

Leading the Way to Effective Cyberinfrastructure Use

Your Pathway: Data Science with SQL and Pandas

Bryon Gill and John Urbanic – Pittsburgh Supercomputing Center

Roadmap

WPSC I NCSA 🚳

Part 1: SQL

Database Language Foundations

Relational Databases

An RDBMS (Relational DataBase Management System) organizes data into tables of columns (attributes) and rows (records).

This concept has been developed and refined since 1970, and is a mature concept at this point.

Most RDMBSs use SQL as their query language. This has become an ISO standard (with many deviations).

SQL Databases?

There are a variety of SQL server and client programs. each have their own deviations from the ISO standard, as well as significant performance differences.

Most databases operate with a client/server model but we will be using the lightweight database sqlite3 for this class so that each user can have their own instance.

Setting Up

We will each make an initial copy of the example database we will be using to our home directories.

[bgill@dt-login03 ~]\$ cp /projects/becs/bgill/sql/sample.db .

[bgill@dt-login03 ~]\$ sqlite3 sample.db

SQLite version 3.41.2 2023-03-22 11:56:21

Enter ".help" for usage hints.

sqlite>

(example database adapted from sqlitetutorial.net)

Database Structure

The structure, or "schema" is the most important characteristic of any database. We can get a top level view by listing the tables:

sqlite> .tables			
albums	employees	invoices	playlists
artists	genres	media_types	tracks
customers	invoice_items	playlist_track	

There's much more to say about the contents of the tables

and relationships between them.

SQL Entity Relationship Diagram

An Entity Relationship Diagram can be a helpful way to visualize table relationships in a database.

Our sample database represents a digital music company that sells a variety of tracks to consumers worldwide.

SELECT

The SELECT command is our most useful command in

manipulating data, and we will look at some of the common

variations.

. .

sqlite> SELECT * FROM customers WHERE CustomerId = 1;

1|Luís|Gonçalves|Embraer - Empresa Brasileira de Aeronáutica S.A.|Av. Brigadeiro Faria Lima, 2170|São José dos Campos|SP|Brazil|12227-000|+55 (12) 3923-5555|+55 (12) 3923-5566|luisg@embraer.com.br|3

sqlite> SELECT * FROM invoices WHERE CustomerId = 1;

98|1|2010-03-11 00:00:00|Av. Brigadeiro Faria Lima, 2170|São José dos Campos|SP|Brazil|12227-000|3.98

121|1|2010-06-13 00:00:00|Av. Brigadeiro Faria Lima, 2170|São José dos Campos|SP|Brazil|12227-000|3.96

Note that "*" is our wildcard.

Output Mode

We can include headers and cell frames by changing the output mode:

sqlite> .mode table
<pre>sqlite> SELECT CustomerId, FirstName, LastName FROM customers WHERE CustomerId = 1;</pre>
++
CustomerId FirstName LastName
++
1 Luís Gonçalves
++

https://www.sqlite.org/docs.html

More Complex SELECT Statements

We can alias a column with *AS*. This alias only exists for the duration of the query. We are introducing some powerful qualifiers here. GROUP BY will group rows that have the same value into summary rows, and is usually used with aggregate functions (*COUNT(), MAX(), MIN(), SUM(), AVG()*) to group the results.

ORDER (in this case in descending order) and *LIMIT* are also very useful and common. You can choose the order DESC or ASC.

sqlite> SE	LECT CustomerId	l, COUNT(*) AS NumInvoices
> FR	OM invoices	
> GR	OUP BY Customer	Id
> OR	DER BY NumInvoi	ces DESC
> LI	MIT 5;	
+	+	+
Customer	Id NumInvoice	s
+	+	+
1	7	I
2	7	I
3	7	I
4	7	I
5	7	I
+	+	+

WPSC I NCSA 💰

Select Subqueries

We can treat that subquery as a table itself. Here we apply the count(*) to it. Next we will connect these together.

sqlite> SELECT CustomerId, COUNT(*) AS NumOrders FROM Invoices GROUP BY CustomerId HAVING	i
NumOrders > 6;	
++++	
CustomerId NumOrders	
++	
17 7	
38 7	
40 7	
++	

SQL requires that derived tables have a name (alias). So we

must name our subquery.

