physical chip. Today these almost always have more
than one core.

⚫ “Nodes” is used to refer to an actual physical unit with a network connection;
usually a circuit board or "blade" in a cabinet. These often have multiple
processors.

⚫ To avoid ambiguity, it is precise to refer to the smallest useful computing
device as a Processing Element, or PE. On normal processors this
corresponds to a core.

I will try to use the term PE consistently myself, but I may slip up. Get used to it as you will
quite often hear all of the above terms used interchangeably where they shouldn’t be.
Context usually makes it clear.

Many Levels and Types of Parallelism

⚫ Vector (SIMD)

⚫ Instruction Level (ILP)

– Instruction pipelining

– Superscaler (multiple instruction units)

– Out-of-order

– Register renaming

– Speculative execution

– Branch prediction

⚫ Multi-Core (Threads)

⚫ SMP/Multi-socket

⚫ Accelerators: GPU & MIC

⚫ Clusters

⚫ MPPs

Compiler
(not your problem)

OpenMP

OpenACC

MPI

Also Important

• ASIC/FPGA/DSP

• RAID/IO

OpenMP 4/5
can help!

MPPs (Massively Parallel Processors)
Distributed memory at largest scale. Shared memory at lower level.

Sunway TaihuLight (NSC, China)

– 93 PFlops Rmax and 125 PFlops Rpeak

– Sunway SW26010 260 core, 1.45GHz CPU

– 10,649,600 cores

– Sunway interconnect

Summit (ORNL)

– 122 PFlops Rmax and 187 PFlops Rpeak

– IBM Power 9, 22 core, 3GHz CPUs

– 2,282,544 cores

– NVIDIA Volta GPUs

– EDR Infiniband

Top 10 Systems as of November 2024

Computer Site Manufacturer
CPU

Interconnect
[Accelerator]

Cores
Rmax

(Pflops)
Rpeak

(Pflops)
Power
(MW)

1 El Capitan
Lawrence Livermore
National Laboratory
United States

HPE
AMD EPYC 24C 1.8GHz
Slingshot-11
AMD Instinct MI300A

11,039,616 1742 2746 30

2 Frontier
Oak Ridge National
Laboratory
United States

HPE
AMD EPYC 64C 2GHz
Slingshot-11
AMD Instinct MI250X

9,066,176 1353 2055 25

3 Aurora
Argonne National
Laboratory
United States

HPE
Intel Xeon Max 9470 52C 2.4GHz
Slingshot-11
Intel Data Center GPU Max

9,264,128 1012 1980 39

4 Eagle
Microsoft
United States

Microsoft
Intel Xeon 8480C 48C 2GHz
Infiniband NDR
NVIDIA H100

1,123,200 561 846

5 HPC6
Eni S.p.A.
Italy

HPE
AMD EPYC 64C 2GHz
Slingshot-11
AMD Instinct MI250X

3,143,520 477 606 8

6 Fugaku
RIKEN Center for
Computational Science
Japan

Fujitsu
ARM 8.2A+ 48C 2.2GHz
Torus Fusion Interconnect

7,630,072 442 537 29

7 Alps

Swiss National
Supercomputing
Center
Switzerland

HPE
NVIDIA Grace 72C 3.1GHz
Slingshot-11
NVIDIA GH200

2,121,600 434 574 7

8 LUMI
EuroHPC
Finland

HPE
AMD EPYC 64C 2GHz
Slingshot-11
AMD Instinct MI250X

2,752,704 379 531 7

9 Leonardo
EuroHPC
Italy

Atos
Intel Xeon 8358 32C 2.6GHz
Infiniband HDR
NVIDIA A100

1,824,768 238 304 7

10 Tuolumne
Lawrence Livermore
National Laboratory HPE

AMD EPYC 24C 1.8GHz
Slingshot-11 1,161,216 208 288 3

The word is Heterogeneous
And it's not just supercomputers. It's on your desk, and in your phone.

A
n

a
n

d
T

e
c
h

How much of this can you program?

Networks

3 characteristics sum up the network:

• Latency

 The time to send a 0 byte packet of
data on the network

• Bandwidth

 The rate at which a very large
packet of information can be sent

• Topology
 The configuration of the network

that determines how processing

units are directly connected.

