
© Pittsburgh Supercomputing Center, All Rights Reserved© Pittsburgh Supercomputing Center, All Rights Reserved

Leading the Way to Effective Cyberinfrastructure Use 

CI Awareness - Session 2: Interactive HPC Jupyter Notebooks

Soham Pal - Research Computing & Data Facilitator, NCSA

Award
2417789

© Pittsburgh Supercomputing Center, All Rights Reserved

Overview

© Pittsburgh Supercomputing Center, All Rights Reserved

1. What is Jupyter?

2. How to access Jupyter?

3. Basic Jupyter concepts - architecture, kernels, cells

4. Jupyter + Python examples

5. Suggestions

© Pittsburgh Supercomputing Center, All Rights Reserved

What is Jupyter?

Is it really that good?

© Pittsburgh Supercomputing Center, All Rights Reserved

© Pittsburgh Supercomputing Center, All Rights Reserved

What really is Jupyter?

Jupyter is an ecosystem of tools and protocols for

interactive coding with computational notebooks.

© Pittsburgh Supercomputing Center, All Rights Reserved

What is a computational notebook?

Just like your usual paper notebooks, but now in

addition to text and math you have

• code

• visualization

• etc

This is more than comments in your programs. With a

notebook you can explain complex information and

ideas along with the necessary code. More information: What is Jupyter?

https://docs.jupyter.org/en/latest/what_is_jupyter.html

© Pittsburgh Supercomputing Center, All Rights Reserved

Brief history of the Computational Notebook

© Pittsburgh Supercomputing Center, All Rights Reserved

1984

Literate programming

Don Knuth introduced the idea

of literate programming - code

snippets embedded in natural

language text.

1988

Mathematica

Mathematica was the first

scientific computation tool to

introduce the notebook interface.

Still going strong in some fields.

1992

Maple

Maple introduced its

“worksheet” interface which

integrated text, code, and

graphics into one document.

2001

IPython

An open source project that

provides an interactive

environment for programming in

Python. Added notebook

interface in 2011.

2005

SageMath

An open source project that

leverages various Python and R

libraries to provide an interactive

computational interface.

2014

Project Jupyter

Started as an evolution of IPython

notebooks to support interactive

programming in Julia, Python, and R.

Now supports hundreds of

languages.

More information: A Brief History of Jupyter Notebooks

https://av.tib.eu/media/49958

© Pittsburgh Supercomputing Center, All Rights Reserved

How does Jupyter work

© Pittsburgh Supercomputing Center, All Rights Reserved

Jupyter
Server

Notebook
file

Browser

Kernel

File on disk containing

code, data, graphics, etc

Does the actual

computation

User interface

Communication hub

• User only directly interacts with the

user interface (UI).

• All communication is mediated

through the Jupyter Server.

• The Jupyter Server, the kernel, and the

notebook file do not need to be on the

local machine - they can be on a

separate server.

• The default kernel is the IPython

kernel. For a list of supported kernels,

see Jupyter kernels.More information: Jupyter architecture

https://github.com/jupyter/jupyter/wiki/Jupyter-kernels
https://docs.jupyter.org/en/stable/projects/architecture/content-architecture.html

© Pittsburgh Supercomputing Center, All Rights Reserved

Jupyter interfaces

Project Jupyter provides multiple user interfaces, most of them browser

based. Additionally, text editors/IDEs like VS Code, Emacs, Spyder, etc

provide alternative UIs.

The two main interfaces are:

1. Jupyter Notebook: This is the original Jupyter interface. Often “Jupyter”

is used to mean this interface.

2. JupyterLab: A modern version of the notebook interface with more

IDE like capabilities.

(The word “notebook” is overloaded in the Jupyter world. Depending on the

context it can mean either the interface, the file on disk, or both.)

© Pittsburgh Supercomputing Center, All Rights Reserved

© Pittsburgh Supercomputing Center, All Rights Reserved

JupyterLab interface

© Pittsburgh Supercomputing Center, All Rights Reserved

© Pittsburgh Supercomputing Center, All Rights Reserved

Jupyter use cases

Jupyter can be useful in the following or similar cases:

• communicating scientific ideas

• iterating ideas or implementations

• collecting, visualizing, analyzing data

• machine learning/deep learning workflows

• developing interactive course materials

Jupyter is not necessarily the best tool for writing large software libraries.

You might want to consider a text editor or IDE instead.

