
Numerical Libraries

James Willis

IHPCSS - Kobe, Japan, July 12, 2024

James Willis Numerical Libraries IHPCSS - Kobe, Japan, July 12, 2024 1 / 1

Overview

Modular programming:
I What is it?
I How do we implement it?
I Examples

Libraries
Module systems
Scientific libraries
Examples using GSL and cuFFT

James Willis Numerical Libraries IHPCSS - Kobe, Japan, July 12, 2024 2 / 1

1

Don’t reinvent the wheel!

James Willis Numerical Libraries IHPCSS - Kobe, Japan, July 12, 2024 3 / 1

Modular programming
Motivation

Scientific software can be very large and complex, with lots of subtleties.
Interactions grow as (number of lines of code)2.
You’re either recoding the same thing, or are copy-pasting from elsewhere increasing the
chance of mistakes.

How to
Take a step back and look at what you want to achieve from a top-level perspective.
Design the interface (header files in C++, interface in Fortran).
Implementation is separate (ideally separate file).
Enforce boundaries. Avoid global variables! Use namespaces where needed (C++).

Advantages
Modules can be unit tested individually.
Rebuilding software becomes much more efficient.
Modifying code is much easier and version control is more powerful.

James Willis Numerical Libraries IHPCSS - Kobe, Japan, July 12, 2024 4 / 1

Modular programming
Motivation

Scientific software can be very large and complex, with lots of subtleties.
Interactions grow as (number of lines of code)2.
You’re either recoding the same thing, or are copy-pasting from elsewhere increasing the
chance of mistakes.

How to
Take a step back and look at what you want to achieve from a top-level perspective.

Design the interface (header files in C++, interface in Fortran).
Implementation is separate (ideally separate file).
Enforce boundaries. Avoid global variables! Use namespaces where needed (C++).

Advantages
Modules can be unit tested individually.
Rebuilding software becomes much more efficient.
Modifying code is much easier and version control is more powerful.

James Willis Numerical Libraries IHPCSS - Kobe, Japan, July 12, 2024 4 / 1

Modular programming
Motivation

Scientific software can be very large and complex, with lots of subtleties.
Interactions grow as (number of lines of code)2.
You’re either recoding the same thing, or are copy-pasting from elsewhere increasing the
chance of mistakes.

How to
Take a step back and look at what you want to achieve from a top-level perspective.
Design the interface (header files in C++, interface in Fortran).
Implementation is separate (ideally separate file).
Enforce boundaries. Avoid global variables! Use namespaces where needed (C++).

Advantages
Modules can be unit tested individually.
Rebuilding software becomes much more efficient.
Modifying code is much easier and version control is more powerful.

James Willis Numerical Libraries IHPCSS - Kobe, Japan, July 12, 2024 4 / 1

Modular programming
Motivation

Scientific software can be very large and complex, with lots of subtleties.
Interactions grow as (number of lines of code)2.
You’re either recoding the same thing, or are copy-pasting from elsewhere increasing the
chance of mistakes.

How to
Take a step back and look at what you want to achieve from a top-level perspective.
Design the interface (header files in C++, interface in Fortran).
Implementation is separate (ideally separate file).
Enforce boundaries. Avoid global variables! Use namespaces where needed (C++).

Advantages
Modules can be unit tested individually.
Rebuilding software becomes much more efficient.
Modifying code is much easier and version control is more powerful.

James Willis Numerical Libraries IHPCSS - Kobe, Japan, July 12, 2024 4 / 1

Compilation and linking
Modular programming requires several object files from different modules to be linked
together.

Lets look at an example: app.cpp/app.f90 contains the main program and we want to
link against alibrary.cpp/alibrary.h/alibraryf.f90/alibraryf.mod which are a
C++ and f90 module.

g++ -g -O2 -c -o app.o app.cpp
g++ -g -O2 -c -o alibrary.o alibrary.cpp
g++ -g app.o alibrary.o -o cppapp

gfortran -g -O2 -c -o app.o app.f90
gfortran -g -O2 -c -o alibraryf.o alibraryf.f90
gfortran -g app.o alibraryf.o -o f90app

(by the way, please use make or cmake in real life).

