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Developing for NVIDIA Superchips
Dr. John Linford, Principal Technical Product Manager

jlinford@nvidia.com
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Who are you and what do you want to learn?
Thanks for the feedback!  It is very much appreciated!

Grad students

Staff

“Grace Hopper architecture”

“How to run simulations/applications on Grace Hopper”

“Best way to develop / build software for Grace”

“Distributed CPU/GPU programming”

“I'm a relatively new NCSA staff member in MarComm, and I am getting more familiar with what we do. I am a sponge.”

“New programming model and APIs”

“Everything about computer science”
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• Grace Hopper and Grace CPU Headlines in HPC

• Introduction to NVIDIA Superchips

• Programming Grace Hopper and Grace CPU Superchip

• Porting and Optimizing for Grace CPU

• Optimizing for GH200 and GB200 Coherent Memory

Agenda
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• Delta AI system specifics: logging in, running jobs, …

• Optimizing for third-party tech: Slingshot, Lusture, …

• CUDA fundamentals (but we will cover new APIs)

Not on the Agenda
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CUDA-X Libraries

NVIDIA AI Accelerated Computing Platform

Data
Processing

CAD, CAE, SDA Computer-aided 
Drug Design

Climate
Simulation

Quantum
Simulation

Robotics & Industrial 
Digital Twins

Enterprise
AI

Accelerated Computing

GPUCPU DPU

Hardware and Software Acceleration Across Every Workload and Vertical



NCSA

NCSA

NCSA

NCSA

NCSA

NCSA

NCSA

NCSA

NCSA

NCSA

NCSA

NCSA

NCSA

NCSA

NCSA

NCSA

NCSA

NCSA

NCSA

NCSA

NVIDIA GH200 Grace Hopper Superchip
Built for the New Era of AI Supercomputing

624GB High-Speed Memory  | 4 PF AI Perf  |  72 Arm Cores

Preliminary measured performance, subject to change 
Energy Efficiency: GH200 144GB vs 2S Xeon 8480+ CPU for MILC running dataset: Apex Medium
QFT Quantum Simulation:   QFT 2S Xeon 8480+ vs GH200 144GB
LLM Inference: Llama.cpp (2S 8480+) and TensorRT-LLM (GH200, H100) | Max Batch Llama2 70B | Throughput includes time to first token + token generation time

50X
Energy Efficiency

200X
LLM Inference

Performance vs H100 80GB

90X
QFT Quantum Simulation

Performance vs 2S x86 CPUs

5TB/s
GPU Memory Bandwidth

HBM3e

900GB/s
CPU to GPU Bandwidth

NVLink-C2C

MILC Efficiency vs 2S x86 CPUs
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Grace Hopper Powers AI Supercomputing Datacenters
Grace Hopper Will Deliver 200 Exaflops of AI performance for Groundbreaking Research

Cumulative AI FLOPS
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Alps
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200 ExaFLOPS
AI Grace Hopper coming online 2024

GENCI

EXA1 HE

Helios

Miyabi

BioHive2

80%
of Hopper are Grace Hopper

2X
More energy efficient

7
new GH200 supercomputers
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CSCS Alps Climate Science Results on Grace Hopper
Up to 4.5X more performance for climate science
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ICON Framework

Coupled Ocean (5km) and Atm (10km)

3X

Performance of ICON-openACC (ICON-22 model production at MeteoSwiss) measured on March 18. 2024 | 64 GPUs in each case | DGX-H100 80 GB SXM4 | GH200 CG4 96 GB per GPU with power cap 560-660W per GPU & 128 GB LPDDR
coupled atmosphere at R2B8 with ocean at R2B9 resolution (10 km atm + 5km ocean). Atm timestep 90 s, ocean step 5 minutes, coupling step 15 minutes. 90 atm levels, 72 ocean levels. 
ICON is a flexible, scalable, high-performance modeling framework for weather, climate and environmental prediction.  It provides actionable information for society and advances our understanding of the Earth's climate system.

Alps GH200 has 4X more, faster CPUs accelerating 
Ocean simulations.  Coupled model waits less and runs faster.
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1X 1X

5X
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11X
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Physics
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x86 CPU x86 + H100 GH200 144GB

NVIDIA GH200 Delivers Breakthrough HPC Performance
Up to 50X more energy efficient
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x86 CPU x86 + H100 GH200 144GB

Relative Performance Relative Energy Efficiency

Single Node GH200 vs 2S Xeon Platinum 8480+ and CPU + Memory + GPU power
Physics: MILC Apex Medium  |  MD: NAMD LaINDY_ColVars   
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NVIDIA Grace CPU Superchip
Breakthrough Performance and Efficiency for the Modern 
Data Center

144 Arm Neoverse V2 Cores   |   234MB L3 Cache 
3.2 TB/s NVIDIA Scalable Coherency Fabric  |   960GB LPDDR5X

Preliminary measured performance, subject to change 
Energy Efficiency: Grace CPU Superchip vs 2S AMD EPYC 9654 and Xeon Platinum 8480+.  Geomean of OpenFOAM (Motorbike Large), WFR (CONUS12km), ICON (QUBICC 
80 km resolution) specfm3d (four_material_simple_model) and Branson (3D_hohlraum_single_node)
Weather: WRF (CONUS12km) Grace CPU Superchip vs 2S AMD EPYC 9654
Graph Analytics: GAP BS Breadth First Search 

