
Parallel Programming
Methodologies
International HPC Summer School
8th July 2024, Kobe, Japan

Maciej Cytowski

22

Pawsey Supercomputing Research Centre
An Australian National Tier-1 Facility

• Launched as Pawsey in 2014, UJV foundations since 2000

• Recent AU$70m capital refresh by Australian Government

• 60+ Staff employed via CSIRO, Australia’s national science agency

• Home to:
• 227+ research projects
• 4,000+ researchers
• 10,000+ training attendees
• 1,000,000,000+ hours of research computing

Pawsey Centre for Extreme Scale Readiness

3

Agenda

• The Need for Speed Scale

• Current Trends in Supercomputing Technology

• Parallel Programming Models

• Challenges

• How to choose your track?

P
ar

al
le

l P
ro

gr
am

m
in

g
M

et
ho

do
lo

gi
es

4

Square Kilometre Array

P
ar

al
le

l P
ro

gr
am

m
in

g
M

et
ho

do
lo

gi
es

60
0

km

5

P
ar

al
le

l P
ro

gr
am

m
in

g
M

et
ho

do
lo

gi
es

60
0

km

Weather and Climate: Save The Giants
• Weather and climate models are now delivering global

predictions at 10-kilometre resolution and regional forecasts at
the kilometre-scale

• Australia’s Southwest has been in the grip of human-triggered
climate change since around 1970

• Along with other Mediterranean-type climate regions, this area
is rapidly drying due to global warming, with rainfall declines of
15-20%

• The Climate Science Initiative will produce the most detailed and
comprehensive Western Australian climate change projections
to date, extending 75 years into the future

• Nearly 150M core hours and 7PB of data

Sources:
https://theconversation.com/ecocheck-australias-southwest-jarrah-forests-have-lost-their-iconic-giants-49150
https://exploreparks.dbca.wa.gov.au/site/king-jarrah-wellington-national-park

https://theconversation.com/ecocheck-australias-southwest-jarrah-forests-have-lost-their-iconic-giants-49150
https://exploreparks.dbca.wa.gov.au/site/king-jarrah-wellington-national-park

6

P
ar

al
le

l P
ro

gr
am

m
in

g
M

et
ho

do
lo

gi
es COVID-19 Research

• Molecular Dynamics
• Quantum Chemistry
• Bioinformatics Workflows
• AI/ML tools

IHPCSS24 Talk: Big Data /ML
Overview Bryon Gill, PSC, Thursday

8

Agenda

• The Need for Speed Scale

• Current Trends in Supercomputing Technology

• Parallel Programming Models

• Challenges

• How to choose your track?

P
ar

al
le

l P
ro

gr
am

m
in

g
M

et
ho

do
lo

gi
es

9

P
ar

al
le

l P
ro

gr
am

m
in

g
M

et
ho

do
lo

gi
es

60
0

km

Top500 List (top500.org)
The TOP500 project ranks and details the 500 most powerful supercomputer
in the world based on High Performance Linpack benchmark.

10

Frontier, Top1 HPL

P
ar

al
le

l P
ro

gr
am

m
in

g
M

et
ho

do
lo

gi
es

• The first Exascale system Frontier installed in
ORNL, US

• Based on HPE Cray EX architecture

• Each node with 64 AMD Trento compute cores
and 4 AMD MI250X GPUs

• Slingshot interconnect

• 9,472 nodes

• 74 racks

• 1,206 Pflop/s HPL (70% peak)

11

HPCG

• The TOP500 list has incorporated the High-Performance
Conjugate Gradient (HPCG) benchmark results starting
from 2017

• Provides an alternative metric for assessing
supercomputer performance

• Complements the HPL measurement to give a fuller
understanding of the machineP

ar
al

le
l P

ro
gr

am
m

in
g

M
et

ho
do

lo
gi

es

12

Fugaku, Top1 HPCG

P
ar

al
le

l P
ro

gr
am

m
in

g
M

et
ho

do
lo

gi
es

• The so-called “Post K” computer installed in RIKEN, Japan

• Based on Fujitsu’s ARM A64FX architecture

• Each node with 48 compute cores, 32GB High Bandwidth Memory, on-die Tofu-D interconnect
and AI support (FP16, INT8, etc.)