What if we wanted to use our alibrary in another project called newapp, without
recompiling alibrary.cpp or alibraryf.f90?

James Willis Numerical Libraries IHPCSS - Kobe, Japan, July 12, 2024 5 / 1

Compilation and linking
Modular programming requires several object files from different modules to be linked
together.

Lets look at an example: app.cpp/app.f90 contains the main program and we want to
link against alibrary.cpp/alibrary.h/alibraryf.f90/alibraryf.mod which are a
C++ and f90 module.

g++ -g -O2 -c -o app.o app.cpp
g++ -g -O2 -c -o alibrary.o alibrary.cpp
g++ -g app.o alibrary.o -o cppapp

gfortran -g -O2 -c -o app.o app.f90
gfortran -g -O2 -c -o alibraryf.o alibraryf.f90
gfortran -g app.o alibraryf.o -o f90app

(by the way, please use make or cmake in real life).

What if we wanted to use our alibrary in another project called newapp, without
recompiling alibrary.cpp or alibraryf.f90?

James Willis Numerical Libraries IHPCSS - Kobe, Japan, July 12, 2024 5 / 1

Compilation and linking
Modular programming requires several object files from different modules to be linked
together.

Lets look at an example: app.cpp/app.f90 contains the main program and we want to
link against alibrary.cpp/alibrary.h/alibraryf.f90/alibraryf.mod which are a
C++ and f90 module.

g++ -g -O2 -c -o app.o app.cpp
g++ -g -O2 -c -o alibrary.o alibrary.cpp
g++ -g app.o alibrary.o -o cppapp

gfortran -g -O2 -c -o app.o app.f90
gfortran -g -O2 -c -o alibraryf.o alibraryf.f90
gfortran -g app.o alibraryf.o -o f90app

(by the way, please use make or cmake in real life).

What if we wanted to use our alibrary in another project called newapp, without
recompiling alibrary.cpp or alibraryf.f90?

James Willis Numerical Libraries IHPCSS - Kobe, Japan, July 12, 2024 5 / 1

Compilation and linking
Modular programming requires several object files from different modules to be linked
together.

Lets look at an example: app.cpp/app.f90 contains the main program and we want to
link against alibrary.cpp/alibrary.h/alibraryf.f90/alibraryf.mod which are a
C++ and f90 module.

g++ -g -O2 -c -o app.o app.cpp
g++ -g -O2 -c -o alibrary.o alibrary.cpp
g++ -g app.o alibrary.o -o cppapp

gfortran -g -O2 -c -o app.o app.f90
gfortran -g -O2 -c -o alibraryf.o alibraryf.f90
gfortran -g app.o alibraryf.o -o f90app

(by the way, please use make or cmake in real life).

What if we wanted to use our alibrary in another project called newapp, without
recompiling alibrary.cpp or alibraryf.f90?

James Willis Numerical Libraries IHPCSS - Kobe, Japan, July 12, 2024 5 / 1

From modular programming to libraries

Copy .o and .h to separate directories:

alibrary.h -> /base/include/alibrary.h
alibraryf.mod -> /base/include/alibraryf.mod
alibrary.o -> /base/lib/alibrary.o
alibraryf.o -> /base/lib/alibraryf.o

Must let compiler know where they are:
I Add -I flag for include directories.
I Absolute path for object file (only for now!).

g++ -g -O2 -I/base/include -c -o newapp.o newapp.cpp
g++ -g -o newapp newapp.o /base/lib/alibrary.o

gfortran -g -O2 -I/base/include -c -o newf90app.o newf90app.f90
gfortran -g -o newf90app newf90app.o /base/lib/alibraryf.o

James Willis Numerical Libraries IHPCSS - Kobe, Japan, July 12, 2024 6 / 1

From modular programming to libraries
Copy .o and .h to separate directories:

alibrary.h -> /base/include/alibrary.h
alibraryf.mod -> /base/include/alibraryf.mod
alibrary.o -> /base/lib/alibrary.o
alibraryf.o -> /base/lib/alibraryf.o

Must let compiler know where they are:
I Add -I flag for include directories.
I Absolute path for object file (only for now!).