Ethernet with Workstations

Complete Connectivity

Crossbar

Binary Tree

Fat Tree

http://www.unixer.de/research/topol

ogies/

Other Fat Trees

From Torsten Hoefler's Network Topology Repository at

http://www.unixer.de/research/topologies/

Big Red @ IU

Jaguar @ ORNL

Atlas @ LLNL

Tsubame @ Tokyo Inst. of Tech

Odin @ IU

Dragonfly

A newer innovation in network design is the dragonfly topology, which benefits from advanced
hardware capabilities like:

⚫ High-Radix Switches

⚫ Adaptive Routing

⚫ Optical Links

Various 42 node Dragonfly configurations.

Purple links are optical, and blue are electrical.

Graphic from the excellent paper Design space exploration of
the Dragonfly topology by Yee, Wilke, Bergman and Rumley.

Parallel IO (RAID…)

⚫ There are increasing numbers of applications for which many PB of data need to be
written.

⚫ Checkpointing is also becoming very important due to MTBF issues (a whole ‘nother
talk).

⚫ Build a large, fast, reliable filesystem from a collection of smaller drives.

⚫ Supposed to be transparent to the programmer.

⚫ Increasingly mixing in SSD.

The Future Is Now!

Exascale Computing and you.

Today

• Pflops computing fully established with more than 500 machines

• The field is thriving

• Interest in supercomputing is now worldwide, and growing
in many new markets

• Exascale projects in many countries and regions

Courtesy Horst Simon, LBNL

exa = 1018 = 1,000,000,000,000,000,000 = quintillion

64-bit precision floating point operations per second

Welcome to The Exascale Era!

23,800

Cray Red Storms

2004 (42 Tflops)

133,33

NVIDIA V100

(7.5 Tflops)

There may also be a Chinese machine, OceanLight, or 3-

letter-agency machines on the scene.

The Cloud

"A distributed system is one in which the failure of a computer you didn't even know existed

 can render your own computer unusable.''

Leslie Lamport in 1987

"It's really more of a Fog."

Me, just now.

The path to Exascale has not been incremental.

First boost: many-core/accelerator

Second Boost: 3D (2016 – 2023)

Third Boost: SiPh (2021–)

Is Silicon Photonics a game changer?

A great dive into these topics can be found in Myths and Legends in High-Performance Computing, Matsuoka, Domke, et. al.

Electrically switched networks can operate in “packet switching”

mode to lower the effective latency and utilize all the available link

bandwidth. The alternative to this mode is “circuit-switching” and

it was abandoned by the electronic community long ago. Without

practical means to buffer light, process photon headers in-flight,

or reverting to switches with expensive optical-electrical-optical

conversions, we would have to resort to circuit-switching with all

the inherent deficiencies:

• complex traffic steering calculations

• switching delays

• latency increase due to lack of available paths

• under-utilization of links

Photonics is often cited as an enabler for extensive memory

disaggregation, but this yields another challenge, specifically the

speed of light. Photons travel at a maximum speed of 3.3 ns/m in

fibers. This is equivalent to a level-2 cache access of a modern

CPU, not including the disaggregation overhead (such as from the

protocol, switching, or optical-electrical conversions at

the endpoints). At 3–4 m distance, the photon travel time alone

exceeds the first-word access latency of modern DDR memory.

It is not just “exaflops” – we are changing the whole computational model
Current programming systems have WRONG optimization targets

⚫ Peak clock frequency as primary limiter for
performance improvement

⚫ Cost: FLOPs are biggest cost for system:
optimize for compute

⚫ Concurrency: Modest growth of parallelism
by adding nodes

⚫ Memory scaling: maintain byte per flop
capacity and bandwidth

⚫ Locality: MPI+X model (uniform costs within
node & between nodes)

⚫ Uniformity: Assume uniform system
performance

⚫ Reliability: It’s the hardware’s problem

Old Constraints New Constraints

! "

! #"

! ##"

! ###"

! ####"

$%
"&'
(%
"

) *
+,-
.*/
"

! 0
0 "
12
345
,6"

70
0 "
12
345
,6"

(8
345
,69
$)
: ;

"

<14
=<"
,2.
*/4
12
2*
4."