1.3X
Weather

Performance vs x86 CPU

2X
Graph Analytics

Performance vs x86 CPUs

2X
Energy Efficiency

Performance vs x86 CPU

1 TB/s
Memory Bandwidth

LPDDR5X

500W
CPU + Memory Power

Grace CPU Superchip TDP

7 Grace systems

Green 500

Performance, Energy 
Efficiency with GH200
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OpenRadioss Crash and Impact
NVIDIA Grace CPU delivers up 3.4X energy efficiency

1.6X
1.5X

1.6X

0X

1X

2X

Taurus 10M FV Model SkyCAB

Application Performance

x86 CPU A x86 CPU B NVIDIA Grace

2.5X

3.2X
3.4X

0X

1X

2X

3X

4X

Taurus 10M FV Model SkyCAB

Energy Efficiency

x86 CPU A x86 CPU B NVIDIA Grace

NVIDIA Grace Superchip vs  x86 flagship 2-socket data center systems (x86 CPU A: Intel Xeon 8470Q and x86 CPU B: AMD EPYC 9654). Open Radioss Taurus 10M Shells + Solids | SkyCAB FEA Model 5.1M Elements | 

FV Model – Classic Finite Volume Test Using 15 Million ALE Solids  | Results subject to change.
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NVIDIA Grace Superchips
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The NVIDIA Grace CPU
The building block of the superchip

High Performance Power Efficient Cores
72 flagship Arm Neoverse V2 Cores with 

SVE2 4x128b SIMD per core
3.5 FP64 TFLOP/s TPeak

Fast On-Chip Fabric
3.2 TB/s of bisection bandwidth connects 

CPU cores, NVLink-C2C, memory, and system IO

High-Bandwidth Low-Power Memory
Up to 480 GB of data center enhanced LPDDR5X Memory that 

delivers up to 500 GB/s of memory bandwidth

Coherent Chip-to-Chip Connections
NVLink-C2C with 900 GB/s bandwidth for coherent 

connection to CPU or GPU

Industry Leading Performance Per Watt
Up to 2X perf / W over today’s leading servers
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NVLINK-C2C
High Speed Chip to Chip Interconnect

• Grace Hopper and Grace Superchips

• Removes the typical cross-socket bottlenecks

• Up to 900GB/s of raw bidirectional BW

• Same BW as GPU to GPU NVLINK on Hopper

• Low power interface - 1.3 pJ/bit

• More than 5x more power efficient than PCIe

• Enables coherency for both Grace and Grace Hopper 

superchips

GRACE
CPU

N
V

LI
N

K
 C

2
C

9
0

0
 G

B
/s

CPU LPDDR5X

CPU LPDDR5X

≤ 480 GB/s 
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One Powerful CPU – Two Superchip Configurations

More than “Grace + Hopper”

GH200 Grace Hopper Superchip
Large Scale AI & HPC

More than “2x Grace”

Grace CPU Superchip
CPU Computing
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NVIDIA Grace Hopper Superchip

• Memory coherency: ease of use

→All threads – GPU and CPU – access system memory:
C++ new, malloc, mmap’ed files, atomics, …

→ Fast automatic page migrations HBM3→LPDDR5X.

→ Threads cache peer memory → Less migrations.

• High-bandwidth: 900 GB/s (same as peer NVLink 4)

→ GPU reads or writes local/peer LPDDR5X at ~peak BW

• Low-latency: GPU→HBM latency

→GPU reads or writes LPDDR5X at ~HBM3 latency

For all threads in the system
memory is memory 

expected behavior + latency + bandwidth.

Soul is the new NVLink-C2C CPU → GPU interconnect

NVLink–C2C
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The Grace Hopper Advantage for Developers

• Existing GPU applications require no changes for Grace Hopper

• No new APIs

• No restructuring

• No new programming model

• Developers who choose to can optimize for the Grace Hopper platform

• Existing GPU applications (fully or partially ported) will run better on Grace Hopper

• Data migration no longer required, may still be a performance optimization

• When data migrations happen, they happen faster due to C2C interconnect

• CPU code will benefit from higher bandwidth memory, high thread performance, coherent accesses

• Existing, stable Unified Memory APIs may be used for performance optimization

• Non-GPU applications will run unmodified and benefit from Grace architecture

• Porting from CPU to GPU is made simpler by Grace Hopper

• Coherent Memory Subsystem

• C2C interconnect

• Programming model choice

• Some new capabilities may be unlocked

• Larger data sets

• Workflows that utilize both halves
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Stone Ridge Technology “Leap Ahead with Hopper”
https://stoneridgetechnology.com/company/blog/leap-ahead-with-hopper-2/

• For ECHELON, rebuilding was a trivial exercise, and the 
resulting binary “just worked” on the Grace Hopper Superchip 
with no further tweaking required

• The performance gains were realized with no modifications to 
the code

• The average performance gain is 3.45x ± 1.07

• The GPU portion of the code is performing so rapidly that 
whatever remains on CPU may be starting to illustrate Amdahl’s 
law behavior

• It is also possible that the improved performance on Grace 
Hopper is due to the increased bandwidth between GPU and 
CPU

• Further optimization for the Grace Hopper system may provide 
more gains

18
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Grace Hopper

NVLINK C2C
900 GB/s

Faster CPU
3.1 FP64 Tflops
500 GB/s BW

Extended GPU Memory
480GB + 96GB
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Grace CPU Superchip