Select Subqueries

This output might be more useful with some customer information mixed in, but that data isn't found in the invoices table. We are interested in customers data:

sqlite> pragma table_info(customers);

+		+		+-		+-		+	+-		+
	cid		name		type		notnull	dflt_value		pk	I
+		-+		+-		-+-		+	-+-		+
I	0	(CustomerId		INTEGER		1			1	
I	1		FirstName		NVARCHAR(40)		1	1		0	
I	2		_astName		NVARCHAR(20)		1	1	I	0	
I	3	(Company		NVARCHAR(80)		0	1	I	0	
	4	4	Address		NVARCHAR(70)		0	L		0	

... (This command is not SQL standard and differs by db.)

Combining Table Data

Inner Join

This is the default "join" and most common. It collects items with matching keys from both tables. The keys are specified

with an "ON" clause.

SELECT left_table.B, right_table.F
FROM left_table
JOIN right_table
ON left_table.A = right_table.E;

Left Table

Α	в	с	D
КО	B0	C0	D0
K1	B1	C1	D1
К2	B2	C2	D2
КЗ	В3	C3	D3

Right Table

E	F	G	н
K1	F0	G0	H0
K1	F1	G1	H1
К0	F2	G2	H2
K6	F3	G3	H3

Result

в	F
B0	F2
B1	F0
B1	F1

Inner Join Example

The table name is usually inferred from the FROM clause but in a JOIN columns must be disambiguated as

table.column:

SELECT Customers.*, TopOrders.NumOrders FROM
(SELECT CustomerId, COUNT(*) AS NumOrders
 FROM Invoices
 GROUP BY CustomerId
 HAVING NumOrders > 6) AS TopOrders
JOIN Customers
 ON TopOrders.CustomerId = Customers.CustomerId;

Inner Join (abbreviated) output

+	+	-++
CustomerId	LastName	NumOrders
+	+	-++
2	Köhler	7
4	Hansen	6
9	Nielsen	6
11	Rocha	6
13	Ramos	6
15	Peterson	6
17	Smith	7
19	Goyer	6
21	Chase	6
23	Gordon	6

WPSC I NCSA 🚳

Inner Join Example

Let's break this down one subquery at a time:

SELECT Customers.*, TopOrders.NumOrders FROM
(SELECT CustomerId, COUNT(*) AS NumOrders
 FROM Invoices
 GROUP BY CustomerId
 HAVING NumOrders > 6) AS TopOrders
JOIN Customers ON TopOrders.CustomerId = Customers.CustomerId;

Views

As queries and subqueries get more complex it becomes

cumbersome and inefficient to keep recreating them. A

VIEW lets us capture them as temporary tables:

CREATE VIEW TopCustomers AS SELECT Customers.* FROM (SELECT CustomerId, COUNT(*) AS NumOrders FROM Invoices GROUP BY CustomerId HAVING NumOrders > 6) AS TopOrders JOIN Customers ON TopOrders.CustomerId = Customers.CustomerId;

.tables

TopCustomers	customers	invoice_items	playlist_track
albums	employees	invoices	playlists
artists	genres	media_types	tracks

A Useful View

Let's create a view containing all the Jazz tracks. Note that we can use % as a wildcard in a single quoted string:

CREATE VIEW JazzTracks AS SELECT * FROM tracks INNER JOIN genres ON tracks.GenreId = genres.GenreId WHERE genres.Name LIKE 'Jaz%';

A Promotion

The marketing department has requested a list of all jazz track invoices. We use DISTINCT to ensure that we only get one InvoiceId even if multiple tracks were purchased.

CREATE VIEW JazzOrders AS SELECT DISTINCT InvoiceId FROM invoice_items INNER JOIN jazztracks ON invoice_items.TrackId = jazztracks.TrackId;

A Promotion (Cont'd)

The marketing department now wants a list of customers who ever purchased a Jazz track.

CREATE VIEW JazzCustomers AS SELECT DISTINCT Invoices.CustomerId FROM Invoices INNER JOIN JazzOrders ON Invoices.InvoiceId = JazzOrders.InvoiceId;

A Promotion (Cont'd)

The marketing department has one more request, they'd like to offer their promotion only to their top customers, but they'll send a different message if they have ordered a jazz track.

SELECT *
FROM TopCustomers
LEFT JOIN JazzCustomers
ON TopCustomers.CustomerId = JazzCustomers.CustomerId;

Left Joins

LEFT JOIN will include all elements from the left table and matching ones from the right table. Unmatched values will be shown as NULL.