• 158,976 nodes

• 432+ racks

• 442 Pflop/s HPL Linpack (82% peak)

Source: “REPORT ON THEFUJITSU FUGAKU SYSTEM”, J.Dongarra, Tech Report No. ICL-UT-20-06
https://www.top500.org/news/report-fujitsu-fugaku-system-jack-dongarra/

https://www.top500.org/news/report-fujitsu-fugaku-system-jack-dongarra/

13

Green500

P
ar

al
le

l P
ro

gr
am

m
in

g
M

et
ho

do
lo

gi
es

• The Green500 is a biannual ranking of supercomputers,
from the Top500 list of supercomputers, in terms
of energy efficiency.

• The list measures performance per watt using the
Top500 measure of HPL benchmarks at double-
precision floating-point format.

Source: IBM, ICM, University of Warsaw, Nautilus supercomputer, 2008

Source: https://en.wikipedia.org/wiki/PlayStation_3

https://en.wikipedia.org/wiki/PlayStation_3

14

JEDI, Top1 Green500

• The first module of the exascale supercomputer JUPITER, installed at Juelich
Supercomputing Centre

• Build by ParTec – Eviden consortium, BullSequana XH3000 platform

• Cluster module of Jupiter will utilize SiPearl Rhea1 processor (ARM)

• 24 compute nodes

• 1 rack

• 4.5 Pflop/s HPL Linpack (87% peak)

• 72.733 Gflops/Watt

P
ar

al
le

l P
ro

gr
am

m
in

g
M

et
ho

do
lo

gi
es

Source: https://www.fz-juelich.de/en/news/archive/press-release/2024/european-exascale-
supercomputer-jupiter-sets-new-energy-efficiency-standards-with-1-ranking-on-green500

https://www.fz-juelich.de/en/news/archive/press-release/2024/european-exascale-supercomputer-jupiter-sets-new-energy-efficiency-standards-with-1-ranking-on-green500
https://www.fz-juelich.de/en/news/archive/press-release/2024/european-exascale-supercomputer-jupiter-sets-new-energy-efficiency-standards-with-1-ranking-on-green500

15

What else to measure?

• HPL MxP (https://hpl-mxp.org) – using mixed precision version of HPL benchmark to highlight
and best utilize the emerging convergence of HPC and AI workloads

• IO500 (https://io500.org) – using a selection of IO workloads to highlight the importance of
high-performance IO subsytems

• MLPerf (https://mlcommons.org/benchmarks/training-hpc/) - benchmark suite measuring
how fast HPC systems can train models to a target quality metric

• ….P
ar

al
le

l P
ro

gr
am

m
in

g
M

et
ho

do
lo

gi
es

IHPCSS24 Talk: Parallel I/O, John Cazes, TACC, Tuesday 2pm

https://hpl-mxp.org/
https://io500.org/
https://mlcommons.org/benchmarks/training-hpc/

16

P
ar

al
le

l P
ro

gr
am

m
in

g
M

et
ho

do
lo

gi
es Trends (Top500 list)

• Two Exaflop systems (Frontier and Aurora)

• All systems on Top500 list are Linux based

• 9 systems in Top10 use GPU accelerators

• A total of 193 systems on the list are using accelerator/co-processor technology

• The entry level to the list moved up to the 2.13 Pflop/s mark on the Linpack benchmark

• The last system on the newest list was listed at position 458 in the previous TOP500

17

P
ar

al
le

l P
ro

gr
am

m
in

g
M

et
ho

do
lo

gi
es

Technology Trends – Computing
Interesting and diverse market

• Intel with future-generation CPUs and GPUs and their oneAPI programming
environment

• AMD with future-generation CPUs, GPUs, APUs their open-source compilers, tools and
libraries available in ROCm

