
Award
2417789

Leading the Way to Effective Cyberinfrastructure Use

Your Pathway: Data Science with SQL and Pandas

Bryon Gill and John Urbanic – Pittsburgh
Supercomputing Center

Roadmap

SQL

Traditional
tools for data

analysis

Big Data

The need for a
new paradigm

Pandas

A modern and
flexible tool for
data analysis

Spark II

A deeper dive

Spark

A distributed,
scalable tool

for data
analysis

Part 1:
SQL
Database Language Foundations

Relational Databases

An RDBMS (Relational DataBase Management System)

organizes data into tables of columns (attributes) and rows

(records).

This concept has been developed and refined since 1970,

and is a mature concept at this point.

Most RDMBSs use SQL as their query language. This has

become an ISO standard (with many deviations).

SQL Databases?

There are a variety of SQL server and client programs.

each have their own deviations from the ISO standard,

as well as significant performance differences.

Most databases operate with a client/server model but

we will be using the lightweight database sqlite3 for this

class so that each user can have their own instance.

Setting Up

We will each make an initial copy of the example database

we will be using to our home directories.

[bgill@dt-login03 ~]$ cp /projects/becs/bgill/sql/sample.db .

[bgill@dt-login03 ~]$ sqlite3 sample.db

SQLite version 3.41.2 2023-03-22 11:56:21

Enter ".help" for usage hints.

sqlite>

(example database adapted from sqlitetutorial.net)

Database Structure

The structure, or “schema” is the most important

characteristic of any database. We can get a top level

view by listing the tables:

sqlite> .tables

albums employees invoices playlists

artists genres media_types tracks

customers invoice_items playlist_track

There’s much more to say about the contents of the tables

and relationships between them.

SQL Entity Relationship Diagram

An Entity Relationship Diagram can be a

helpful way to visualize table relationships

in a database.

Our sample database

represents a digital music

company that sells a variety

of tracks to consumers

worldwide.

SELECT

The SELECT command is our most useful command in

manipulating data, and we will look at some of the common

variations.
sqlite> SELECT * FROM customers WHERE CustomerId = 1;

1|Luís|Gonçalves|Embraer - Empresa Brasileira de Aeronáutica S.A.|Av. Brigadeiro Faria
Lima, 2170|São José dos Campos|SP|Brazil|12227-000|+55 (12) 3923-5555|+55 (12) 3923-
5566|luisg@embraer.com.br|3

sqlite> SELECT * FROM invoices WHERE CustomerId = 1;

98|1|2010-03-11 00:00:00|Av. Brigadeiro Faria Lima, 2170|São José dos
Campos|SP|Brazil|12227-000|3.98

121|1|2010-06-13 00:00:00|Av. Brigadeiro Faria Lima, 2170|São José dos
Campos|SP|Brazil|12227-000|3.96

..

Note that “*” is our wildcard.

Output Mode

We can include headers and cell frames by changing the output

mode:

sqlite> .mode table

sqlite> SELECT CustomerId, FirstName, LastName FROM customers WHERE CustomerId = 1;

+------------+-----------+-----------+

| CustomerId | FirstName | LastName |

+------------+-----------+-----------+

| 1 | Luís | Gonçalves |

+------------+-----------+-----------+

https://www.sqlite.org/docs.html

More Complex SELECT Statements

sqlite> SELECT CustomerId, COUNT(*) AS NumInvoices

...> FROM invoices

...> GROUP BY CustomerId

...> ORDER BY NumInvoices DESC

...> LIMIT 5;

+------------+-------------+

| CustomerId | NumInvoices |

+------------+-------------+

| 1 | 7 |

| 2 | 7 |

| 3 | 7 |

| 4 | 7 |

| 5 | 7 |

+------------+-------------+

We can alias a column with AS. This alias only exists for

the duration of the query. We are introducing some

powerful qualifiers here. GROUP BY will group rows

that have the same value into summary rows, and is

usually used with aggregate functions (COUNT(), MAX(),

MIN(), SUM(), AVG()) to group the results.

ORDER (in this case in descending order) and LIMIT are

also very useful and common. You can choose the

order DESC or ASC.

Select Subqueries

We can treat that subquery as a table itself. Here we apply

the count(*) to it. Next we will connect these together.
sqlite> SELECT CustomerId, COUNT(*) AS NumOrders FROM Invoices GROUP BY CustomerId HAVING

NumOrders > 6;

+------------+-----------+

| CustomerId | NumOrders |

+------------+-----------+

| 2 | 7 |

| 17 | 7 |

| 38 | 7 |

| 40 | 7 |

+------------+-----------+

SQL requires that derived tables have a name (alias). So we

must name our subquery.