>/
1-
-"-
?-.
*0

"

21@"

A#! B"

Internode/MPI	
Communica on	

On-chip		/	CMP	
communica on	

Intranode/SMP	
Communica on	

Pi
co
jo
ul
es
	P
er
	O
pe

ra
on

	

• Power is primary design constraint for future

HPC system design

• Cost: Data movement dominates: optimize to

minimize data movement

• Concurrency: Exponential growth of parallelism

within chips

• Memory Scaling: Compute growing 2x faster

than capacity or bandwidth

• Locality: must reason about data locality and

possibly topology

• Heterogeneity: Architectural and performance

non-uniformity increase

• Reliability: Cannot count on hardware protection

alone

Adapted from John Shalf

End of Moore’s Law Will Lead to New Architectures

TODAY

NEUROMORPHIC
QUANTUM

COMPUTING

BEYOND CMOS

Non-von

Neumann

von Neumann

Beyond CMOSCMOS

ARCHITECTURE

TECHNOLOGY
Courtesy Horst Simon, LBNL

Carbon Nanotube FETs

Graphene FETs

Ferromagnetic Spin FETs

Nano-Electro-Mechanical

Reversible Computing

Analog computing

It would only be the 6th paradigm.

⚫ We hope to "simulate" a human brain in real time on one of these Exascale
platforms with about 1 - 10 Exaflop/s and 4 PB of memory

⚫ These newest Exascale computers use 20+ MW

⚫ The human brain runs at 20W

⚫ Our brain is a million times more power efficient!

We can do better. We have a role model.

Why you should be (extra) motivated.

⚫ This parallel computing thing is no fad.

⚫ The laws of physics are drawing this roadmap.

⚫ If you get on board (the right bus), you can ride this trend for a long,
exciting trip.

Let’s learn how to use these things!

In Conclusion…

OpenMP

OpenACC

MPI

Compiling
We will be using standard Fortran and C compilers on this Pathway. They should look familiar.

We will slightly prefer the NVIDIA compilers (the Intel or gcc or AMD or Clang ones would also be
fine).

Note that on Delta you would normally have to enable this compiler with

module load nvhpc/24.1

I have put that in the .bashrc file that we will all use.

Let’s get the boring stuff out of the way now. This will configure your environment by copying

over the exercise files and setting up your .bashrc so that you can do our initial exercises, as

well as exercises for the following two modules.

⚫ Log on to Delta.

⚫ Run the setup script that will copy over the Exercises directory we will all use. It will also

automatically load the right compiler using your .bashrc script whenever you login. Note

that linux shells are case sensitive.

 /projects/becs/urbanic/Setup

⚫ As told, logout and log back on again to complete the setup. You won’t need to do that in

the future.

Configure Your Environment

Our Files For This Pathway

After you run the setup script, you will have the following directories in your
home directory. We will be using them in future modules.

/Exercises

 /Test

 /OpenMP

 /OpenACC

 /MPI

Our Foundation Exercise: Laplace Solver

I’ve been using this for MPI, OpenMP and now OpenACC. It is a great simulation problem, not rigged for MPI.

In this most basic form, it solves the Laplace equation: 𝛁𝟐𝒇(𝒙, 𝒚) = 𝟎
The Laplace Equation applies to many physical problems, including:

Electrostatics

Fluid Flow

Temperature

For temperature, it is the Steady State Heat Equation:

Metal

Plate

Heating

Element

Initial Conditions Final Steady State

Metal

Plate

Exercise Foundation: Jacobi Iteration

The Laplace equation on a grid states that each grid point is the average of its

neighbors.

We can iteratively converge to that state by repeatedly computing new values at

each point from the average of neighboring points.

We just keep doing this until the difference from one pass to the next is small

enough for us to tolerate.

A(i,j) A(i+1,j)A(i-1,j)

A(i,j-1)

A(i,j+1)

𝐴𝑘+1 𝑖, 𝑗 =
𝐴𝑘(𝑖 − 1, 𝑗) + 𝐴𝑘 𝑖 + 1, 𝑗 + 𝐴𝑘 𝑖, 𝑗 − 1 + 𝐴𝑘 𝑖, 𝑗 + 1

4

while (dt > MAX_TEMP_ERROR && iteration <= max_iterations) {

 for(i = 1; i <= ROWS; i++) {
 for(j = 1; j <= COLUMNS; j++) {
 Temperature[i][j] = 0.25 * (Temperature_last[i+1][j] + Temperature_last[i-1][j] +
 Temperature_last[i][j+1] + Temperature_last[i][j-1]);
 }
 }

 dt = 0.0;

 for(i = 1; i <= ROWS; i++){
 for(j = 1; j <= COLUMNS; j++){
 dt = fmax(fabs(Temperature[i][j]-Temperature_last[i][j]), dt);
 Temperature_last[i][j] = Temperature[i][j];
 }
 }

 if((iteration % 100) == 0) {
 track_progress(iteration);
 }

 iteration++;

}

Serial C Code (kernel)

Calculate

Update

temp

array and

find max

change

Output

Done?