g++ -g -O2 -I/base/include -c -o newapp.o newapp.cpp
g++ -g -o newapp newapp.o /base/lib/alibrary.o

gfortran -g -O2 -I/base/include -c -o newf90app.o newf90app.f90
gfortran -g -o newf90app newf90app.o /base/lib/alibraryf.o

James Willis Numerical Libraries IHPCSS - Kobe, Japan, July 12, 2024 6 / 1

From modular programming to libraries
Copy .o and .h to separate directories:

alibrary.h -> /base/include/alibrary.h
alibraryf.mod -> /base/include/alibraryf.mod
alibrary.o -> /base/lib/alibrary.o
alibraryf.o -> /base/lib/alibraryf.o

Must let compiler know where they are:
I Add -I flag for include directories.
I Absolute path for object file (only for now!).

g++ -g -O2 -I/base/include -c -o newapp.o newapp.cpp
g++ -g -o newapp newapp.o /base/lib/alibrary.o

gfortran -g -O2 -I/base/include -c -o newf90app.o newf90app.f90
gfortran -g -o newf90app newf90app.o /base/lib/alibraryf.o

James Willis Numerical Libraries IHPCSS - Kobe, Japan, July 12, 2024 6 / 1

Building with Libraries
Real libraries are similar; they have:

to be installed (and perhaps built first)
header files (.h or .hpp) or module files (.mod) in some folder
library files (object code) in a related folder.

Linux: library filenames start with lib and end in .a or .so.

g++ -g -o cppapp cppapp.o /base/lib/libalibrary.a
gfortran -g -o f90app f90app.o /base/lib/alibraryf.a

Instead of giving the explict path in linker command, we should specify:
the path to the library’s object using the -L option
the object code using -lNAME (with a lower case letter -l)
libraries should come after the object files that use them.

g++ -g -L/base/lib -o cppapp cppapp.o -lalibrary
gfortran -g -L/base/lib -o f90app f90app.o -lalibraryf

James Willis Numerical Libraries IHPCSS - Kobe, Japan, July 12, 2024 7 / 1

Building with Libraries
Real libraries are similar; they have:

to be installed (and perhaps built first)
header files (.h or .hpp) or module files (.mod) in some folder
library files (object code) in a related folder.

Linux: library filenames start with lib and end in .a or .so.

g++ -g -o cppapp cppapp.o /base/lib/libalibrary.a
gfortran -g -o f90app f90app.o /base/lib/alibraryf.a

Instead of giving the explict path in linker command, we should specify:
the path to the library’s object using the -L option
the object code using -lNAME (with a lower case letter -l)
libraries should come after the object files that use them.

g++ -g -L/base/lib -o cppapp cppapp.o -lalibrary
gfortran -g -L/base/lib -o f90app f90app.o -lalibraryf

James Willis Numerical Libraries IHPCSS - Kobe, Japan, July 12, 2024 7 / 1

Building with Libraries
Real libraries are similar; they have:

to be installed (and perhaps built first)
header files (.h or .hpp) or module files (.mod) in some folder
library files (object code) in a related folder.

Linux: library filenames start with lib and end in .a or .so.

g++ -g -o cppapp cppapp.o /base/lib/libalibrary.a
gfortran -g -o f90app f90app.o /base/lib/alibraryf.a

Instead of giving the explict path in linker command, we should specify:
the path to the library’s object using the -L option
the object code using -lNAME (with a lower case letter -l)
libraries should come after the object files that use them.

g++ -g -L/base/lib -o cppapp cppapp.o -lalibrary
gfortran -g -L/base/lib -o f90app f90app.o -lalibraryf

James Willis Numerical Libraries IHPCSS - Kobe, Japan, July 12, 2024 7 / 1

Building with Libraries
Real libraries are similar; they have:

to be installed (and perhaps built first)
header files (.h or .hpp) or module files (.mod) in some folder
library files (object code) in a related folder.