Select Subqueries

This output might be more useful with some customer

information mixed in, but that data isn’t found in the

invoices table. We are interested in customers data:
sqlite> pragma table_info(customers);

+-----+--------------+--------------+---------+------------+----+

| cid | name | type | notnull | dflt_value | pk |

+-----+--------------+--------------+---------+------------+----+

| 0 | CustomerId | INTEGER | 1 | | 1 |

| 1 | FirstName | NVARCHAR(40) | 1 | | 0 |

| 2 | LastName | NVARCHAR(20) | 1 | | 0 |

| 3 | Company | NVARCHAR(80) | 0 | | 0 |

| 4 | Address | NVARCHAR(70) | 0 | | 0 |

… (This command is not SQL standard and differs by db.)

Combining Table Data

Inner Join

This is the default “join” and most common. It collects items

with matching keys from both tables. The keys are specified

with an “ON” clause.
SELECT left_table.B, right_table.F
FROM left_table
JOIN right_table
ON left_table.A = right_table.E;

DCBA

D0C0B0K0

D1C1B1K1

D2C2B2K2

D3C3B3K3

HGFE

H0G0F0K1

H1G1F1K1

H2G2F2K0

H3G3F3K6

FB

F2B0

F0B1

F1B1

Left Table Right Table Result

Inner Join Example

The table name is usually inferred from the FROM clause

but in a JOIN columns must be disambiguated as

table.column:

SELECT Customers.*, TopOrders.NumOrders FROM
(SELECT CustomerId, COUNT(*) AS NumOrders

FROM Invoices
GROUP BY CustomerId
HAVING NumOrders > 6) AS TopOrders

JOIN Customers
ON TopOrders.CustomerId = Customers.CustomerId;

Inner Join (abbreviated) output

+------------+------------+-----------+

| CustomerId | LastName | NumOrders |

+------------+------------+-----------+

| 2 | Köhler | 7 |

| 4 | Hansen | 6 |

| 9 | Nielsen | 6 |

| 11 | Rocha | 6 |

| 13 | Ramos | 6 |

| 15 | Peterson | 6 |

| 17 | Smith | 7 |

| 19 | Goyer | 6 |

| 21 | Chase | 6 |

| 23 | Gordon | 6 |

…

Inner Join Example

Let’s break this down one subquery at a time:

SELECT Customers.*, TopOrders.NumOrders FROM
(SELECT CustomerId, COUNT(*) AS NumOrders
 FROM Invoices
 GROUP BY CustomerId
 HAVING NumOrders > 6) AS TopOrders
JOIN Customers ON TopOrders.CustomerId = Customers.CustomerId;

Views

As queries and subqueries get more complex it becomes

cumbersome and inefficient to keep recreating them. A

VIEW lets us capture them as temporary tables:
CREATE VIEW TopCustomers AS
SELECT Customers.* FROM (SELECT CustomerId, COUNT(*) AS NumOrders
FROM Invoices
GROUP BY CustomerId
HAVING NumOrders > 6) AS TopOrders

JOIN Customers
ON TopOrders.CustomerId = Customers.CustomerId;

.tables

TopCustomers customers invoice_items playlist_track
albums employees invoices playlists
artists genres media_types tracks

A Useful View

Let’s create a view containing all the Jazz tracks. Note that

we can use % as a wildcard in a single quoted string:

CREATE VIEW JazzTracks

AS SELECT *

FROM tracks

INNER JOIN genres

ON tracks.GenreId = genres.GenreId

WHERE genres.Name LIKE 'Jaz%';

A Promotion

The marketing department has requested a list of all jazz

track invoices. We use DISTINCT to ensure that we only get

one InvoiceId even if multiple tracks were purchased.

CREATE VIEW JazzOrders AS

SELECT DISTINCT InvoiceId

FROM invoice_items

INNER JOIN jazztracks

ON invoice_items.TrackId = jazztracks.TrackId;

A Promotion (Cont’d)

The marketing department now wants a list of customers

who ever purchased a Jazz track.

CREATE VIEW JazzCustomers AS

SELECT DISTINCT Invoices.CustomerId

FROM Invoices

INNER JOIN JazzOrders

ON Invoices.InvoiceId = JazzOrders.InvoiceId;

A Promotion (Cont’d)

The marketing department has one more request, they’d

like to offer their promotion only to their top customers, but

they’ll send a different message if they have ordered a jazz

track.