© Pittsburgh Supercomputing Center, All Rights Reserved

© Pittsburgh Supercomputing Center, All Rights Reserved

How to access Jupyter

• Try Jupyter: Just to get a feel of the interface, not for serious

computation.

• Install locally.

• Cloud providers: SageMaker Studio Lab, Lightning Studio, Google

Colab, etc. These are often modified to provide “extra” features.

• HPC offerings: For example, Delta provides JupyterLab through

Open OnDemand.

We will look at SageMaker Studio Lab, and the “vanilla” JupyterLab

provided by Delta.

© Pittsburgh Supercomputing Center, All Rights Reserved

https://jupyter.org/try
https://openondemand.org/

© Pittsburgh Supercomputing Center, All Rights Reserved

SageMaker Studio Lab

SageMaker Studio Lab is an Amazon-hosted JupyterLab with access to

GPUs. It is free to use.

You get:

● 4 hours of CPU/GPU per session

● Total of 8 hours of CPU/GPU in a 24 hour period

Useful for learning, experimentation, prototyping, particularly in the fields

of data science, machine learning, scientific computation.

To access SageMaker Studio Lab, go to https://studiolab.sagemaker.aws/

and request an account. Usually approved pretty fast.

© Pittsburgh Supercomputing Center, All Rights Reserved

https://studiolab.sagemaker.aws/
https://studiolab.sagemaker.aws/

© Pittsburgh Supercomputing Center, All Rights Reserved

Google Colab

Google Colab is a Google-hosted (modified) Jupyter Notebook with

access to GPUs and TPUs. It offers both free and paid tiers.

In the free tier, notebooks can run for 12 hours. The types and usage

limits of GPUs and TPUs depend on usage pattern and availability.

Useful for learning, experimentation, prototyping, particularly in the

fields of data science, machine learning, scientific computation. Can be

potentially used for bigger problems than SageMaker Studio Lab.

All you need to access Google Colab is a Google account.

© Pittsburgh Supercomputing Center, All Rights Reserved

https://colab.research.google.com/

© Pittsburgh Supercomputing Center, All Rights Reserved

Accessing JupyterLab on Delta

© Pittsburgh Supercomputing Center, All Rights Reserved

Delta offers a JupyterLab interface with access to Delta’s CPUs and GPUs. To

use JupyterLab on Delta, you need to have a NCSA identity and a allocation

on Delta.

1. Navigate to openondemand.delta.ncsa.illinois.edu

2. Login through CILogon with your NCSA identity (will need Duo

authentication)

3. Choose Jupyter Lab from the Open OnDemand dashboard

4. Fill in the form (specify account, # CPUs, # GPUs, etc) and select Launch

5. Once your session is ready, select Connect to Jupyter

More information: Delta documentation

http://openondemand.delta.ncsa.illinois.edu
https://docs.ncsa.illinois.edu/systems/delta/en/latest/user_guide/ood/jupyter.html

© Pittsburgh Supercomputing Center, All Rights Reserved

Delta OOD dashboard

© Pittsburgh Supercomputing Center, All Rights Reserved

© Pittsburgh Supercomputing Center, All Rights Reserved

Delta OOD request form

© Pittsburgh Supercomputing Center, All Rights Reserved

© Pittsburgh Supercomputing Center, All Rights Reserved

Launching Jupyter on Delta

© Pittsburgh Supercomputing Center, All Rights Reserved

© Pittsburgh Supercomputing Center, All Rights Reserved

Installing Jupyter kernels

© Pittsburgh Supercomputing Center, All Rights Reserved

We will only look at Python kernels. The process will be mostly similar for R

or Julia. Python has the curse of package and environment managers. To

keep things uniform we will use conda.

1. First create a conda environment: conda create -n <env-name>

2. Activate conda environment: conda activate <env-name>

3. Install packages (including Jupyter): conda install <package> or

pip install <package>

4. Install IPython kernel: ipython kernel install --user --name

<kernel-name>

On Delta, you will have to initialize “conda” first. More information: Delta

documentation

https://docs.ncsa.illinois.edu/systems/delta/en/latest/user_guide/ood/custom-jupyterlab.html#how-to-customize-jupyterlab-with-anaconda-environments
https://docs.ncsa.illinois.edu/systems/delta/en/latest/user_guide/ood/custom-jupyterlab.html#how-to-customize-jupyterlab-with-anaconda-environments

© Pittsburgh Supercomputing Center, All Rights Reserved

Cells in Jupyter notebooks

© Pittsburgh Supercomputing Center, All Rights Reserved

Text cell

Jupyter uses Markdown for narrative

text. You can even add mathematical

content with LaTeX syntax.