Linux: library filenames start with lib and end in .a or .so.

g++ -g -o cppapp cppapp.o /base/lib/libalibrary.a
gfortran -g -o f90app f90app.o /base/lib/alibraryf.a

Instead of giving the explict path in linker command, we should specify:

the path to the library’s object using the -L option
the object code using -lNAME (with a lower case letter -l)
libraries should come after the object files that use them.

g++ -g -L/base/lib -o cppapp cppapp.o -lalibrary
gfortran -g -L/base/lib -o f90app f90app.o -lalibraryf

James Willis Numerical Libraries IHPCSS - Kobe, Japan, July 12, 2024 7 / 1

Building with Libraries
Real libraries are similar; they have:

to be installed (and perhaps built first)
header files (.h or .hpp) or module files (.mod) in some folder
library files (object code) in a related folder.

Linux: library filenames start with lib and end in .a or .so.

g++ -g -o cppapp cppapp.o /base/lib/libalibrary.a
gfortran -g -o f90app f90app.o /base/lib/alibraryf.a

Instead of giving the explict path in linker command, we should specify:
the path to the library’s object using the -L option
the object code using -lNAME (with a lower case letter -l)
libraries should come after the object files that use them.

g++ -g -L/base/lib -o cppapp cppapp.o -lalibrary
gfortran -g -L/base/lib -o f90app f90app.o -lalibraryf

James Willis Numerical Libraries IHPCSS - Kobe, Japan, July 12, 2024 7 / 1

More Notes on Libraries

Standard C++ libaries (vector,cmath,...) do not need any -I, -L or -l flags.

-I and -L are not needed when:
I Libraries have been installed in standard directories, i.e. /usr/include, /usr/lib, ...

I A library has been loaded with a module load command on a HPC cluster
I Libraries have been installed with a package manager

(Note: the -lNAME flag is still needed to specify the name of the library)

If you compile your own libraries in non-standard locations, you do need -I and -L options
(as well as the -lNAME clause).

James Willis Numerical Libraries IHPCSS - Kobe, Japan, July 12, 2024 8 / 1

More Notes on Libraries

Standard C++ libaries (vector,cmath,...) do not need any -I, -L or -l flags.

-I and -L are not needed when:

I Libraries have been installed in standard directories, i.e. /usr/include, /usr/lib, ...

I A library has been loaded with a module load command on a HPC cluster
I Libraries have been installed with a package manager

(Note: the -lNAME flag is still needed to specify the name of the library)

If you compile your own libraries in non-standard locations, you do need -I and -L options
(as well as the -lNAME clause).

James Willis Numerical Libraries IHPCSS - Kobe, Japan, July 12, 2024 8 / 1

More Notes on Libraries

Standard C++ libaries (vector,cmath,...) do not need any -I, -L or -l flags.

-I and -L are not needed when:
I Libraries have been installed in standard directories, i.e. /usr/include, /usr/lib, ...

I A library has been loaded with a module load command on a HPC cluster
I Libraries have been installed with a package manager

(Note: the -lNAME flag is still needed to specify the name of the library)

If you compile your own libraries in non-standard locations, you do need -I and -L options
(as well as the -lNAME clause).

James Willis Numerical Libraries IHPCSS - Kobe, Japan, July 12, 2024 8 / 1

More Notes on Libraries

Standard C++ libaries (vector,cmath,...) do not need any -I, -L or -l flags.

-I and -L are not needed when:
I Libraries have been installed in standard directories, i.e. /usr/include, /usr/lib, ...

I A library has been loaded with a module load command on a HPC cluster

I Libraries have been installed with a package manager

(Note: the -lNAME flag is still needed to specify the name of the library)

If you compile your own libraries in non-standard locations, you do need -I and -L options
(as well as the -lNAME clause).

James Willis Numerical Libraries IHPCSS - Kobe, Japan, July 12, 2024 8 / 1

More Notes on Libraries

Standard C++ libaries (vector,cmath,...) do not need any -I, -L or -l flags.

-I and -L are not needed when:
I Libraries have been installed in standard directories, i.e. /usr/include, /usr/lib, ...

I A library has been loaded with a module load command on a HPC cluster
I Libraries have been installed with a package manager

(Note: the -lNAME flag is still needed to specify the name of the library)

If you compile your own libraries in non-standard locations, you do need -I and -L options
(as well as the -lNAME clause).