Grace CPU Superchip

Architecture
Arm Neoverse V2

Armv9.0-A, SVE2 4x128b SIMD

Cores / Speed 144 cores, up to 3.2GHz

Memory
LPDDR5x soldered down, 1TB/s BW

Up to 480GB per superchip

Cache

L1: 64KB i$ + 64KB d$ per core

L2: 1MB per core

L3: 234MB per superchip

Power 500W including LPDDR5x memory

Interfaces Up to 8x PCIe Gen5 x16 HS interface

Process Node TSMC 4N

Availability Q3 2023
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Grace is a Compute and Data Movement Architecture
NVIDIA Scalable Coherency Fabric (SCF) and distributed cache design

• Single Die: More efficient use of power

• 3,225.6 GB/s Bi-section BW

• 117MB of L3 cache

• Scalable to 72+ cores per die

• Local caching of remote die memory

• Supports up to 4-die coherency over Coherent NVLINK

• Background data movement via Cache Switch Network

Example possible fabric topology for illustrative purposes
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Grace Simplifies System Design and Workload Optimization
A high-performance server on a single superchip package

2
NUMA Nodes

2
Compute 

Dies

500
Watts 

(CPU + MEM)

900
GB/s worst-
case n to n 

8
NUMA Nodes

24
Compute
Chiplets

900+
Watts 

(CPU + MEM)

500
GB/s worst-
case n to n 

OEM-Provided Motherboard

900 
GB/s 
C2C

LPDDR5X LPDDR5X

500 
GB/s

500 
GB/s

Grace C2 Superchip Package

Voltage 
Regulation

Die 0

n0

Die 1

n1

PCIe Peripherals

64 lanes
PCIe Gen 5

64 lanes
PCIe Gen 5

OEM-Provided Motherboard

x86 Packagex86 Package

Socket 1

n4 n5

n6 n7

Socket 0

n0 n1

n2 n3

500 
GB/s
xGMI

DDR5
12 Channels

DDR5
12 Channels

460 
GB/s

460 
GB/s

Voltage 
Regulation

PCIe Peripherals

64 lanes
PCIe Gen 5

64 lanes
PCIe Gen 5

Conventional 2-Socket Server

Dual-socket x86, NPS=4

Grace Server

Single Grace C2 Superchip
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Grace Hopper Superchip
GPU can access CPU memory at CPU memory speeds

HOPPER
GPU

GRACE
CPU
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NVIDIA Grace Hopper Superchip
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GPU HBM3
96 GB HBM3

4000 GB/s

GPU HBM3

18x NVLINK 4

900 GB/s

Hardware Consistency

4x 

16x PCIe-5

512 GB/s

https://resources.nvidia.com/en-us-grace-cpu/nvidia-grace-hopper
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Programming the NVIDIA Platform



NCSA

NCSA

NCSA

NCSA

NCSA

NCSA

NCSA

NCSA

NCSA

NCSA

NCSA

NCSA

NCSA

NCSA

NCSA

NCSA

NCSA

NCSA

NCSA

NCSA

The Grace Software Ecosystem is Built on Standards
The NVIDIA platform builds on optimized software from the broad Arm software ecosystem

Arm Software Ecosystem (Armv8 SBSA)

The most common computing architecture on the planet

Optimized OSS or Vendor Software (Armv9)

Align with commercial momentum (CSP, Neoverse, etc.)

NVIDIA Software Ecosystem

Advancing the state-of-the-art standards 
(Standard Language Parallelism, CUDA, etc.)

Optimal 
Executable

Optimized 
Executable

Portable 
Executable

Perfo
rm

an
ce

Portable, Optimized, Accelerated Executable
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Programming the NVIDIA Platform
Unmatched Developer Flexibility

Accelerated Standard Languages Incremental Optimization Platform Specialization

Acceleration Libraries

C++ | Fortran | Python

Core Math Communication Data Analytics AI DSLs

GPU CPU InterconnectHardware

Libraries & 
Frameworks

Languages & 
Programming 

Models

PCs Workstations On Prem Cloud At the Edge

Wherever You Run
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NVIDIA HPC SDK
Available at developer.nvidia.com/hpc-sdk, on NGC, via Spack, and in the Cloud

Develop for the NVIDIA Platform: GPU, CPU and Interconnect

Libraries | Accelerated C++ and Fortran | Directives | CUDA

x86_64 | Arm

6 Releases Per Year | Freely Available

Compilers

nvcc nvc

nvc++

nvfortran

Programming
Models

Standard C++ & Fortran

OpenACC & OpenMP

CUDA (C++ & Fortran)

Core 
Libraries

libcu++

Thrust

CUB

Math 
Libraries

cuBLAS cuTENSOR

cuSPARSE cuSOLVER

cuFFT …

Communication 
Libraries

HPC-X

NVSHMEM

NCCL

DEVELOPMENT

Profilers

Nsight

Systems

Compute

Debugger

cuda-gdb

Host

Device

ANALYSIS

SHARP HCOLL

UCX SHMEM

MPI
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HPC SDK Updates
Grace Hopper, unified memory, and more

• HPC SDK 23.11:

• Unified memory support for stdpar, OpenACC, and CUDA 
C++/Fortran

• NVTX improvements for stdpar codes

• Now you can see your stdpar in NSight: improved tools support, 
developer experience, performance optimizations

• C-Fortran Interface

• Better multi-paradigm interoperability for mixed C, C++, and Fortran 
codes

• F2008 MPI bindings for nvfortran

• C++20 Coroutines for CPU

• Future GPU support will enable alternative async models for stdpar

• Support for Grace Hopper in all bundled components

• Compilers, Math Libraries, Networking, Tools.