SELECT *

FROM TopCustomers

LEFT JOIN JazzCustomers

ON TopCustomers.CustomerId = JazzCustomers.CustomerId;

Left Joins

LEFT JOIN will include all elements from the left table and
matching ones from the right table. Unmatched values will
be shown as NULL.

SELECT left_table.B, right_table.F
FROM left_table
LEFT JOIN right_table
ON left_table.A = right_table.E;

DCBA

D0C0B0K0

D1C1B1K1

D2C2B2K2

D3C3B3K3

HGFE

H0G0F0K1

H1G1F1K1

H2G2F2K0

H3G3F3K6

FB

F2B0

F0B1

F1B1

NUL
L

B2

NUL
L

B3

Left Table Right Table Result

Right Joins

As you might expect, RIGHT JOIN includes all elements from

the right table and matching ones from the left. Unmatched

values will be shown as NULL.
SELECT left_table.B, right_table.F

FROM left_table

RIGHT JOIN right_table

ON left_table.A = right_table.E;

DCBA

D0C0B0K0

D1C1B1K1

D2C2B2K2

D3C3B3K3

HGFE

H0G0F0K1

H1G1F1K1

H2G2F2K0

H3G3F3K6

FB

F0B1

F1B1

F2B0

F3NULL

Left Table Right Table Result

Joins Are Loops

You notice how we loop through the keys as we manually
create our joins. This is what our database must do as well.
Nested joins turn into nested loops. Here is a typical query
from a classic film rental database (don’t try to paste it
today).

SELECT CONCAT(customer.last_name, ', ', customer.first_name)
AS customer, address.phone, film.title FROM rental

INNER JOIN customer ON rental.customer_id = customer.customer_id
INNER JOIN address ON customer.address_id = address.address_id
INNER JOIN inventory ON rental.inventory_id = inventory.inventory_id
INNER JOIN film ON inventory.film_id = film.film_id
WHERE rental.return_date IS NULL
AND rental_date + INTERVAL film.rental_duration DAY < CURRENT_DATE()
LIMIT 5;

Keys

If we are trying to quickly equate things from two tables, you might imagine that the
organization of those tables might have a major effect on performance. Indeed, the
correct selection of keys for each table is the most important consideration.

There are a variety of key types. Two are very important.

Primary Key
A column (or possibly combination of columns) with unique values.

Foreign Key
A column whose values point to a Primary Key in a different table.

There are other terms for keys that are less important to know. Candidate Keys are any
keys that could be a Primary Key. A Unique Key could have a single NULL value (which
is not allowed for a Primary Key). A Composite Key is a key created from multiple
columns, etc.

Keys (Cont’d)

Primary Keys are very important as the database can use
that as an index to allow us to quickly find a record. This is
usually via a good hashing algorithm.

When we are doing a join, this allows us to quickly find any
two items we are wishing to compare.

This is why we really prefer our joins to use the assigned
table keys if possible.

Keys (Cont’d)

Keys can also aid greatly in ensuring data integrity.

If it is the case that every record should be unique (order #s, for example),
then using that as the primary key will enforce that condition.

A necessary relationship between data in different tables can be enforced
with foreign keys. If an Order table uses a customer ID as a foreign key,
they will ensure that a matching customer exists in a Customer data table.

A common default Primary Key is simply an integer that might be auto-
incremented as each new record is added. (In Pandas we always have a row
number.)

Hashing and Indexing

You won't get very far in data science without hearing about
how hashing is used to organize important data. It is by far
the most common way to index any substantial RDBMS
table.

In this context, a hashing algorithm's job is to take a key and
use it to generate an index into the data storage.

From the mathematical perspective, it takes some string - of
possibly arbitrary length - and generates a fixed size
number. In general this means that it can't guarantee the
uniqueness of that number, but you hope it does a good job
of distributing the indices around. And, you hope it is fast.

Create

So far we’ve just analyzed data, let’s see how to create some things.