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <sys/time.h>

// size of plate
#define COLUMNS 1000
#define ROWS 1000

// largest permitted change in temp (This value takes about 3400 steps)
#define MAX_TEMP_ERROR 0.01

double Temperature[ROWS+2][COLUMNS+2]; // temperature grid
double Temperature_last[ROWS+2][COLUMNS+2]; // temperature grid from last iteration

// helper routines
void initialize();
void track_progress(int iter);

int main(int argc, char *argv[]) {

 int i, j; // grid indexes
 int max_iterations; // number of iterations
 int iteration=1; // current iteration
 double dt=100; // largest change in t
 struct timeval start_time, stop_time, elapsed_time; // timers

 printf("Maximum iterations [100-4000]?\n");
 scanf("%d", &max_iterations);

 gettimeofday(&start_time,NULL); // Unix timer

 initialize(); // initialize Temp_last including boundary conditions

 // do until error is minimal or until max steps
 while (dt > MAX_TEMP_ERROR && iteration <= max_iterations) {

 // main calculation: average my four neighbors
 for(i = 1; i <= ROWS; i++) {
 for(j = 1; j <= COLUMNS; j++) {
 Temperature[i][j] = 0.25 * (Temperature_last[i+1][j] + Temperature_last[i-1][j] +
 Temperature_last[i][j+1] + Temperature_last[i][j-1]);
 }
 }

 dt = 0.0; // reset largest temperature change

 // copy grid to old grid for next iteration and find latest dt
 for(i = 1; i <= ROWS; i++){
 for(j = 1; j <= COLUMNS; j++){
 dt = fmax(fabs(Temperature[i][j]-Temperature_last[i][j]), dt);
 Temperature_last[i][j] = Temperature[i][j];
 }
 }

 // periodically print test values
 if((iteration % 100) == 0) {
 track_progress(iteration);
 }

 iteration++;
 }

Whole C Code

 gettimeofday(&stop_time,NULL);
 timersub(&stop_time, &start_time, &elapsed_time); // Unix time subtract routine

 printf("\nMax error at iteration %d was %f\n", iteration-1, dt);
 printf("Total time was %f seconds.\n", elapsed_time.tv_sec+elapsed_time.tv_usec/1000000.0);

}

// initialize plate and boundary conditions
// Temp_last is used to to start first iteration
void initialize(){

 int i,j;

 for(i = 0; i <= ROWS+1; i++){
 for (j = 0; j <= COLUMNS+1; j++){
 Temperature_last[i][j] = 0.0;
 }
 }

 // these boundary conditions never change throughout run

 // set left side to 0 and right to a linear increase
 for(i = 0; i <= ROWS+1; i++) {
 Temperature_last[i][0] = 0.0;
 Temperature_last[i][COLUMNS+1] = (100.0/ROWS)*i;
 }

 // set top to 0 and bottom to linear increase
 for(j = 0; j <= COLUMNS+1; j++) {
 Temperature_last[0][j] = 0.0;
 Temperature_last[ROWS+1][j] = (100.0/COLUMNS)*j;
 }
}

// print diagonal in bottom right corner where most action is
void track_progress(int iteration) {

 int i;

 printf("---------- Iteration number: %d ------------\n", iteration);
 for(i = ROWS-5; i <= ROWS; i++) {
 printf("[%d,%d]: %5.2f ", i, i, Temperature[i][i]);
 }
 printf("\n");
}

program serial
 implicit none

 !Size of plate
 integer, parameter :: columns=1000
 integer, parameter :: rows=1000
 double precision, parameter :: max_temp_error=0.01

 integer :: i, j, max_iterations, iteration=1
 double precision :: dt=100.0
 real :: start_time, stop_time

 double precision, dimension(0:rows+1,0:columns+1) :: temperature, temperature_last

 print*, 'Maximum iterations [100-4000]?'
 read*, max_iterations

 call cpu_time(start_time) !Fortran timer

 call initialize(temperature_last)