• HPC-X is the default MPI implementation optimized for NV 
platform

• Grace(/Arm) performance (-tp=neoverse-v2)

• Re-engineered vectorizer, intrinsics, system math library functions

• HPC SDK 24.3:

• Improved compile speed for nvc++

▪Up to 1.15x - 2x faster for some workloads

• Unified memory support for OpenMP Target Offload

• Integrated NVIDIA Performance Library (NVPL) for Grace CPUs

• CUDA Fortran `unified` attribute

• C++ stdpar improvements​

• Fortran stdpar improvements​

• OpenACC improvements​

• CUDA Fortran​

• OpenMP Target Offload​

• Unified Functions​

Unified Memory

• HPC SDK 24.5:

• New NVPL integrations

• Ubuntu 24.04 support

• Improved memory model CLI for HPC Compilers
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Multi GPU Multi Node APIs
Scalable and Grace Hopper Support

DGX H100 8 GPUs Infiniband Between Nodes

DGX H100 SuperPOD

NVLink Net work

Hopper
GPU

Hopper
GPU

Hopper
GPU

Hopper
GPU

Hopper
GPU

Hopper
GPU

Hopper
GPU

Hopper
GPU

Communication Libraries

HPC-X

NCCL

NVSHMEM

MPI

UCX SHMEM SHARP HCOLL

cuSOLVERMp

Factorization,

Symmetric Eigensolver

cuFFTMp

2D and 3D FFTs

Decompositions: Slab 
(1D), Pencil (2D)

X86 + ARM support

256 Grace Hopper Superchips | 1EFLOPS AI Performance | 144TB unified 
fast memory  

| 900 GB/s GPU-to-GPU bandwidth | 128 TB/s bisection bandwidth

DGX GH200

DGX H100 Super POD

cuBLASMp

GEMM, TRSM, SYRK at 
scale for FP16, FP32, FP64 

types
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HPC/AI Software Ecosystem for Grace
Developed by NVIDIA and the Arm OSS community
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OS
All Major Linux Distributions

Arm ServerReady SR
Standard firmware and RAS

Applications and Frameworks
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Libraries
NVPL, ArmPL, FFTW, BLIS, OpenBLAS 

+
Open Source and Commercial

Developer Tools
NVIDIA Nsight + 

Open Source and Commercial

Filesystems
Lustre, BeeGFS, 

Spectrum Scale + 
Open Source and Commercial

Communication Libraries
HPC-X, OpenMPI, MPICH, MVAPICH2 + Open Source and Commercial

Compilers
NVIDIA, GCC, LLVM +

Open Source and Commercial
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AI/ML/DL 
Frameworks

Admin Tools & Packaging
Spack, EasyBuild, Conda, PyPi + Open Source and Commercial

NVIDIA 
Software

Frameworks, 
Libraries, SDKs, 

Toolkits, etc.

HPC CSP Commercial ISV
General 

Compute
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NVIDIA Performance Libraries (NVPL)

• Easily port applications to NVIDIA’s Arm CPUs

• Drop-in replacement for any math library implementing 
standard interfaces (e.g. Netlib, FFTW)

• New interfaces for high-performance libraries

Optimized math libraries for NVIDIA CPUs

TENSOR

LAPACK

RAND

BLAS

SPARSE FFT

SCALAPACKPBLAS

Download Nowwww.developer.nvidia.com/nvpl

Download Now

www.developer.nvidia.com/nvpl

https://developer.nvidia.com/grace/clang


NCSA

NCSA

NCSA

NCSA

NCSA

NCSA

NCSA

NCSA

NCSA

NCSA

NCSA

NCSA

NCSA

NCSA

NCSA

NCSA

NCSA

NCSA

NCSA

NCSA

Clang for NVIDIA Grace
An optimized build of LLVM Clang for the NVIDIA Grace CPU

• Optimized builds of the open-source LLVM Clang compiler for 
rapid access to the latest LLVM improvements for the Grace CPU

• Certified CUDA host compiler

• Optimized compile times: 15% faster vs. mainline LLVM

• Current release based on LLVM 18.1.1

• C compiler driver binary - clang 

• C++ compiler driver binary - clang++

• LLVM Linker - lld

• OpenMP Runtime support - libomp

• www.developer.nvidia.com/grace/clang 

Download Nowwww.developer.nvidia.com/grace/clang

Download Now

www.developer.nvidia.com/grace/clang

Architecture Linux Distributions CUDA Toolkit

AAarch64 • Ubuntu 22.04
• RHEL 9
• CentOS 9
• SLES 15-SP4

12.2U2 and later

https://developer.nvidia.com/grace/clang


NCSA

NCSA

NCSA

NCSA

NCSA

NCSA

NCSA

NCSA

NCSA

NCSA

NCSA

NCSA

NCSA

NCSA

NCSA

NCSA

NCSA

NCSA

NCSA

NCSA

Advancing the State-of-the-Art in Compilers
NVIDIA invests in open source and commercial compilers for NVIDIA Grace

• NVIDIA HPC Compilers 

• Focused on application performance and programmer 
productivity

• High velocity, constant innovation

• Freely available with commercial support option

• LLVM and Clang

• NVIDIA provides builds of Clang for Grace

• https://developer.nvidia.com/grace/clang 

• Drop-in replacement for mainline Clang

• 100% of Clang enhancements for Grace are contributed to 
mainline LLVM

• GCC

• NVIDIA contributes to mainline GCC to support Grace

• Working with all major Linux distros to improve availability of 
Grace optimizations in GCC

https://developer.nvidia.com/grace/clang
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Debuggers and Profilers for GH200 and Grace CPU Superchip 
Full capability on Grace-Hopper

• NVIDIA Nsight has full feature-parity on GH200

• Anything you can do with Nsight tools on x86+Hopper, you can do 
on GH200 with the same workflow

• GH200 has hundreds of performance counters (PMUs)

• Computational intensity, bandwidth, instruction mix…

• Generally, all major debugging and profiling tools for 
x86+Hopper are available on GH200

• Similar capabilities are provided by other tools on Grace
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Porting and Optimizing for NVIDIA 
Grace CPU
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Expectation: It Just Works
Most applications will recompile easily and work “out of the box”

Reuse

•NGC

•Your Linux Distro’s 
Package Manager

Recompile

•NVIDIA Compiler

•GCC

•LLVM

•Spack or EasyBuild

Run

•High core count

•Threads-per-process

•Update tests

Optimize

•NVIDIA Nsight

•Arm Forge

•Perf, PAPI, TAU, Score-P, ...