Code cells

You can only run code that is in a

code cell.

Content in Jupyter notebooks are organized
in cells.

https://jupyter-notebook.readthedocs.io/en/stable/examples/Notebook/Working%20With%20Markdown%20Cells.html

© Pittsburgh Supercomputing Center, All Rights Reserved

Demonstration

© Pittsburgh Supercomputing Center, All Rights Reserved

© Pittsburgh Supercomputing Center, All Rights Reserved

Things to be
careful about

© Pittsburgh Supercomputing Center, All Rights Reserved

© Pittsburgh Supercomputing Center, All Rights Reserved

Code execution and state management

© Pittsburgh Supercomputing Center, All Rights Reserved

Out-of-order execution

You can run cells in any order, which can lead to a misleading or

inconsistent program state — a variable defined in cell 10 can affect cell 3 if

you run it after.

Hidden state

If you modify data or imports in a cell and rerun other cells, the notebook

might rely on "hidden" state that isn't visible. Restarting the kernel clears

this, but it’s easy to forget.

© Pittsburgh Supercomputing Center, All Rights Reserved

File and environment management

© Pittsburgh Supercomputing Center, All Rights Reserved

Path confusion

Working directories can get messy. If you move a notebook file, relative
paths to data or modules might break.

Dependency drift

Reproducing a notebook months later might fail if package versions
changed.

● This is less likely to happen if you use pre-built modules, like the
“anaconda” modules on Delta.

● You can track environments with tools like “pip freeze” or “conda env
export”, and ensure that your notebook is reproducible.

© Pittsburgh Supercomputing Center, All Rights Reserved

Version control

© Pittsburgh Supercomputing Center, All Rights Reserved

Hard to diff and merge

Notebooks are saved as JSON, making them hard to version-control properly with

version control tools like git.

Collaboration friction

Real-time collaborative editing (like Google Docs) isn’t natively supported on the

Jupyter Notebook interface. JupyterLab provides an extension which can help with

this, but might not work with all JupyterLab providers.

Third-party tools like Jupytext and nbdime can help with alleviating some of these

difficulties. If you are used to working with scripts, then Jupytext is highly

recommended.

https://jupyterlab-realtime-collaboration.readthedocs.io/en/latest/
https://jupytext.readthedocs.io/en/latest/
https://nbdime.readthedocs.io/en/latest/

© Pittsburgh Supercomputing Center, All Rights Reserved

Suggestions/Tips

© Pittsburgh Supercomputing Center, All Rights Reserved

© Pittsburgh Supercomputing Center, All Rights Reserved

Code organization

© Pittsburgh Supercomputing Center, All Rights Reserved

Use Functions & Classes

• Avoid writing long, linear notebooks
• Wrap code into reusable functions (or classes, if needed)
• Create libraries, if needed, and import them into notebooks

Split large projects

• Instead of one large notebook, have multiple smaller ones
• Run separate notebooks like modules using the “%run” magic

%run data_preprocessing.ipynb

© Pittsburgh Supercomputing Center, All Rights Reserved

Profiling and debugging

© Pittsburgh Supercomputing Center, All Rights Reserved

Profile your code to identify bottlenecks

Profiling a single line of code

%timeit sum([i**2 for i in

range(10**6)])

Profiling a code cell

%%timeit

a = np.arange(10**6)

np.sum(a**2)

Use the JupyterLab debugger or the %%debug magic to identify bugs in your
code.

https://jupyterlab.readthedocs.io/en/stable/user/debugger.html

© Pittsburgh Supercomputing Center, All Rights Reserved

Interactive plots

© Pittsburgh Supercomputing Center, All Rights Reserved

Use modern packages (Python)

• Plotly or Bokeh

• Both are highly recommended, but Bokeh is personal favorite

• Both cases you will have to install the necessary libraries

If using Matplotlib

• Use %matplotlib ipympl magic

• Newer versions prefer ipympl

• You will likely have to install ipyml

https://plotly.com/python/ipython-notebook-tutorial/
https://docs.bokeh.org/en/2.4.1/docs/user_guide/jupyter.html
https://matplotlib.org/ipympl/