• Fujitsu with ARM A64FX architecture used in Fugaku system and future SiPearl Rhea1
European-based chips

• NVIDIA with their next-generation GPUs and Superchips

18

P
ar

al
le

l P
ro

gr
am

m
in

g
M

et
ho

do
lo

gi
es

Technology Trends – Data
It is all about Data

Data closer to compute
• High Bandwidth Memory close to CPUs / GPUs

• NVMe devices

Better and Unified Access to Data
• PCIe 4.0, NVLINK and InfinityFabric

• Superchips and APUs

More Bandwidth and Less Latency
• FLOP/Byte – measure of compute intensity per memory block

• Used in Roofline Model to optimize single node algorithm design

G80 GP100 GV100

GFLOPS (SP) 384 10,600 15,000

GPU↔GPU
memory

84 GB/s 720 GB/s 900 GB/s

FLOP/Byte 4.5 14.7 16.67

GPU↔GPU
(NVLINK)

n/a 20 GB/s 20 GB/s

FLOP/Byte 530 750

CPU↔GPU
(PCI Express)

3.1 GB/s 3.1 GB/s 3.1 GB/s

FLOP/Byte 124 3,419 4,839

“Don’t Move The Data!”, The CUDA Handbook, cudahandbook.com

Source: https://developer.nvidia.com/blog/nvidia-grace-hopper-
superchip-architecture-in-depth/

http://www.cudahandbook.com/2017/10/dont-move-the-data/
https://developer.nvidia.com/blog/nvidia-grace-hopper-superchip-architecture-in-depth/
https://developer.nvidia.com/blog/nvidia-grace-hopper-superchip-architecture-in-depth/

19

P
ar

al
le

l P
ro

gr
am

m
in

g
M

et
ho

do
lo

gi
es

Three Worlds of Supercomputing
Thomas Sterling, HPC Achievements and Impact 2019, ISC’19 Keynote

Rm
ax

 [T
Fl

op
/s

]

0

105000

210000

315000

420000

Rank

0 100 200 300 400 500

Source: https://www.hpcwire.com/2019/06/20/isc-keynote-thomas-sterlings-take-on-whither-hpc/

Nature 568, 284-285 (2019)
doi: https://doi.org/10.1038/d41586-019-01155-0

https://www.hpcwire.com/2019/06/20/isc-keynote-thomas-sterlings-take-on-whither-hpc/
https://doi.org/10.1038/d41586-019-01155-0

20

Agenda

• The Need for Speed Scale

• Current Trends in Supercomputing Technology

• Parallel Programming Models

• Challenges

• How to choose your track?

P
ar

al
le

l P
ro

gr
am

m
in

g
M

et
ho

do
lo

gi
es

21

Types of Memory Architectures – Single Node

P
ar

al
le

l P
ro

gr
am

m
in

g
M

et
ho

do
lo

gi
es

Memory

CPUCPU

GPU
Memory

Memory

Memory

Memory

Memory

Memory

Memory

Non-Uniform Memory Access (NUMA) – CPU only

Memory

CPUCPU
Memory

Memory

Memory

Memory

Memory

Memory

Memory

Non-Uniform Memory Access (NUMA) – with accelerator

HBM

GPU

HBM

GPU
HBM

GPU
HBM

Memory

GPUCPU
Memory

HBM

HBM

HBM

Superchip/APU

22

Types of Memory Architectures – Single Node (Ex: Frontier)

P
ar

al
le

l P
ro

gr
am

m
in

g
M

et
ho

do
lo

gi
es

23

Types of Memory Architectures – Single Node (Ex: NVIDIA Superchip)

P
ar

al
le

l P
ro

gr
am

m
in

g
M

et
ho

do
lo

gi
es

Source: https://developer.nvidia.com/blog/nvidia-grace-hopper-superchip-architecture-in-depth/

https://developer.nvidia.com/blog/nvidia-grace-hopper-superchip-architecture-in-depth/