SELECT left_table.B, right_table.F
FROM left_table
LEFT JOIN right_table
ON left_table.A = right_table.E;

WPSC I NCSA

Left Table						
A	в	С	D			
К0	B0	C0	D0			
K1	B1	C1	D1			
К2	B2	C2	D2			
КЗ	B3	C3	D3			

Е	F		
K1	F0	G0	H0
K1	F1	G1	H1
КО	F2	G2	H2
К6	F3	G3	H3

в	F
B0	F2
B1	F0
B1	F1
B2	NUL L
В3	NUL L

Right Joins

As you might expect, RIGHT JOIN includes all elements from the right table and matching ones from the left. Unmatched

values will be shown as NULL.

SELECT left_table.B, right_table.F FROM left_table

RIGHT JOIN right_table

ON left_table.A = right_table.E;

		-		
		12	n	
LCI	L.	ıa	D	

А	в	с	D
КО	В0	C0	D0
K1	B1	C1	D1
К2	B2	C2	D2
КЗ	B3	C3	D3

Right Table					
	F				
K1	F0	G0	H0		
K1	F1	G1	H1		
К0	F2	G2	H2		
K6	F3	G3	H3		

Result				
в	F			
B1	F0			
B1	F1			
B0	F2			
NULL	F3			

Joins Are Loops

You notice how we loop through the keys as we manually create our joins. This is what our database must do as well. Nested joins turn into nested loops. Here is a typical query from a classic film rental database (don't try to paste it today).

SELECT CONCAT(customer.last_name, ', ', customer.first_name)
AS customer, address.phone, film.title FROM rental
INNER JOIN customer ON rental.customer_id = customer.customer_id
INNER JOIN address ON customer.address_id = address.address_id
INNER JOIN inventory ON rental.inventory_id = inventory inventory id
INNER JOIN film ON inventory.film_id = film.film_id
WHERE rental.return_date IS NULL
AND rental_date + INTERVAL film.rental_duration DAY < (
LIMIT 5;</pre>

Keys

If we are trying to quickly equate things from two tables, you might imagine that the organization of those tables might have a major effect on performance. Indeed, the correct selection of keys for each table is the most important consideration.

There are a variety of key types. Two are very important.

Primary Key

A column (or possibly combination of columns) with unique values.

Foreign Key

A column whose values point to a Primary Key in a different table.

There are other terms for keys that are less important to know. *Candidate Keys* are any keys that could be a Primary Key. A *Unique Key* could have a single NULL value (which is not allowed for a Primary Key). A *Composite Key* is a key created from multiple columns, etc.

Keys (Cont'd)

Primary Keys are very important as the database can use that as an index to allow us to quickly find a record. This is usually via a good *hashing algorithm*.

When we are doing a join, this allows us to quickly find any two items we are wishing to compare.

This is why we really prefer our joins to use the assigned table keys if possible.

Keys (Cont'd)

Keys can also aid greatly in ensuring data integrity.

If it is the case that every record should be unique (order #s, for example), then using that as the primary key will enforce that condition.

A necessary relationship between data in different tables can be enforced with foreign keys. If an Order table uses a customer ID as a foreign key, they will ensure that a matching customer exists in a Customer data table.

A common default Primary Key is simply an integer that might be autoincremented as each new record is added. (In *Pandas* we always have a row number.)

Hashing and Indexing

You won't get very far in data science without hearing about how hashing is used to organize important data. It is by far the most common way to index any substantial RDBMS table.

In this context, a hashing algorithm's job is to take a key and use it to generate an index into the data storage.

From the mathematical perspective, it takes some string - of possibly arbitrary length - and generates a fixed size number. In general this means that it can't guarantee the uniqueness of that number, but you hope it does a good job of distributing the indices around. And, you hope it is fast.