Creating a new database is simple in sqlite3 from the command line:

sqlite3 newdatabase.db

Creating a table:

CREATE TABLE vendors (vendorId INTEGER PRIMARY KEY, vendorName varchar(100)
DEFAULT NULL, addressLine1 varchar(100) DEFAULT NULL, addressLine2
varchar(100) DEFAULT NULL, city varchar(50) DEFAULT NULL, state varchar(50)
DEFAULT NULL, postalCode varchar(15) DEFAULT NULL, country varchar(50)
DEFAULT NULL);

Altering Existing Tables

ALTER TABLE vendors ADD COLUMN comment VARCHAR(200);

sqlite> pragma table_info(vendors);

+-----+--------------+--------------+---------+------------+----+

| cid | name | type | notnull | dflt_value | pk |

+-----+--------------+--------------+---------+------------+----+

| 0 | vendorId | INTEGER | 0 | | 1 |

| 1 | vendorName | varchar(100) | 0 | NULL | 0 |

| 2 | addressLine1 | varchar(100) | 0 | NULL | 0 |

| 3 | addressLine2 | varchar(100) | 0 | NULL | 0 |

| 4 | city | varchar(50) | 0 | NULL | 0 |

| 5 | state | varchar(50) | 0 | NULL | 0 |

| 6 | postalCode | varchar(15) | 0 | NULL | 0 |

| 7 | country | varchar(50) | 0 | NULL | 0 |

| 8 | comment | VARCHAR(200) | 0 | | 0 |

+-----+--------------+--------------+---------+------------+----+

Inserting Data

INSERT INTO Vendors (vendorName,addressLine1,addressLine2,city,state,postalCode,country,comment)

VALUES (‘SoundBlasters','123 Imaginary Place',NULL,'Sampletown','PA','15217','USA',NULL);

SELECT * FROM vendors;

+----------+---------------+---------------------+--------------+------------+-------+------------+---------+---------+

| vendorId | vendorName | addressLine1 | addressLine2 | city | state | postalCode | country | comment |

+----------+---------------+---------------------+--------------+------------+-------+------------+---------+---------+

| 1 | SoundBlasters | 123 Imaginary Place | | Sampletown | PA | 15217 | USA | |

+----------+---------------+---------------------+--------------+------------+-------+------------+---------+---------+

Updating Data

UPDATE Vendors SET vendorname = 'Soundclashers' WHERE vendorId = 1;

SELECT * FROM vendors;

+----------+---------------+---------------------+--------------+------------+-------+------------+---------+---------+

| vendorId | vendorName | addressLine1 | addressLine2 | city | state | postalCode | country | comment |

+----------+---------------+---------------------+--------------+------------+-------+------------+---------+---------+

| 1 | Soundclashers | 123 Imaginary Place | | Sampletown | PA | 15217 | USA | |

+----------+---------------+---------------------+--------------+------------+-------+------------+---------+---------+

Deleting Data

sqlite> DELETE FROM vendors WHERE city = 'Sampletown';

sqlite> SELECT * FROM vendors;

sqlite> DROP TABLE vendors;

sqlite> SELECT * FROM vendors;

Parse error: no such table: vendors

sqlite> DROP VIEW TopCustomers;

SQL Injection Attacks

Consider a typical website, which asks the user to enter their username. It

then constructs a string to use in querying the database for that user's info:
var statement = "SELECT * FROM users WHERE name = '" + userName + "'";

This seems reasonable. However, what if a nefarious user enters this as

their username:
a';DROP TABLE users; SELECT * FROM userinfo WHERE 't' = 't

Then the SQL command that gets constructed is
SELECT * FROM users WHERE name = 'a';DROP TABLE users; SELECT * FROM userinfo

WHERE 't' = 't';

And we have not only exposed all user data, but also deleted our users

table.

Good practices can help to mitigate this and sanitize the inputs. Be aware.

ACID

ACID is a set of properties of database transactions intended to guarantee data validity

despite errors, power failures, and other mishaps. In the context of databases, a

sequence of database operations that satisfies the ACID properties (which can be

perceived as a single logical operation on the data) is called a transaction. For example,

a transfer of funds from one bank account to another, even involving multiple changes

such as debiting one account and crediting another, is a single transaction.

Acid (Cont’d)

Atomicity

An atomic system must guarantee atomicity in each and every situation, including power failures, errors, and crashes. A

guarantee of atomicity prevents updates to the database from occurring only partially, which can cause greater

problems than rejecting the whole series outright.

Consistency

Consistency ensures that a transaction can only bring the database from one consistent state to another, preserving

database invariants: any data written to the database must be valid according to all defined rules, including constraints,

cascades, triggers, and any combination thereof. This prevents database corruption by an illegal transaction.