Quick Launch

▪ NGC containerized applications, frameworks, 
and toolkits

▪ ./configure && make install

Compilation Tips

▪ Most compiler flags are the same:
▪ Use -mcpu=native
▪ Don’t use -march or –mtune
▪ You may need –fsigned-char

▪ Update your unit tests:
▪ Aarch64 floating point is as accurate as 

all other platforms
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Workloads of a National Computing Center
Annual core hours

Already Ported
43%

Trivial Port
49%

Non-trival Port
8%

Job done!
Found on Arm at another HPC center

Straightforward, easy work < 1 day
Recompile and reconfigure runtime parameters

Nonstandard compilers, assembly language, vector 
intrinsics, or dependency
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Use Standards-compliant Multi-platform Compilers
You’re not porting to Arm.  You’re porting away from ifort, xlf, etc.

• Use any portable multi-platform compiler: NVIDIA, GCC, LLVM, etc.

• Use the most recent compiler possible. GCC 12+ is strongly recommended.

• Beware of non-standard build systems
• icc, ifort, xlf, etc. may be hard-coded into the build system

• Be explicit about which compiler to use.  Don’t let the build system make assumptions

• Beware of non-standard default compilers

• Check default compiler commands (cc, fc, gcc, etc.) invoke a recent compiler

• Use `mpicc -show` to verify that MPI compiler wrappers invoke the right compiler

• Log the build, then check the log afterward
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No Cross Compiling!  Just Don’t.
All popular build systems are supported – and performant – on Arm

• GCC and LLVM are excellent Arm compilers

• Auto-vectorizing, auto-parallelizing, tested, in production

• Arm & partners are the majority of GCC contributors

• All major build systems and tools work on Arm

• CMake, Make, GNUMake, EasyBuild, Spack etc.

• Compiler & build system performance is excellent

• Ampere Altra compilation performance is on is on-par with AMD 
EPYC 7742 – you do not need to cross compile

https://www.anandtech.com/show/16315/the-ampere-altra-review/8 

https://www.anandtech.com/show/16315/the-ampere-altra-review/8
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Selecting GNU and LLVM Compiler Flags for Grace
Similar flags have different meanings across compilers and across platforms

• Remove all architecture-specific flags: -mavx, -mavx2, etc.

• Remove -march and -mtune flags

• These flags have a different meaning on aarch64

• See How to Optimize for Arm and not get Eaten by a Bear for details

• Use -Ofast -mcpu=native
• If fast math optimizations are not acceptable, use -O3 –ffp-contract=fast
• For even more accuracy, use -ffp-contract=off to disable floating point operation contraction (e.g. FMA)

• Can also use -mcpu=neoverse-v2, but -mcpu=native will “port forward”

• Use –flto to enable link-time optimization 

• The benefits of link-time optimization vary from code to code, but can be significant

• See https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html for details

• Apps may need -fsigned-char or -funsigned-char depending on the developer’s assumption

• gfortran may benefit from -fno-stack-arrays

https://www.stonybrook.edu/commcms/ookami/_pdf/Linford_OokamiUGM_2022.pdf
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
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__atomic_add_fetch(&var, num, __ATOMIC_RELAXED)
GCC 12.3 on Grace

-march=armv9-a
Correct instruction, limited ISA

-mtune=neoverse-v2
Library call instead of atomic instruction, limited ISA

-mcpu=neoverse-v2 (or -mcpu=native)
Correct instruction, correct ISA

Atomic Add

Missing ISA Extensions: i8mm and bf16 Armv8: No SVE!

libgcc call

Atomic Add

Correct ISA
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Porting Applications that use Math Libraries: MKL, OpenBLAS, etc.
Several library options to choose from

• Prefer Netlib BLAS/LAPACK and FFTW interfaces

• Building on these interfaces enables compatibility

• NVPL

• gcc -DUSE_CBLAS -ffast-math -mcpu=native -O3 \
    -I/PATH/TO/nvpl/include \
    -L/PATH/TO/nvpl/lib \
    -o mt-dgemm.nvpl mt-dgemm.c \
    -lnvpl_blas_lp64_gomp

• ArmPL

• gcc -DUSE_CBLAS -ffast-math -mcpu=native -O3 \
    -I/opt/arm/armpl-23.10.0_Ubuntu-22.04_gcc/include \
    -L/opt/arm/armpl-23.10.0_Ubuntu-22.04_gcc/lib \
    -o mt-dgemm.armpl mt-dgemm.c \
    -larmpl_lp64

• ATLAS, OpenBLAS, BLIS, … Community supported with some optimizations for Neoverse V2.  