 !do until error is minimal or until maximum steps
 do while (dt > max_temp_error .and. iteration <= max_iterations)

 do j=1,columns
 do i=1,rows
 temperature(i,j)=0.25*(temperature_last(i+1,j)+temperature_last(i-1,j)+ &
 temperature_last(i,j+1)+temperature_last(i,j-1))
 enddo
 enddo

 dt=0.0

 !copy grid to old grid for next iteration and find max change
 do j=1,columns
 do i=1,rows
 dt = max(abs(temperature(i,j) - temperature_last(i,j)), dt)
 temperature_last(i,j) = temperature(i,j)
 enddo
 enddo

 !periodically print test values
 if(mod(iteration,100).eq.0) then
 call track_progress(temperature, iteration)
 endif

 iteration = iteration+1

 enddo

 call cpu_time(stop_time)

 print*, 'Max error at iteration ', iteration-1, ' was ',dt
 print*, 'Total time was ',stop_time-start_time, ' seconds.'

end program serial

Whole Fortran Code

! initialize plate and boundery conditions
! temp_last is used to to start first iteration
subroutine initialize(temperature_last)
 implicit none

 integer, parameter :: columns=1000
 integer, parameter :: rows=1000
 integer :: i,j

 double precision, dimension(0:rows+1,0:columns+1) :: temperature_last

 temperature_last = 0.0

 !these boundary conditions never change throughout run

 !set left side to 0 and right to linear increase
 do i=0,rows+1
 temperature_last(i,0) = 0.0
 temperature_last(i,columns+1) = (100.0/rows) * i
 enddo

 !set top to 0 and bottom to linear increase
 do j=0,columns+1
 temperature_last(0,j) = 0.0
 temperature_last(rows+1,j) = ((100.0)/columns) * j
 enddo

end subroutine initialize

!print diagonal in bottom corner where most action is
subroutine track_progress(temperature, iteration)
 implicit none

 integer, parameter :: columns=1000
 integer, parameter :: rows=1000
 integer :: i,iteration

 double precision, dimension(0:rows+1,0:columns+1) :: temperature

 print *, '---------- Iteration number: ', iteration, ' ---------------'
 do i=5,0,-1
 write (*,'("("i4,",",i4,"):",f6.2," ")',advance='no'), &
 rows-i,columns-i,temperature(rows-i,columns-i)
 enddo
 print *
end subroutine track_progress

Our first exercises will be to compile, run and time the Laplace code using the two programming

models in this Pathway: OpenMP and MPI.

This will get you familiar with the programming environment in preparation for our actual parallel

programming in the next two modules.

It will also allow you to experience some parallel scaling first hand.

Specifically, our goal will be to compile the Laplace code in OpenMP and run it on varying

numbers of threads to see how much it speeds up.

We will do the same thing using MPI to run with multiple processes.

Don't worry if it seems like we are skipping over some details today - we are. But those details

will be made clear in our following modules.

Exercises For This Module.

Go into the OpenMP folder inside the Exercises folder. You will see codes there called

laplace_omp.c and laplace_omp.f90. Select whichever language most interests you.

To compile with OpenMP we do either

 nvc -mp laplace_omp.c

 or

 nvfortran -mp laplace_omp.f90

Now we have an executable called a.out. But we need to ask for a compute node with multiple

cores allocated in order to run. The Slurm command to get us a command line (--pty bash) on a

compute node (--nodes=1) with 32 cores (--cpus-per-task=32) is:

srun --account=becs-delta-cpu --partition=cpu-interactive --nodes=1 --cpus-per-task=32 --pty bash

*I am assuming the we all either have the same --account, or you know which one you should be using.

OpenMP (Exercise 1)

You will notice a few messages as Slurm find the resources, and then your command line will

change to something with a compute node number in it.

From the command line on this compute node we can run up to 32 cores. OpenMP allows us to

control core usage with the OMP_NUM_THREADS environment variable. You learned about these

in the Intro to Delta module.

Set this variable to request 1 core (export OMP_NUM_THREADS=1) and run with a.out to find

the baseline run time for the Laplace code. If you select 4000 iterations, the code will run to a

complete solution. It reports its own runtime for you.