24

Non-Uniform Memory Access (NUMA) – CPU only Programming

P
ar

al
le

l P
ro

gr
am

m
in

g
M

et
ho

do
lo

gi
es

Memory

CPUCPU
Memory

Memory

Memory

Memory

Memory

Memory

Memory

• Directive-based programming model
• Current CPUs are composed of many cores
• Parallel regions of the code need to be annotated with

directives
• Parallel data types need to be annotated (e.g. shared,

private)

void daxpy(int sz) {
 double a;
 double* x=(double*)malloc(sz);
 double* y=(double*)malloc(sz);
 //initialize
 …

 #pragma omp parallel for default(none) shared(x,y) firstprivate(a)
 for (int i = 0; i < sz; i++) {
 y[i] = a * x[i] + y[i];
 }
 }
}

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

25

Non-Uniform Memory Access (NUMA) – with accelerator Programming

P
ar

al
le

l P
ro

gr
am

m
in

g
M

et
ho

do
lo

gi
es

GPU

Memory

CPUCPU
Memory

Memory

Memory

Memory

Memory

Memory

Memory

HBM

GPU

HBM

GPU
HBM

GPU
HBM

void daxpy(int sz) {
 double a;
 double* x=(double*)malloc(sz);
 double* y=(double*)malloc(sz);
 //initialize
 …

 #pragma omp target data map(to:x(0:sz)) map(tofrom:y(0:sz))
 {
 #pragma omp teams distribute parallel for simd
 for (int i = 0; i < sz; i++) {
 y[i] = a * x[i] + y[i];
 }
 }
}

• Supports GPU offloading
• Compute kernels need to be annotated with directives
• Data transfers to/from GPU memory need to be

annotated

26

Superchip/APU Programming

P
ar

al
le

l P
ro

gr
am

m
in

g
M

et
ho

do
lo

gi
es

• Supports GPU unified memory
• Compute kernels need to be annotated with directives

Memory

GPUCPU
Memory

HBM

HBM

HBM

void daxpy(int sz) {
 #pragma omp requires unified_shared_memory
 double a;
 double* x=(double*)malloc(sz);
 double* y=(double*)malloc(sz);
 //initialize
 …

 #pragma omp target teams distribute parallel for simd
 for (int i = 0; i < sz; i++) {
 y[i] = a * x[i] + y[i];
 }
 }
}

27

Types of Memory Architectures – Multi-node
Distributed memory model

P
ar

al
le

l P
ro

gr
am

m
in

g
M

et
ho

do
lo

gi
es

Node
Intraconnect

GPU

Nodes
Interconnect

A supercomputer… within a supercomputer… within a supercomputer!

28

Multi-node Programming
Distributed memory model

P
ar

al
le

l P
ro

gr
am

m
in

g
M

et
ho

do
lo

gi
es

• Message Passing Interface (MPI) is a standardized message-
passing standard designed for parallel computing
architectures

• Programmers can define multiple processes, synchronize
them and send/recv messages containing data

• MPI supports parallel I/O
• MPI now also supports GPU to GPU communication

#include <stdio.h>
#include <string.h>
#include <mpi.h>

int main(int argc, char **argv)
{
 char buf[256];
 int my_rank, num_procs;

 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
 MPI_Comm_size(MPI_COMM_WORLD, &num_procs);

 if (my_rank == 0) {
 int other_rank;
 printf("We have %i processes.\n", num_procs);

 for (other_rank = 1; other_rank < num_procs; other_rank++)
 {
 sprintf(buf, "Hello %i!", other_rank);
 MPI_Send(buf, 256, MPI_CHAR, other_rank,
 0, MPI_COMM_WORLD);
 }
….