• Works on Grace, but unlikely to outperform NVPL and ArmPL.  A good compatibility option.

libnvpl_blas_ilp64_gomp.so
libnvpl_blas_ilp64_seq.so
libnvpl_blas_lp64_gomp.so
libnvpl_blas_lp64_seq.so
libnvpl_fftw.so
libnvpl_lapack_ilp64_gomp.so
libnvpl_lapack_ilp64_seq.so
libnvpl_lapack_lp64_gomp.so
libnvpl_lapack_lp64_seq.so
libnvpl_rand_mt.so
libnvpl_rand.so
libnvpl_scalapack_ilp64.so
libnvpl_scalapack_lp64.so
libnvpl_sparse.so
libnvpl_tensor.so
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SIMD in NVIDIA Grace

• 4x128b SIMD units = 512b SIMD vector bandwidth

• Full core frequency at 100% 512b SIMD utilization

• With all cores at 100%, a fully loaded socket may downclock about 
200MHz

• Each SIMD unit can retire NEON or SVE2 instructions

• On this architecture, SVE2 and NEON have the same peak 
performance … 

• … but SVE2 can vectorize more complex codes and supports 
more data types than NEON

• In practice, SVE2 typically outperforms NEON

Is
su

e

Fetch
Decode, 
Rename, 
Dispatch

Branch 0

Branch 1

Integer Single-Cycle 0

Integer Single-Cycle 1

Integer Single-Cycle 2

Integer Single-Cycle 3

Integer Single/Multi-Cycle 0

Integer Single/Multi-Cycle 1

FP/SIMD 0

FP/SIMD 1

FP/SIMD 2

FP/SIMD 3

Load/Store 0

Load/Store 1

Load 2

Store Data 0

Store Data 1

In Order Out of Order
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Porting Assembly and Vector Intrinsics
Translate intrinsics to port functionality, then focus on performance tuning

• For a quick fix, use a drop-in header-based intrinsics translator

• SIMD Everywhere (SIMDe): https://github.com/simd-everywhere/simde 

• SSE2NEON: https://github.com/DLTcollab/sse2neon 

• Demonstration: https://www.nvidia.com/en-us/on-demand/session/gtcspring22-s41702/ 

• Follow Arm’s documentation on rewriting x86 vector intrinsics

• Porting and Optimizing HPC Applications for Arm SVE [https://developer.arm.com/documentation/101726/latest]

• Coding for NEON [https://developer.arm.com/documentation/101725/0300/Coding-for-Neon]

• Arm assembly is simpler than x86

• Arm processors have a much simpler and general set of registers than x86.  Just assign a one-to-one mapping from an x86 register to an Arm 
register when porting code.

• Complex x86 instructions will become multiple Arm instructions

https://github.com/simd-everywhere/simde
https://github.com/DLTcollab/sse2neon
https://www.nvidia.com/en-us/on-demand/session/gtcspring22-s41702/
https://developer.arm.com/documentation/101726/latest
https://developer.arm.com/documentation/101725/0300/Coding-for-Neon
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Porting x86 Intrinsics: BWA-MEM2

Scope of “porting” work, no optimization done:

      ~3 hours of developer time to investigate and add:
#include: AVX -> Vendor Nonspecific SIMD Wrapper

• https://github.com/simd-everywhere/simde

Tools:

• Compilers: Clang 16 (NVIDIA)

• Compile options: GCC 12 and SIMDe

Comparison: 

• Precompiled binaries on x86

• HG002 dataset from Illumina paired-end sequencers

• Complete human genome at 30x coverage

Run configuration:

Similar configuration overhead to moving between Intel & AMD

• Grace: jemalloc + transparent huge pages

• Intel: AVX512 intel-optimized version on SPR

1993s 221W
2079s

365W

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Normalized Performance Normalized Performance / Watt

Grace (72c) Sapphire Rapids (52c)

Auto-translation overhead is offset by CPU performance advantage

https://github.com/simd-everywhere/simde
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SIMD Programming Approaches
Follow these recommendations in order, e.g. prefer auto-vectorization over intrinsics

Arm C Language Extensions for SVE Arm Scalable Vector Extensions and application to Machine Learning

Arm Scalable Vector Extensions and application to Machine Learning

The Scalable Vector Extension for Armv8-A

The Scalable Vector Extension for Armv8-A

Compilers

• Auto-vectorization: NVIDIA, GCC, LLVM, ACfL, Cray…

• Compiler directives, e.g. OpenMP

•#pragma omp parallel for simd
•#pragma vector always

Libraries

• NVIDIA Math Libraries

• Arm Performance Library (ArmPL)

• Open Source Scientific Libraries (BLIS, FFTW, PETSc, etc.)

Intrinsics 
(ACLE)

• Arm C Language Extensions for SVE 

• Arm Scalable Vector Extensions and application to Machine Learning

Assembly

• See SVE ISA Specification

• The Scalable Vector Extension for Armv8-A

TENSOR

LAPACK

RAND

BLAS

SPARSE FFTW

SCALAPACKPBLAS

https://static.docs.arm.com/100987/0000/acle_sve_100987_0000_00_en.pdf
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Arm-scalable-vector-extensions-and-application-to-machine-learning.pdf?revision=4376966b-114b-4500-8202-d8ea41141713
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Arm-scalable-vector-extensions-and-application-to-machine-learning.pdf?revision=4376966b-114b-4500-8202-d8ea41141713
https://developer.arm.com/docs/ddi0584/latest/arm-architecture-reference-manual-supplement-the-scalable-vector-extension-sve-for-armv8-a
https://developer.arm.com/docs/ddi0584/latest/arm-architecture-reference-manual-supplement-the-scalable-vector-extension-sve-for-armv8-a
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Optimizing for Coherent Memory
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Grace Hopper Superchip
GPU can access CPU memory at CPU memory speeds