Create

So far we've just analyzed data, let's see how to create some things. Creating a new database is simple in sqlite3 from the command line:

sqlite3 newdatabase.db

Creating a table:

CREATE TABLE vendors (vendorId INTEGER PRIMARY KEY, vendorName varchar(100) DEFAULT NULL, addressLine1 varchar(100) DEFAULT NULL, addressLine2 varchar(100) DEFAULT NULL, city varchar(50) DEFAULT NULL, state varchar(50) DEFAULT NULL, postalCode varchar(15) DEFAULT NULL, country varchar(50) DEFAULT NULL);

Altering Existing Tables

ALTER TABLE vendors ADD COLUMN comment VARCHAR(200);

sqlite> pragma table_info(vendors);

+ ci	d name	+	notnull	dflt_value	-++ pk
+	+	+	-+	-+	-++
0	vendorId	INTEGER	0		1
1	vendorName	varchar(100)	0	NULL	0
2	addressLine1	varchar(100)	0	NULL	0
3	addressLine2	varchar(100)	0	NULL	0
4	city	varchar(50)	0	NULL	0
5	state	varchar(50)	0	NULL	0
6	postalCode	varchar(15)	0	NULL	0
7	country	varchar(50)	0	NULL	0
8	comment	VARCHAR(200)	0		0
+	+	+	-+	-+	-++

WPSC I NCSA 🚳

Inserting Data

INSERT INTO Vendors (vendorName,addressLine1,addressLine2,city,state,postalCode,country,comment)
VALUES ('SoundBlasters','123 Imaginary Place',NULL,'Sampletown','PA','15217','USA',NULL);

SELECT * FR	OM vendors;										
+	-+	+		-+	+			+	-+	-+	+
vendorId	vendorName		addressLine1	addressLine2	city		state	postalCode	country	comment	:
+	+	+		+	-+	-+-			+	+	+
1	SoundBlasters	123	3 Imaginary Place	I	Sampletown		PA	15217	USA		
+	+	+		+	+	-+-			+	+	-+-

Updating Data

UPDATE Vendors S	ET vendorname	e = 'Soundclashers' W	HERE vendorId =	1;					
SELECT * FROM ve	ndors;								
+	+		-+	-+	-+	+	+	+	-+
vendorId ve	ndorName	addressLine1	addressLine2	city	state	postalCode	country	comment	
1 Sou	ndclashers	123 Imaginary Place	+	+	+	15217	USA		+
+			T				+		т

Deleting Data

sqlite> DELETE FROM vendors WHERE city = 'Sampletown'; sqlite> SELECT * FROM vendors;

sqlite> DROP TABLE vendors; sqlite> SELECT * FROM vendors; Parse error: no such table: vendors

sqlite> DROP VIEW TopCustomers;

SQL Injection Attacks

Consider a typical website, which asks the user to enter their username. It then constructs a string to use in querying the database for that user's info: var statement = "SELECT * FROM users WHERE name = '" + userName + "'"; This seems reasonable. However, what if a nefarious user enters this as their username: a';DROP TABLE users; SELECT * FROM userinfo WHERE 't' = 't Then the SQL command that gets constructed is SELECT * FROM users WHERE name = 'a';DROP TABLE users; SELECT * FROM userinfo WHERE 't' = 't'; And we have not only exposed all user data, but also deleted our users

table.

Good practices can help to mitigate this and sanitize the inputs. Be aware.

ACID

ACID is a set of properties of database transactions intended to guarantee data validity despite errors, power failures, and other mishaps. In the context of databases, a sequence of database operations that satisfies the ACID properties (which can be perceived as a single logical operation on the data) is called a transaction. For example, a transfer of funds from one bank account to another, even involving multiple changes such as debiting one account and crediting another, is a single transaction.

Acid (Cont'd)

Atomicity

An atomic system must guarantee atomicity in each and every situation, including power failures, errors, and crashes. A guarantee of atomicity prevents updates to the database from occurring only partially, which can cause greater problems than rejecting the whole series outright.

Consistency

Consistency ensures that a transaction can only bring the database from one consistent state to another, preserving database invariants: any data written to the database must be valid according to all defined rules, including constraints, cascades, triggers, and any combination thereof. This prevents database corruption by an illegal transaction.

ACID (Cont'd)

Isolation

Isolation ensures that concurrent execution of transactions leaves the database in the same state that would have been obtained if the transactions were executed sequentially.

Durability

Durability guarantees that once a transaction has been committed, it will remain committed even in the case of a system failure (e.g., power outage or crash). This usually means that completed transactions (or their effects) are recorded in nonvolatile memory.

Triggers

Triggers are stored actions that take effect under certain conditions.

CREATE TRIGGER upd_check BEFORE UPDATE ON account FOR EACH ROW BEGIN IF NEW.amount < 0 THEN SET NEW.amount = 0; ELSEIF NEW.amount > 100 THEN SET NEW.amount = 100; END IF; END;

Procedures

Procedures are simply stored collections of SQL commands.