Note: MPI is not the only distributed memory
programming methodology. There are other
models like Partitioned Global Address Space
(PGAS) languages like Coarray Fortran, UPC,
Chapel, …

29

Example: Weather Forecasting

P
ar

al
le

l P
ro

gr
am

m
in

g
M

et
ho

do
lo

gi
es

Source: https://www.olcf.ornl.gov/2015/08/18/the-
future-of-forecasting/

Step 0: Discretize mathematical model: global weather
forecasting discretized over 3D grid

Step 1: Domain decomposition between nodes: each patch
represents the grid area owned by an MPI task

Step 2: Communication: neighboring MPI tasks (patches) need to
communicate

Step 3: Intranode parallelization: within each node OpenMP is used
to parallelize across available CPU cores and GPUs

Hybrid programming:
MPI for internode parallelization
OpenMP for intranode parallelization

https://www.olcf.ornl.gov/2015/08/18/the-future-of-forecasting/
https://www.olcf.ornl.gov/2015/08/18/the-future-of-forecasting/

30

Agenda

• The Need for Speed Scale

• Current Trends in Supercomputing Technology

• Parallel Programming Models

• Challenges

• How to choose your track?

P
ar

al
le

l P
ro

gr
am

m
in

g
M

et
ho

do
lo

gi
es

31

Challenge: Programming Language

P
ar

al
le

l P
ro

gr
am

m
in

g
M

et
ho

do
lo

gi
es

Increasing popularity of modern programming languages:
• C++ - dynamically developing, enabling software engineering,

represented in ECP projects (e.g. Slate library, Kokkos)
• Python – high performance available through libraries like Numpy,

Scipy or machine learning packages and tools like Tensorflow
• Rust, …

“New” programming paradigms and languages: Legion, PaRSEC, UPC++

Rui Pereira et al. 2017. “Energy efficiency across programming languages:
how do energy, time, and memory relate?” In Proceedings of the 10th ACM
SIGPLAN International Conference on Software Language Engineering (SLE
2017). DOI:https://doi.org/10.1145/3136014.3136031

IHPCSS24 Talk: Software engineering, Erik Lindahl,
Univ. Stockholm, Tuesday 4:30pm

IHPCSS24 Talk: HPC Python, Ramses van Zon,
Univ. Toronto, Wednesday 9am

32

Challenge: Scalability

P
ar

al
le

l P
ro

gr
am

m
in

g
M

et
ho

do
lo

gi
es

M. Cytowski and Z. Szymanska, "Large-Scale Parallel Simulations of 3D Cell Colony Dynamics: The Cellular Environment,"
in Computing in Science & Engineering, vol. 17, no. 5, pp. 44-48, Sept.-Oct. 2015, doi: 10.1109/MCSE.2015.66.

2D-box of interacting particles Trace-based profiling of MPI processes

IHPCSS24 Talk: Performance Analysis & Optimization, Ilya Zhukov, JSC, Wednesday 9am

33

Challenge: Portability and Performance Portability

P
ar

al
le

l P
ro

gr
am

m
in

g
M

et
ho

do
lo

gi
es

Programming abstraction layers to hide complexity of
accelerators

Kokkos ecosystem https://kokkos.org

Raja software library of C++ abstractions
https://raja.readthedocs.io

• OpenMP
• “Enabling HPC since 1997”

• target directive available since OpenMP 4.0 (2013)

• support for accelerators currently available in Clang, GCC, IBM
XL, AOMP

• OpenACC
• joint effort to developed OpenMP-like standard for accelerators

(2012)

• kernels directive

• support for accelerators currently available in PGI, GCC, Cray

https://crpl.cis.udel.edu/ompvvsollve/

https://kokkos.org/
https://raja.readthedocs.io/
https://crpl.cis.udel.edu/ompvvsollve/

34

Challenge: Reproducibility and complex workflows

• How to make sure that the results of my extremely complex workflow consisting of tens of
packages and stages can be reproduced on:

• Different supercomputing systems,

• Same supercomputer but after programming and software stack upgrade,

• My laptop,

• My paper reviewer’s laptop.

• One of the possible solutions: use containerized environments and workflow systems that
integrate with containers

P
ar

al
le

l P
ro

gr
am

m
in

g
M

et
ho

do
lo

gi
es

IHPCSS24 Talk: Containers, Sarah Beecroft, Pawsey, Tuesday 2pm
IHPCSS24 Talk: Workflow Tools, Scott Callaghan, Univ. Southern California, Friday 9am

Which programming language is best?