HOPPER
GPU

GRACE
CPU
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CPU LPDDR5X
120GB | 480GB

500GB/s | 375GB/s

CPU LPDDR5X

NVIDIA Grace Hopper Superchip

N
V
L
IN

K
 N

E
T
W

O
R
K

≤
 2

5
6
 G

P
U

s

H
IG

H
-S

P
E
E
D

I/
O

GPU HBM3
96 GB HBM3

4000 GB/s

GPU HBM3

18x NVLINK 4

900 GB/s

Hardware Consistency

4x 

16x PCIe-5

512 GB/s

https://resources.nvidia.com/en-us-grace-cpu/nvidia-grace-hopper
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GPU Memory is Visible to the Operating System
Standard operating system commands work on the GPU

Hopper GPU appears to the OS as a NUMA 
node with no CPU cores

Total system memory capacity is CPU 
(480GB) + GPU (96GB)

MIG

CPU

GPU

Can use numactl to put CPU 
application data in GPU memory
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NCSA51

CPU LPDDR5X
GPU HBM3

HOPPER
SMs

GRACE
CPU Cores

CPU Caches
GPU line
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GPU Caches

data

Global Access to All Data
Cache-coherent access via NVLink C2C from either processor to either physical memory

Grace directly reading Hopper’s memory

CPU fetches GPU data into CPU L3 cache

Cache remains coherent with GPU memory

Changes to GPU memory evict cache line

Hopper directly reading Grace’s memory

GPU loads CPU data via CPU L3 cache

CPU and GPU can both hit on cached data

Changes to CPU memory update cache line

CPU LPDDR5X
GPU HBM3

HOPPER
SMs

GRACE
CPU Cores

CPU Caches
CPU line
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data
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Grace Hopper Address Translation Service (ATS)

R e m o t e
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Grace Hopper Automatic Page Migration
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High Bandwidth Memory Access & Automatic Data Migration
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Hopper can access Grace memory
at full CPU memory speed of 500 GB/sec
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Bandwidth for GPU stream kernels accessing CPU memory

Note: 480GB CPUs have 25% 
lower LPDDR5x bandwidth

120GB
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High Bandwidth Memory Access & Automatic Data Migration
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But Hopper can access its own memory
at full HBM speed of 4000 GB/sec
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Memory Allocators Impact Data Placement and Movement
CUDA 12.4

cudaMalloc cudaMallocManaged Malloc/mmap

Placement GPU

Page size 2MB

Which processor can access ? GPU

How does access happen ? GPU MMU

What can the driver do for my app 
?

-

What can I do for my app ?
Think how to potential leverage 
coherent systems
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Memory Allocators Impact Data Placement and Movement
CUDA 12.4

cudaMalloc cudaMallocManaged Malloc/mmap

Placement GPU First touch

Page size 2MB
hybrid, 64K for CPU and 2MB for 
GPU

Which processor can access ? GPU Both CPU and GPU

How does access happen ? GPU MMU
Fault on first access and move 
page [2]

What can the driver do for my app 
?

- Fault or Access counters [2]

What can I do for my app ?
Think how to potential leverage 
coherent systems

Use CUDA APIs to manage 
memory

1. mTHP will allow 2MB page sizes Linux kernel 6.9 patch or hugeTLB
2. Unless Memadvise with preferred location and setAccessedBy are set
3. Pages don’t migrate back to CPU due to lack of access counters

https://confluence.nvidia.com/pages/viewpage.action?spaceKey=UVMSW&title=THP+%28Transparent+Huge+Pages%29+Enhancements+in+the+Linux+kernel+that+speed+up+GPU+HPC+and+AI+workloads


NCSA

NCSA

NCSA

NCSA

NCSA

NCSA

NCSA

NCSA

NCSA

NCSA

NCSA

NCSA

NCSA

NCSA

NCSA

NCSA

NCSA

NCSA

NCSA

NCSA

Memory Allocators Impact Data Placement and Movement
CUDA 12.4

cudaMalloc cudaMallocManaged System (malloc/mmap/…)

Placement GPU First touch First touch

Page size 2MB
hybrid, 64K for CPU and 2MB for 
GPU

64K (system page) [1]

Which processor can access ? GPU Both CPU and GPU Both CPU and GPU

How does access happen ? GPU MMU
Fault on first access and move 
page [2]

Direct access over C2C using ATS [2]

What can the driver do for my app 
?

- Fault or Access counters [2]
Using access counter to migrate 
memory CPU -> GPU [3]

What can I do for my app ?
Think how to potential leverage 
coherent systems

Use CUDA APIs to manage 
memory

Use CUDA APIs to manage 
memory

1. mTHP will allow 2MB page sizes Linux kernel 6.9 patch or hugeTLB
2. Unless Memadvise with preferred location and setAccessedBy are set
3. Pages don’t migrate back to CPU due to lack of access counters

https://confluence.nvidia.com/pages/viewpage.action?spaceKey=UVMSW&title=THP+%28Transparent+Huge+Pages%29+Enhancements+in+the+Linux+kernel+that+speed+up+GPU+HPC+and+AI+workloads
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Grace UVM Migration Enhancements:
CUDA C++ & CUDA Fortran
Maximum portable performance to NVIDIA HW
out-of-the-box & without any changes

• No programming model changes!
→ No new APIs
→ No changes to existing APIs
→ No source code changes

• Unified Memory

• Available on most platforms supported by CUDA 12.x: 
GH, P9+V100, PCIe x86 & Arm, etc.