ACID (Cont’d)

Isolation

Isolation ensures that concurrent execution of transactions leaves the database in

the same state that would have been obtained if the transactions were executed

sequentially.

Durability

Durability guarantees that once a transaction has been committed, it will remain

committed even in the case of a system failure (e.g., power outage or crash). This

usually means that completed transactions (or their effects) are recorded in non-

volatile memory.

Triggers

Triggers are stored actions that take effect under certain

conditions.

CREATE TRIGGER upd_check BEFORE UPDATE ON account

FOR EACH ROW

BEGIN

IF NEW.amount < 0 THEN

SET NEW.amount = 0;

ELSEIF NEW.amount > 100 THEN

SET NEW.amount = 100;

END IF;

END;

Procedures

Procedures are simply stored collections of SQL commands.

We can create a trivial one like so:

CREATE PROCEDURE SelectAllCustomers

AS

SELECT * FROM Customers

GO;

EXEC SelectAllCustomers;

In real usage significant business logic is often stored in

procedures with variables, conditionals, etc.

Part 2:
Pandas
A Flexible Data Analysis Tool

Pandas

Pandas has become the standard Python way to input, manipulate, and write basic data.

It integrates well with other tools (e.g. visualization with Matplotlib).

It has limitations which is why SQL and big data techniques are still essential, but for quick and

dirty/limited applications it’s very efficient.

It’s easy to add to an existing python environment.

Pandas setup

for pandas we will load a module and copy a file

ssh login.delta.ncsa.illinois.edu

module load anaconda3_cpu

“.” refers to your present working directory

cp /projects/becs/bgill/pandas/titanic.csv .

python

>>> import pandas as pd

>>>

A Modest (but Titanic!) Dataset

We will begin our exploration of Pandas using a well known dataset drawn from the

infamous Titanic disaster. It has a variety of data on each of 891 passengers.

Amongst the typical demographic data is included their survival. It enables an

interesting, if somewhat morbid, analysis to determine the foremost factors in survival.

Women and children first? Or, save the rich?

Dataframes

Dataframes are tables represented as Python objects.

df = pd.DataFrame(

{“a” : [4,5,6],

“b” : [7,8,9],

“c” : [10,11,12]}

)

A Few Simple Tools

Get the number of rows and columns:

df.shape

Summarize data:

sum(), min(), max(), mean(), median(), etc.

Drop rows where any column has missing/null data:

df.dropna()

There’s a lot of nice cheatsheets out there, here’s a good one:

https://pandas.pydata.org/Pandas_Cheat_Sheet.pdf

Merges (joins)

pd.merge(adf, bdf, how=‘left’, on=‘column_name’)

“how” can be left, right, inner or outer much like sql

Pandas Examples

>>> import pandas as pd

>>> titanic = pd.read_csv("titanic.csv")

>>> titanic

PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked

0 1 0 3 Braund, Mr. Owen Harris male 22.0 1 0 A/5 21171 7.2500 NaN S

1 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 0 PC 17599 71.2833 C85 C

2 3 1 3 Heikkinen, Miss. Laina female 26.0 0 0 STON/O2. 3101282 7.9250 NaN S

3 4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 0 113803 53.1000 C123 S

4 5 0 3 Allen, Mr. William Henry male 35.0 0 0 373450 8.0500 NaN S

..

886 887 0 2 Montvila, Rev. Juozas male 27.0 0 0 211536 13.0000 NaN S

887 888 1 1 Graham, Miss. Margaret Edith female 19.0 0 0 112053 30.0000 B42 S

888 889 0 3 Johnston, Miss. Catherine Helen "Carrie" female NaN 1 2 W./C. 6607 23.4500 NaN S

889 890 1 1 Behr, Mr. Karl Howell male 26.0 0 0 111369 30.0000 C148 C

890 891 0 3 Dooley, Mr. Patrick male 32.0 0 0 370376 7.7500 NaN Q

[891 rows x 12 columns]

Input Formats

csv and JSON are very common, but Pandas can handle a lot of types of input.

http://www.datasciencelovers.com/python-for-data-science/pandas-data-input-and-output/

Columns

Survived Survival (0 = No; 1 = Yes)

Pclass Passenger Class (1 = 1st; 2 = 2nd; 3 = 3rd)

Name Name

Sex

Age

SibSp Number of Siblings/Spouses Aboard

Parch Number of Parents/Children Aboard

Ticket Ticket Number

Fare Fare (British pound)

Cabin Cabin number

Embarked Port of Embarkation (C = Cherbourg; Q = Queenstown; S = Southampton)

DataFrame Queries

>>> titanic["Name"]

0 Braund, Mr. Owen Harris

1 Cumings, Mrs. John Bradley (Florence Briggs Th...

2 Heikkinen, Miss. Laina

3 Futrelle, Mrs. Jacques Heath (Lily May Peel)

4 Allen, Mr. William Henry

...