Which parallel programming model is the most appropriate?

Which architecture should I target?

Should I use GPUs?
Will my application be portable
between different GPUs?

Should I profile and optimize my
code?

Is my code energy efficient?

Should I use Python?

Do I really need to learn Fortran?
Why the speaker looks confused as well?

What are these marsupials he
mentioned at the beginning?

This is why we love HPC!!!

• There is so much you can do
• Diverse tools and techniques

• A lot of things to discover and develop

Start with learning well established
standards and methodologies and go

from there.

Good luck!

37

Agenda

• The Need for Speed Scale

• Current Trends in Supercomputing Technology

• Parallel Programming Models

• Challenges

• How to choose your track?

P
ar

al
le

l P
ro

gr
am

m
in

g
M

et
ho

do
lo

gi
es

38

Track 1: An introduction to shared-memory parallelism and
accelerator programming
• Single-node programming, and provides techniques to parallelize codes over multiple CPUs,

as well as offload processing to GPUs.
• It will also teach techniques to tackle challenges commonly faced in shared-memory

programming and GPU offloading, such as:
• load-balancing,
• data race protection,
• GPU offloading latency hiding.

• Track 1 is the opportunity to get a first experience with parallel programming. Therefore, Track
1 is most valuable for students who are discovering parallel programming.

• This track will be taught using OpenMP, a technology that has been the major solution to
shared-memory programming in HPC for the better part of the last three decades. In addition
to being highly optimized, this directive-based solution allows one to incrementally parallelize
codes, which makes it widely popular.

• Prerequisites: this track has no prerequisite other than a familiarity with compiled programming
languages as the teaching material is available in C and FORTRAN.

P
ar

al
le

l P
ro

gr
am

m
in

g
M

et
ho

do
lo

gi
es

39

Track 2: Advanced distributed-memory programming

• Multi-node programming with the MPI library, leveraging the processing power, memory
bandwidth and filesystem IO available across distributed-memory architectures.

• Track 2 is the opportunity for students with existing MPI experience to learn to write efficient
scalable programs for large HPC systems by understanding more about:

• the internals of the MPI library;

• advanced use of collective operations;
• MPI derived datatypes.

• Prerequisites: due to the more advanced nature of this track, participants are required to have
existing knowledge of basic MPI programming.

• Participants must already be able to compile and run an MPI program, construct simple point-
to-point communications, use basic collective operations such as broadcast and reduce, use
non-blocking operations and construct basic derived datatypes.

• Similarly to Track 1, the teaching content in this track will be provided in C, C++ or Fortran.

P
ar

al
le

l P
ro

gr
am

m
in

g
M

et
ho

do
lo

gi
es

40

Which track should I choose?

Disclaimer: Every individual case is unique. This slide is a collection of recommendations rather than definite answer to the above
question. There might be other important reasons related to your individual case. If in real doubt – talk to your mentor !

• I have never done parallel programming– Track 1

• I have done some parallel programming but very basic and never used MPI or OpenMP - Track 1

• I need to implement GPU acceleration in my code – Track 1

• My code uses MPI and it scales relatively well, I am familiar with MPI and am looking to further improve its parallel
performance:

• Improving MPI performance – Track 2

• Improving single node performance (hybrid approach), including GPU – Track 1/Track 2

• My code uses MPI and OpenMP including GPU offloading – Track 2

• I don’t use C/C++ or Fortran in my work and although I have some basic knowledge to follow lectures, I am not even sure if
OpenMP and/or MPI are relevant to my case – talk to your mentor !

• My work is mainly to develop workflows (e.g. bioinformatics) rather than codes for each workflow component – Track 1

• I was sure about my choice, but after Maciej’s talk I’m not – sorry! talk to your me!

P
ar

al
le

l P
ro

gr
am

m
in

g
M

et
ho

do
lo

gi
es

41

Thankyou
Questions?
Thankyou
Questions?
Thankyou
Questions?