• Same Unified Memory Programming Model for all platforms: 
”memory accesses just work” + “hints”.

• Unified Memory Hints

• Hints only impact performance, not results.

• cudaMemAdvise hints: PreferredLocation, AccessedBy.

• cudaMemPrefetch hints: prefetch to NUMA node.

• Works with cudaMallocManaged memory on all supported 
Unified Memory platforms

• Work with system allocated memory (e.g. malloc) on Grace Hopper 
and systems with HMM 

cudaMemAdvise(ptr, nbytes, advice, device);

Advices PreferredLocation AccessedBy ReadMostly

Devices GPU id CPU CPU Numa Node

cudaMemPrefetchAsync(ptr, nbytes, destination, stream);

Destinations GPU id CPU CPU Numa Node

CUDA Unified Memory Hints

CUDA Explicit Memory Allocators

Memory Placement Access-based 
Migration

Accessible From

CPU GPUs

System-allocated 
(malloc, mmap) First-touch

(GPU | CPU)CUDA managed
(cudaMallocManaged)

CUDA device memory
(cudaMalloc)

GPU

CUDA host memory
(cudaMallocHost)

CPU

…and many others: interprocess, virtual, fabric, …
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Conclusions

• NVIDIA Grace Hopper improves developer velocity

• Use the compilers, libraries, and tools you already use 

• … as long as they are standards-compliant and multi-platform

• Expect software to work; expect software to perform well

• Tune Grace CPU performance with compilers and libraries

• Update compiler flags

• Use compiler autovectorization

• Use de-facto standard library APIs like Netlib BLAS and FFTW

• Tune for coherent memory with memory allocators and CUDA UM hints

• Use CUDA-managed memory to unlock coherent memory capability

• Use CUDA unified memory hints to improve performance

Developer Velocity wit h Grace Hopper
Accelerat ing t he pat h t o accelerat ed comput ing

x86+H100

Grace Hopper

Engineering Effort & Time

Incremental acceleration.

PCIe bottlenecks is demotivating to developers

Incremental acceleration. 

C2C is encouraging

Significant effort required to 

approach break-even

Using the right chip for 

the right purpose 

Productivity 
acceleration

P
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rm
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e

CPU Only

4545

Grace UVM Migrat ion 
Enhancements:
CUDA C++ & CUDA Fortran
Maximum port able performance t o NVIDIA HW
out -of -t he-box & wit hout  any changes

• No programming model changes!
No new APIs
No changes to exist ing APIs
No source code changes

• Unif ied Memory

• Available on most plat forms support ed by CUDA 12.x: 
GH, P9+V100, PCIe x86 & Arm, et c.

• Same Unif ied Memory Programming Model for all plat forms: 
”memory accesses just  work” + “hint s”.

• Unif ied Memory Hints

• Hints only impact  performance, not  result s.

• cudaMemAdvise hint s: PreferredLocat ion, AccessedBy.

• cudaMemPrefetch hint s: prefet ch t o NUMA node.

• Works wit h cudaMallocManaged memory on all support ed 
Unif ied Memory plat forms

• Work wit h syst em allocat ed memory (e.g. malloc) on Grace 
Hopper and syst ems wit h HMM 

cudaMemAdvise(ptr, nbytes, advice, device);

Advices PreferredLocation AccessedBy ReadMostly

Devices GPU id CPU CPU Numa Node

cudaMemPrefetchAsync(ptr, nbytes, destination, stream);

Dest inat ions GPU id CPU CPU Numa Node

CUDA Unif ied Memory Hints

CUDA Explicit  Memory Allocators

Memory Placement Access-

based 

Migrat ion

Accessible From

CPU GPUs

System- allocated

(malloc, mmap) First -t ouch

(GPU | CPU)

✅ ✅ ✅

CUDA managed

(cudaMallocManaged)
✅ ✅ ✅

CUDA device memory

(cudaMalloc)
GPU ❌ ❌ ✅

CUDA host memory

(cudaMallocHost )
CPU ❌ ✅ ✅

…and many ot hers: int erprocess, virt ual, fabric, …

The Arm Sof tware Ecosystem
Developed by NVIDIA, t he OSS communit y, and ot her Arm part ners
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OS
All Major Linux Distributions

Arm Server Ready Platform
Standard Firmware and RAS

Applications and Frameworks
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Libraries
Open Source and Commercial

Developer Tools
Open Source and Commercial

Filesystems
All major parallel filesystems

Communication Libraries
Open Source and Commercial

Compilers
Open Source and Commercial
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Deep Learning HPC
General 

Compute

Admin Tools & Packaging

NVIDIA 
Software
Frameworks, 

Libraries, SDKs, 

Toolkits, etc.
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GB200 SUPERCHIP
Optimized for Supercomputer-Scale Science

BLACKWELL

72 Grace CPU Arm cores

40 PetaFLOPS  FP4 AI Inference

20 PetaFLOPS FP8 AI Training

16 TB/s of GPU memory bandwidth

864 GB Fast Memory
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DGX GB200
Delivers New Unit of Compute

36 GRACE CPUs

72 BLACKWELL GPUs

Fully Connected NVLink Switch Rack

DGX GB200

Training 720 PFLOPs

Inference 1,440 PFLOPs

NVL Model Size 27T params

Multi-Node All-to-All 130 TB/s

Multi-Node All-Reduce 260 TB/s
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Grace CPU Benchmarking Guide
https://nvidia.github.io/grace-cpu-benchmarking-guide/
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