886 Montvila, Rev. Juozas

887 Graham, Miss. Margaret Edith

888 Johnston, Miss. Catherine Helen "Carrie"

889 Behr, Mr. Karl Howell

890 Dooley, Mr. Patrick

Name: Name, Length: 891, dtype: object

DataFrame Queries

>>> titanic[["Age","Sex"]]

Age Sex

0 22.0 male

1 38.0 female

2 26.0 female

3 35.0 female

4 35.0 male

..

886 27.0 male

887 19.0 female

888 NaN female

889 26.0 male

890 32.0 male

[891 rows x 2 columns]

Dataframe Conditional Queries

>>> titanic[titanic["Age"]>30]

PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked

1 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 0 PC 17599 71.2833 C85 C

3 4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 0 113803 53.1000 C123 S

4 5 0 3 Allen, Mr. William Henry male 35.0 0 0 373450 8.0500 NaN S

6 7 0 1 McCarthy, Mr. Timothy J male 54.0 0 0 17463 51.8625 E46 S

11 12 1 1 Bonnell, Miss. Elizabeth female 58.0 0 0 113783 26.5500 C103 S

..

873 874 0 3 Vander Cruyssen, Mr. Victor male 47.0 0 0 345765 9.0000 NaN S

879 880 1 1 Potter, Mrs. Thomas Jr (Lily Alexenia Wilson) female 56.0 0 1 11767 83.1583 C50 C

881 882 0 3 Markun, Mr. Johann male 33.0 0 0 349257 7.8958 NaN S

885 886 0 3 Rice, Mrs. William (Margaret Norton) female 39.0 0 5 382652 29.1250 NaN Q

890 891 0 3 Dooley, Mr. Patrick male 32.0 0 0 370376 7.7500 NaN Q

[305 rows x 12 columns]

DataFrame Sorting

>>> titanic.sort_values(by="Age")[["Name","Age"]]

Name Age

803 Thomas, Master. Assad Alexander 0.42

755 Hamalainen, Master. Viljo 0.67

644 Baclini, Miss. Eugenie 0.75

469 Baclini, Miss. Helene Barbara 0.75

78 Caldwell, Master. Alden Gates 0.83

..

859 Razi, Mr. Raihed NaN

863 Sage, Miss. Dorothy Edith "Dolly" NaN

868 van Melkebeke, Mr. Philemon NaN

878 Laleff, Mr. Kristo NaN

888 Johnston, Miss. Catherine Helen "Carrie" NaN

[891 rows x 2 columns]

>>> titanic.sort_values(by="Age")[["Name","Age"]][0:10]

Name Age

803 Thomas, Master. Assad Alexander 0.42

755 Hamalainen, Master. Viljo 0.67

644 Baclini, Miss. Eugenie 0.75

469 Baclini, Miss. Helene Barbara 0.75

78 Caldwell, Master. Alden Gates 0.83

831 Richards, Master. George Sibley 0.83

305 Allison, Master. Hudson Trevor 0.92

827 Mallet, Master. Andre 1.00

381 Nakid, Miss. Maria ("Mary") 1.00

164 Panula, Master. Eino Viljami 1.00

Plotting

import matplotlib.pyplot as plt

titanic["Age"].hist(bins=30)

plt.show()

Note that this probably won’t work in

your shell here, but it’s trivial to set up on

your laptop.

Pandas Assignment

Can you find a significant factor in the data which could be used to predict

survival rates?

I will suggest you focus on one variable at a time.

Note that there are many possible answers. Going from a simple hypothesis

("Maybe people from Cherbourg are unlucky?") to a more complex formula

incorporating multiple variables - with the goal of a more accurate prediction

- is the path of data analysis. This is our first step on that journey

SQL Assignment

Times are tough. Corporate has tasked you with identifying

the three least popular genres of music ranked by number

of tracks purchased.

Submit the answer along with the queries used to arrive at

your solution. It’s fine to use interstitial views but be sure to

include the queries that created those as well (you can use

the command “.schema TopCustomers” to see it if you’ve

already scrolled past it).