We can create a trivial one like so:

```
CREATE PROCEDURE SelectAllCustomers
AS
SELECT * FROM Customers
GO;
EXEC SelectAllCustomers;
```

In real usage significant business logic is often stored in procedures with variables, conditionals, etc.

Part 2: Pandas

A Flexible Data Analysis Tool

Pandas

Pandas has become the standard Python way to input, manipulate, and write basic data.

It integrates well with other tools (e.g. visualization with Matplotlib).

It has limitations which is why SQL and big data techniques are still essential, but for quick and dirty/limited applications it's very efficient.

It's easy to add to an existing python environment.

Pandas setup

for pandas we will load a module and copy a file

```
ssh login.delta.ncsa.illinois.edu
module load anaconda3_cpu
# "." refers to your present working directory
cp /projects/becs/bgill/pandas/titanic.csv .
python
>>> import pandas as pd
>>>
```

WPSC 🚺 NCSA 🚳

A Modest (but Titanic!) Dataset

We will begin our exploration of Pandas using a well known dataset drawn from the infamous Titanic disaster. It has a variety of data on each of 891 passengers.

Amongst the typical demographic data is included their survival. It enables an interesting, if somewhat morbid, analysis to determine the foremost factors in survival.

Women and children first? Or, save the rich?

Dataframes

Dataframes are tables represented as Python objects.

```
df = pd.DataFrame(
    {"a" : [4,5,6],
    "b" : [7,8,9],
    "c" : [10,11,12]}
)
```


A Few Simple Tools

Get the number of rows and columns: df.shape

Summarize data:

sum(), min(), max(), mean(), median(), etc.

Drop rows where any column has missing/null data: df.dropna()

There's a lot of nice cheatsheets out there, here's a good one: https://pandas.pydata.org/Pandas_Cheat_Sheet.pdf

Merges (joins)

pd.merge(adf, bdf, how='left', on='column_name')

"how" can be left, right, inner or outer much like sql

Pandas Examples

>>> import pandas as pd

>>> titanic = pd.read_csv("titanic.csv")

>>> titanic

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/02. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S
886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.0000	NaN	S
887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.0000	в42	S
888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.4500	NaN	S
889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.0000	C148	С
890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.7500	NaN	Q

[891 rows x 12 columns]

Input Formats

csv and JSON are very common, but Pandas can handle a lot of types of input.

Format Type	Data Description	Reader	Writer	
text	CSV	read_csv	to_csv	
text	JSON	read_json	to_json	
text	HTML	read_html	to_html	
text	Local clipboard	read_clipboard	to_clipboard	
binary	MS Excel	read_excel	to_excel	
binary	OpenDocument	read_excel		
binary	HDF5 Format	read_hdf	to_hdf	
binary	Feather Format	read_feather	to_feather	
binary	Parquet Format	read_parquet	to_parquet	
binary	Msgpack	read_msgpack	to_msgpack	
binary	Stata	read_stata	to_stata	
binary	SAS	read_sas		
binary	Python Pickle Format	read_pickle	to_pickle	
SQL	SQL	read_sql	to_sql	
SQL	Google Big Query	read_gbq	to_gbq	

http://www.datasciencelovers.com/python-for-data-science/pandas-data-input-and-output/

Columns

Survived	Survival (0 = No; 1 = Yes)
Pclass	Passenger Class $(1 = 1st; 2 = 2nd; 3 = 3rd)$
Name	Name
Sex	
Age	
SibSp	Number of Siblings/Spouses Aboard
Parch	Number of Parents/Children Aboard
Ticket	Ticket Number
Fare	Fare (British pound)
Cabin	Cabin number
Embarked	Port of Embarkation (C = Cherbourg; Q = Queenstown; S = Southampton)

DataFrame Queries

>>> titanic["Name"]

0	Braund, Mr. Owen Harris
1	Cumings, Mrs. John Bradley (Florence Briggs Th
2	Heikkinen, Miss. Laina
3	Futrelle, Mrs. Jacques Heath (Lily May Peel)
4	Allen, Mr. William Henry
886	Montvila, Rev. Juozas
887	Graham, Miss. Margaret Edith
888	Johnston, Miss. Catherine Helen "Carrie"
889	Behr, Mr. Karl Howell
890	Dooley, Mr. Patrick
Namo	Name Longth, 901 dtype, object

