A d Carnegie o niversity o:
vPSC 1L s A B

Cl
Pathways

Leading the Way to Effective Cyberinfrastructure Use

Cl Awareness: Introduction to Parallel Computing

Soham Pal - Research Computing & Data Facilitator, NCSA

Overview

« What s parallel computing?
« Why is it needed?

e« Howtodoit?

WPSC I/NCSA

Serial computing

| Order matters |

Chop meats and vegetables Put ingredients in wok

Chop meat
W If you are the only cook, you have
. to follow the steps in a sequential
Chop onions order. You can start one step only

after completing the previous step.

|

Chop potatoes

WPSC I/ NCSA &

Parallel computing - version 1

Chop meats and vegetables Put ingredients in wok

What if you are cooking as a team?

Parts of the sequential workflow, for
which order was not important, can now
be done simultaneously, i.e. in parallel.
You can cook faster.

Chop meat
Chop onions
Chop potatoes

WPSC I NCSA

5 TN
©
2

Parallel computing - version 2

Put ingredients in wok 1 for

dish 1 Cook dish 1

What if you have multiple woks and burners?

Ch t d tabl While you still have to maintain the sequential
Ob Medts and vegetanles workflow you can now cook multiple dishes

simultaneously, i.e. in parallel. You can cook
more food.

Put ingrediepts in wok 2 for Cook dish 2
dish 2

WPSC I NCSA

Why parallel computing?

Parallel computing can:
50 Years of Microprocessor Trend Data

« make your workflow faster , : : =
+ allow you to solve bigger problems 10 | | # 2« Transistors
y EEE P w0k R Wiww_r7*_14:::?”””_(thousands)
is i ? | VY v
But is it necessary? ol | s, 224 ; I I
‘ s = L Performance
. . . . 104 A?A‘, "“‘} e | (SpecINT x 10)
The density of transistors in chips doubles . 3 :“:o‘ﬁ “*.,“_‘ ...,H!lFrequenCy (MHz)
10° | ‘ AA 4y 'ﬂ
every two years.” — Moore's law | 4 ar +| Typical Power
y y 102 s i..;;'- vy_;,v‘vw .,-z’w '§ 3 (Watts)
1 i . ,v'.' ¥ i 2o i Y¥INumber of
10° LA mm v'v'v v T r :‘t ¢ **|Logical Cores
This is due to several reasons: 10° _‘,,:, 3 e B ees mmewmmmmennee gy
] I I I I
1. Increasing investments 1970 1980 1990 2000 2010 2020
2 |mprOVing technology Sggr’;?;:i:;%%;;tt:;t;ﬁey;:gfg:goﬁogzgggj g;deI;E:gZyel\llal-ri'orowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten

Source: https://github.com/karlrupp/microprocessor-trend-data

WPSC X NCSA -

Why parallel computing?

At some stage physics intervenes: o

1. Packing too many transistors in the same gwm
space while maintaining the speed of the E sl e
processors makes things too hot £ 100

2. Shrinking transistors beyond a certain limit E
means quantum effects become important =

Pentium

1970 1980 1990 2000 2010

Source: Micromachines 2021, 12(6), 665

WPSC I | NCSA &

How do computer programs work?

Computer programs basically work by performing some task (“do something”)

with some data.
Two basic types of parallelism are possible:
1. Task parallelism — Perform different tasks on the same data

2. Data parallelism — Perform the same task on different data

The two can be combined.

WPSC I/ NCSA &

Processing units

1. CPUs — Typically contain a few powerful processors

2. GPUs — Typically many not so powerful processors

There are other specialized processing units such as TPUs, but we will not

discuss them here. For the rest of the presentation we will focus on CPUs.

WPSC I/ NCSA &

[}

=<
o
=
+—
(D)
=z

Sl

Distributed Memory

WPSC I NCSA

<
o
=
—
Q
P

Shared Memory

Shared Memory

We will look at this in this presentation.

Control flow

Data Stream

Single Multiple

=
© o Packages like NumPy
g o0 SISD SIMD {——= make good use of this.
9 &7
c

[is is how curren
o= MISD MIMD = supercomputers work.
)
2=

Flynn's classification of control flow

WPSC I/NCSA

Some terminologies

« Thread: Smallest sequence of instructions that the OS scheduler can handle
» Process: Composed of threads, with its own allocated memory

« Core: Can run an independent thread of code

» Processors: Physical chips, typically has multiple cores

« Nodes: Physical unit with network connection

« Processing element: Smallest useful computing device, usually a core

Supercomputers (or computing clusters) are shared resources, and thus need an
efficient way to allocate resources and manage jobs. A job, for the purposes of this

presentation, is a computational task.

Slurm is a resource allocation manager and job scheduler for computing clusters.

There are others like Torque, PBS, though Slurm is probably the most common.

For more information, see https://slurm.schedmd.com/overview.html.

VPSC I /NCSA

Parallelization in research workflows

Parallelization in research workflows usually happens in two ways:

1. Language-level parallelism. This is what is typically demonstrated in parallel
computing training, and we will see this in this presentation.

2. Running the same program but with different inputs parallely. This is usually
not talked about in parallel computing training, but is very common in

research workflows. We will see some examples of this too.

Running the same program with different inputs in a case of embarrassingly
parallel computation. Each run is completely independent of the other and

therefore shows the best scaling, provided resources are available.

VPSC I/NCSA

= =)

Language-level parallelism

Language-level parallelism is usually done with APIs like:

1. OpenMP (Open Multi-Processing) for shared memory parallelism

2. MPI (Message Passing Interface) for distributed memory parallelism
If using GPUs, OpenACC and NCCL (for NVIDIA GPUs) are useful APIs.

Typically C/C++/Fortran provide the best support for OpenMP and MPI. Other
languages like Python and R have some support via third party libraries, though
they might provide other alternatives.

For computational programming with Python it is best to use libraries like NumPy,
instead of standard Python, which implicitly uses OpenMP and SIMD for many

situations.

VPSC I/NCSA

= =)

Same program, different input parallelism

This sort of parallelism can be done with tools like:
1. Slurm job arrays

2. GNU Parallel

3. Python's multiprocessing library

We will look at examples of Slurm job arrays and Python’s multiprocessing library. |
recommend checking out GNU Parallel for this kind of workflow. For more

information, see https://www.gnu.org/software/parallel/.

We will use Slurm for today's examples.

VPSC I /NCSA

Demonstrations

VPSC I/NCSA

