
Benefits of thinking inside the box

Dr Sarah Beecroft

Life Science Supercomputing Specialist

Containers for HPC

2

Setonix

C
on

ta
in

er
s

@
 P

aw
se

y

more powerful than our
former HPC systems

30

petaFLOPS of power,
making it the fastest
research supercomputer
in the Southern
Hemisphere

42*

3

100 Gbps

100Gbps

10 Gbps

Fibre Channel

10 Gbps

S3 Interface

Advanced
architecture

100 Gbps

9PB Ceph storage
3000+ vCores

Nimbus (Cloud) ASKAP Ingest Garrawarla

85+ PB Ceph Object Store70 PB tape system

100 Gbps
External Firewall

100 Gbps

Setonix Supercomputer

200,000+ Cores,
700+ GPUs, 100Gbps

Overview of
Containers

5

What can you use containers for?

• Avoid local installation of packages (e.g. Conda/Pip/apt)

• Handling clashing/multiple versions

• Shipping software you’ve published

• Fitting in with NextFlow/Snakemake/AirFlow

• Bleeding edge versions that wouldn’t work bare metal

6

Good Use Cases for Containers

• Large volume of software to be installed (e.g. bioinformatics)

• Complex builds with lots of dependencies (e.g., deep learning frameworks, bioinformtics)

• Dependency trees with tens/hundreds of small packages (e.g. Python)

• Single container file can improve performance on parallel filesystems

• Intensive I/O patterns in software that write a large number of small files (e.g. OpenFoam)

• Single container file can improve performance on parallel filesystems

C
on

ta
in

er
s

fo
r

H
P

C

How do programs usually run?

Programs rely on shared libraries/dependencies

These may clash or be incompatible

AKA: Dependency Hell

How do programs run with containers?

• Self-contained environments

• Encapsulates everything you need for a software to

run

• Runs independently from host machine (e.g. your

laptop/cluster)

Uses a combination of Kernel “cgroups” and “namespaces” to create isolated environments

9

Libraries

Dependencies
Install commands

Environment
variables

Containers encapsulate everything for a software to run

10

Why containers?

Enabling workflows that are:

• Reproducible

• Robust

• Portable

• Easier to maintain

Image: https://github.com/karthik/rstudio2019

• Reproducible:

• Repeated analysis == identical results

• Robust:

• Identical tool versions over time

• Container won’t suddenly break

12

Portability

• Easy to send your exact computing
environment to any system

• Saves time when moving workflow to new
machine(s)

• Enables collaboration

• Increasingly important for scientific
publishing

Containers for HPC

13

Easier to Maintain

• Write one install recipe, use it everywhere

• Solve dependency hell once and for all

• More time for other work!

Containers for HPC

14

Containers support workflow engines

C
on

ta
in

er
s

fo
r

H
P

C

Container Details

16

Some container keywords

Recipe
Instructions for making a container (image)

Build
Act of “compiling” the recipe into an image

Image
“Compiled” container that’s not currently running. Gets shipped around

Repository
Place for images to be stored and shared

Container

Running instantiation of an image

Container engine
Software that allows the container to come alive and run

C
on

ta
in

er
s

fo
r

H
P

C

Recipe (aka Dockerfile)

Build

Image(s) hosted on a container repository

Container keywords

Tags indicate version and other info

What is a container engine?

Container runs taskUser Container engine

ExecutionCommand

19

Popular container engines

Singularity

20

Container Runtime

• Container file-system is read-only

• Filesystem in a file (squashfs/SIF) is performant on parallel file-systems

• User-friendly features

• Same user as in host

• Same working directory as in host by default

• Shell variables inherited from host

C
on

ta
in

er
s

fo
r

H
P

C

21

Using Singularity: key commands

Key commands
• Download: singularity pull docker://[registry/][repository/]name:tag

• Execute commands: singularity exec container_file.sif command options

• Open shell inside container: singularity shell container_file.sif

• How to run GPU-enabled containers
• Additional Singularity option

• Nvidia GPUs: singularity exec --nv container_file.sif command options

• AMD GPUs: singularity exec --rocm container_file.sif command options

C
on

ta
in

er
s

fo
r

H
P

C

22

Example: Download and Run Container with Singularity

$ python3 --version
Python 3.6.13

$ cd $MYSCRATCH
$ module load singularity/3.8.6
$ singularity pull docker://python:3.9.13-slim
INFO: Converting OCI blobs to SIF format
INFO: Starting build...
..
INFO: Creating SIF file...

$ singularity exec python_3.9.13-slim.sif python3 --version
Python 3.9.13

23

Container runtime – Singularity

Isolate the environment: -e or --cleanenv

Pass specific environment variables
– export SINGULARITYENV_VARIABLE=value

– [Singularity 3.6.x on] --env VARIABLE=value

More options: singularity exec --help

C
on

ta
in

er
s

fo
r

H
P

C

24

Do I need to always create new container recipes?

• Container registries have 1000s of ready-to-deploy containers

• Can use ‘off the shelf’, or edit existing recipes

25

A recipe puts Docker specific keywords around your normal
installation instructions

C
on

ta
in

er
s

fo
r

H
P

C

Example container recipe

FROM <image>

RUN ..installation commands..

..

ENV ..define shell variables..

..

ADD/COPY ..copy files from host to image..

Can I share files with the host machine?