Now, try varying number of cores up to 32 and see what kind of speedup you experience. Note

that you do not need to recompile the code. Just change the environment variable and run a.out.

Record these times for our discussion.

exit the compute node when you are finished. You should find yourself returned to the login node.

OpenMP

Now we will do a similar exercise using MPI. Go into the MPI folder inside the Exercises folder.

You will see codes there called laplace_mpi.c and laplace_mpi.f. Select whichever language most

interests you.

To compile with MPI we do either

 mpicc laplace_mpi.c

 or

 mpif90 laplace_mpi.f90

Again, you have an executable called a.out. Now you need to ask for a compute node with multiple

processes allocated in order to run. Similar, but not identical, to the previous Slurm command, the
one to get us a command line on a compute node with 4 processes (--nodes=1 --tasks=4 -

-tasks-per-node=4) is:

srun --account=becs-delta-cpu --partition=cpu-interactive --nodes=1 --tasks=4 --tasks-per-node=4 --pty bash

MPI (Exercise 2)

With MPI we will limit ourselves to a single timing run, using 4 processes. The command to

run our a.out executable on our four available processes is

 mpirun -n 4 a.out

Record this time for our later discussion.

Exit the compute node when you are finished.

MPI

	Slide 1: Parallel Computing
	Slide 2: Who am I?
	Slide 3: This Module
	Slide 4: Compute bound problems abound: Climate change analysis
	Slide 5: Exascale is needed at all scales: combustion simulations
	Slide 6: The list is long, and growing.
	Slide 7
	Slide 8: Where are those 10 or 12 orders of magnitude?
	Slide 9: Moore's Law abandoned serial programming around 2004
	Slide 10: But Moore’s Law is only beginning to stumble now.
	Slide 11: And at end of day we keep using getting more transistors.
	Slide 12: And run into the real problem. This is the central driver of 21st century computing!
	Slide 13: Even when you go extreme...
	Slide 14: For those of you thinking, "Well, at least my CPU runs at 4+ GHz."
	Slide 15: Not a new problem…just ubiquitous.
	Slide 16: And how to get more performance from more transistors with the same power.
	Slide 17: Single Socket Parallelism
	Slide 18: Putting It All Together
	Slide 19: Parallel Computing
	Slide 20
	Slide 21
	Slide 22
	Slide 23: V100 GPU and SM
	Slide 24: Huang's Law
	Slide 25: Why Video Gaming Cards?
	Slide 26: Heroic Efforts
	Slide 27: Weather Model: Accelerator (OpenACC)
	Slide 28
	Slide 29: The pieces fit like this…
	Slide 30: Cores, Nodes, Processors, PEs?
	Slide 31: Many Levels and Types of Parallelism
	Slide 32: MPPs (Massively Parallel Processors)
	Slide 33: Top 10 Systems as of November 2024
	Slide 34: The word is Heterogeneous
	Slide 35: Networks
	Slide 36: Ethernet with Workstations
	Slide 37: Complete Connectivity
	Slide 38: Crossbar
	Slide 39: Binary Tree
	Slide 40: Fat Tree
	Slide 41: Other Fat Trees
	Slide 42: Dragonfly
	Slide 43: Parallel IO (RAID…)
	Slide 44: The Future Is Now!
	Slide 45: Today
	Slide 46
	Slide 47
	Slide 48: The path to Exascale has not been incremental.
	Slide 49: Is Silicon Photonics a game changer?
	Slide 50: It is not just “exaflops” – we are changing the whole computational model Current programming systems have WRONG optimization targets
	Slide 51: End of Moore’s Law Will Lead to New Architectures
	Slide 52
	Slide 53: We can do better. We have a role model.
	Slide 54: Why you should be (extra) motivated.
	Slide 55: In Conclusion…
	Slide 56: Compiling
	Slide 57: Configure Your Environment
	Slide 58: Our Files For This Pathway
	Slide 59: Our Foundation Exercise: Laplace Solver
	Slide 60: Exercise Foundation: Jacobi Iteration
	Slide 61: Serial C Code (kernel)
	Slide 62: Whole C Code
	Slide 63: Whole Fortran Code
	Slide 64: Exercises For This Module.
	Slide 65: OpenMP (Exercise 1)
	Slide 66: OpenMP
	Slide 67: MPI (Exercise 2)
	Slide 68: MPI