DataFrame Queries

>>> titanic[["Age","Sex"]]

	Sex	Age				
	male	22.0	0			
	female	38.0	1			
	female	26.0	2			
	female	35.0	3			
	male	35.0	4			
	male	27.0	886			
	female	19.0	887			
	female	NaN	888			
	male	26.0	889			
	male	32.0	890			
umns]	x 2 colu	rows	[891			

Dataframe Conditional Queries

>>> titanic[titanic["Age"]>30]

Embarked	Cabin	Fare	Ticket	Parch	sibsp	Age	Sex	Name	Pclass	Survived	PassengerId	
С	C85	71.2833	PC 17599	0	1	38.0	female	Cumings, Mrs. John Bradley (Florence Briggs Th	1	1	2	1
S	C123	53.1000	113803	0	1	35.0	female	Futrelle, Mrs. Jacques Heath (Lily May Peel)	1	1	4	3
S	NaN	8.0500	373450	0	0	35.0	male	Allen, Mr. William Henry	3	0	5	4
S	E46	51.8625	17463	0	0	54.0	male	McCarthy, Mr. Timothy J	1	0	7	6
S	C103	26.5500	113783	0	0	58.0	female	Bonnell, Miss. Elizabeth	1	1	12	11
S	NaN	9.0000	345765	0	0	47.0	male	Vander Cruyssen, Mr. Victor	3	0	874	873
С	C50	83.1583	11767	1	0	56.0	female	Potter, Mrs. Thomas Jr (Lily Alexenia Wilson)	1	1	880	879
S	NaN	7.8958	349257	0	0	33.0	male	Markun, Mr. Johann	3	0	882	881
Q	NaN	29.1250	382652	5	0	39.0	female	Rice, Mrs. William (Margaret Norton)	3	0	886	885
Q	NaN	7.7500	370376	0	0	32.0	male	Dooley, Mr. Patrick	3	0	891	890

[305 rows x 12 columns]

DataFrame Sorting

>>>	titanic.sort_values(by="Age")[["Name","Age	"]]	>>>	<pre>>>> titanic.sort_values(by="Age")[["Name","Age"]][0:10]</pre>			
	Name	Age		Name	Age		
803	Thomas, Master. Assad Alexander	0.42	803	Thomas, Master. Assad Alexander	0.42		
755	Hamalainen, Master. Viljo	0.67	755	Hamalainen, Master. Viljo	0.67		
644	Baclini, Miss. Eugenie	0.75	644	Baclini, Miss. Eugenie	0.75		
469	Baclini, Miss. Helene Barbara	0.75	469	Baclini, Miss. Helene Barbara	0.75		
78	Caldwell, Master. Alden Gates	0.83	78	Caldwell, Master. Alden Gates	0.83		
			831	Richards, Master. George Sibley	0.83		
859	Razi, Mr. Raihed	NaN	305	Allison, Master. Hudson Trevor	0.92		
863	Sage, Miss. Dorothy Edith "Dolly"	NaN	827	Mallet, Master. Andre	1.00		
868	van Melkebeke, Mr. Philemon	NaN	381	Nakid, Miss. Maria ("Mary")	1.00		
878	Laleff, Mr. Kristo	NaN	164	Panula, Master. Eino Viljami	1.00		
888	Johnston, Miss. Catherine Helen "Carrie"	NaN					
[891	rows x 2 columns]						

Plotting

import matplotlib.pyplot as plt titanic["Age"].hist(bins=30) plt.show()

Note that this probably won't work in your shell here, but it's trivial to set up on your laptop.

* < > + Q ⊉ 🗠 🖹

Pandas Assignment

Can you find a significant factor in the data which could be used to predict survival rates?

I will suggest you focus on one variable at a time.

Note that there are many possible answers. Going from a simple hypothesis ("Maybe people from Cherbourg are unlucky?") to a more complex formula incorporating multiple variables - with the goal of a more accurate prediction - is the path of data analysis. This is our first step on that journey

SQL Assignment

Times are tough. Corporate has tasked you with identifying the three least popular genres of music ranked by number of tracks purchased.

Submit the answer along with the queries used to arrive at your solution. It's fine to use interstitial views but be sure to include the queries that created those as well (you can use the command ".schema TopCustomers" to see it if you've already scrolled past it).