“Bind-mounting” allows you to share directories between the container and the host
machine

Bind mount flag example

--bind dir1,dir2,dir3

singularity exec -B /scratch/user1/inputs:/usr/local/interproscan/data -e
interproscan_latest.sif interproscan.sh <flags>

Real example:

27

Tidying up your filesystem with persistent overlays

• Too many small files stress the parallel file system

• Singularity overlays create a virtual filesystem that
holds many files but appears as one file to the host
system

C
on

ta
in

er
s

fo
r

H
P

C

28

Example overlay creation

> mkdir -p overlay/upper

C
on

ta
in

er
s

fo
r

H
P

C

Create on host system location for overlay

> singularity shell --overlay overlay.img ubuntu.sif

> dd if=/dev/zero of=overlay.img bs=1M count=500

> mkfs.ext3 -d overlay overlay.img

Create overlay of 500MB of empty space and include above directory

Container is writable as the unprivileged user who created the overlay/upper directory

Best Practices

30

Should I put everything into one container?

Monolithic container

• Holds many independent programs

• Must re-build to update one thing

• Edging towards dependency hell

Modular containers

• Swap components as needed

• Keep tools isolated

• Only edit one component as needed

C
on

ta
in

er
s

on
 H

P
C

Samtools 1.9 & BWA
mem & GATK4.1 & R 3.4

& Python 2.7

Samtools 1.9 BWA mem GATK4.1

R 3.4 Python 2.7

Each instruction in your recipe becomes a layer in the container

syntax=docker/dockerfile:1

FROM ubuntu:latest

RUN apt-get update && apt-get
install -y build-essentials

COPY main.c Makefile /src/

WORKDIR /src/

RUN make build

https://docs.docker.com/reference/dockerfile/
https://docs.docker.com/reference/dockerfile/
https://docs.docker.com/reference/dockerfile/
https://docs.docker.com/reference/dockerfile/
https://docs.docker.com/reference/dockerfile/

Best Practice – Combine RUN commands to reduce layer size

• Solution:

• RUN wget http://hostname.com/mycode.tgz && \

– tar xzf mycode.tgz && \

– cd mycode && make && make install && \

– rm -rf mycode.tgz mycode

• RUN wget http://hostname.com/mycode.tgz

• RUN tar xzf mycode.tgz

• RUN cd mycode ; make; make install

• RUN rm -rf mycode.tgz mycode

Note: Docker doesn’t clean up *anything* so think about what you need to purge to keep your image small

Best Practice – Order matters, exploit the build cache

• Expensive steps → near the beginning

of the Dockerfile

• Frequently changing steps → near the

end of the Dockerfile

– Avoid triggering rebuilds of layers that

haven't changed.

Best Practice – Use version tags to manage base images

• Solution:

• FROM python:3.7 # This will remain a 3.7 version

• FROM python:latest # This can change over time

• Create a base image that contains dependencies that shouldn’t need to change frequently

• Tag that base image with a version

• Use this as the base image for the application or other components that change more frequently

• This makes it easier to freeze all of the dependencies and avoid accidental updates

35

Example: PyTorch

C
on

ta
in

er
s

fo
r

H
P

C

Best Practice – Use Trusted images

• Solution:

• FROM python:3.7 # official image from Python Foundation

• FROM foobar/python:3.7 # do you know foobar?

Best Practice – Use versioned dependencies

• Solution: (if you have a tagged release)

• Solution: (if you have a commit hash)

• RUN git clone --branch v1.0.3 --depth 1 https://github.com/foo/bar.git

• RUN cd bar && make install

• RUN git clone https://github.com/foo/bar.git

• RUN cd bar && make install

• RUN git clone https://github.com/foo/bar.git

• RUN cd bar && git checkout 4e3c9cc && make install

Best Practice – Avoid Semicolons; Use Ampersands &&

• Solution:

• RUN wget http://hostname.com/mycode.tgz && \

– tar xzf mycode.tgz && \

– cd mycode && make && make install && \

– rm -rf mycode.tgz mycode

• RUN wget http://hostname.com/mycode.tgz ; \

– tar xzf mycode.tgz ; \

– cd mycode ; make ; make install ; \

– rm -rf mycode.tgz mycode

Any questions?
Thank you

Pawsey.org.au

sarah.beecroft@csiro.au

Conda containers pro-tips: Make your build-time faster

• Mamba is a faster drop-in replacement for conda. Can use conda-forge/mambaforge3 base

image

– Otherwise continuumio/miniconda3 is a good option

• Optional: Avoid updating existing packages with --freeze-installed if doing multiple rounds of

installation

Acknowledgement: https://uwekorn.com/2021/03/01/deploying-conda-environments-in-docker-how-to-do-it-
right.html

Conda containers pro-tips: Make your conda env portable across
O/S

conda env export --from-history

dependencies:
…
- libcurl=7.71.1=h9bf37e3_8
- libcxx=11.0.1=habf9029_0
- libedit=3.1.20191231=hed1e85f_2
…

dependencies:
…
- libcurl=7.71.1
- libcxx=11.0.1
- libedit=3.1.20191231
…

Conda containers pro-tips: Make you build-time faster

Avoid re-downloading unchanged packages with Docker cache

• The cache will persist between runs and will be shared between concurrent builds

• Ensure Buildkit is enabled (export DOCKER_BUILDKIT=1)

RUN conda env create -f env.yml

RUN --mount=type=cache,target=/opt/conda/pkgs \
conda env create -f env.yml