James Willis Numerical Libraries IHPCSS - Kobe, Japan, July 12, 2024 8 / 1

More Notes on Libraries

Standard C++ libaries (vector,cmath,...) do not need any -I, -L or -l flags.

-I and -L are not needed when:
I Libraries have been installed in standard directories, i.e. /usr/include, /usr/lib, ...

I A library has been loaded with a module load command on a HPC cluster
I Libraries have been installed with a package manager

(Note: the -lNAME flag is still needed to specify the name of the library)

If you compile your own libraries in non-standard locations, you do need -I and -L options
(as well as the -lNAME clause).

James Willis Numerical Libraries IHPCSS - Kobe, Japan, July 12, 2024 8 / 1

More Notes on Libraries

Standard C++ libaries (vector,cmath,...) do not need any -I, -L or -l flags.

-I and -L are not needed when:
I Libraries have been installed in standard directories, i.e. /usr/include, /usr/lib, ...

I A library has been loaded with a module load command on a HPC cluster
I Libraries have been installed with a package manager

(Note: the -lNAME flag is still needed to specify the name of the library)

If you compile your own libraries in non-standard locations, you do need -I and -L options
(as well as the -lNAME clause).

James Willis Numerical Libraries IHPCSS - Kobe, Japan, July 12, 2024 8 / 1

Example: MPI
$ mpicc -show
gcc -I/opt/intel/compilers_and_libraries_2019.3.199/linux/mpi/intel64/include
-L/opt/intel/compilers_and_libraries_2019.3.199/linux/mpi/intel64/lib/release
-L/opt/intel/compilers_and_libraries_2019.3.199/linux/mpi/intel64/lib
-Xlinker --enable-new-dtags -Xlinker -rpath -Xlinker
/opt/intel/compilers_and_libraries_2019.3.199/linux/mpi/intel64/lib/release
-Xlinker -rpath -Xlinker /opt/intel/compilers_and_libraries_2019.3.199/linux/mpi/intel64/lib
-lmpifort -lmpi -lrt -lpthread -Xlinker --enable-new-dtags -ldl

$ mpifc -show
gfortran -I/opt/intel/compilers_and_libraries_2019.3.199/linux/mpi/intel64/include/gfortran/4.8.0
-I/opt/intel/compilers_and_libraries_2019.3.199/linux/mpi/intel64/include
-L/opt/intel/compilers_and_libraries_2019.3.199/linux/mpi/intel64/lib/release
-L/opt/intel/compilers_and_libraries_2019.3.199/linux/mpi/intel64/lib
-Xlinker --enable-new-dtags -Xlinker -rpath -Xlinker
/opt/intel/compilers_and_libraries_2019.3.199/linux/mpi/intel64/lib/release
-Xlinker -rpath -Xlinker /opt/intel/compilers_and_libraries_2019.3.199/linux/mpi/intel64/lib
-lmpifort -lmpi -lrt -lpthread -Xlinker --enable-new-dtags -ldl

James Willis Numerical Libraries IHPCSS - Kobe, Japan, July 12, 2024 9 / 1

Software modules

Software modules are a very common way to make software available on shared supercomputers.

$ module avail
------------------------------- /opt/modulefiles ------------------------------
abaqus/2016 abyss/2.0.2 anaconda/4.2.0-3.5.2
abaqus/2017 AI/anaconda2-5.1.0_gpu anaconda2/5.1.0
Abinit/7.10.5 AI/anaconda3-5.1.0_gpu anaconda2/5.2.0
Abinit/8.0.8b AI/anaconda3-5.1.0_gpu.2018-08 anaconda3/2019.03
Abinit/8.4.3 AIPS/31DEC16 anaconda3/5.1.0
abyss/1.5.2 allpaths-lg/52488 anaconda3/5.2.0(default)
...

For example, if you want to load the OpenBLAS library try module avail openblas and
module help openblas (and module spider openblas for systems using lmod).

Must first do a module load MODULE before compiling and before running.

James Willis Numerical Libraries IHPCSS - Kobe, Japan, July 12, 2024 10 / 1

Software modules

Software modules are a very common way to make software available on shared supercomputers.

$ module avail
------------------------------- /opt/modulefiles ------------------------------
abaqus/2016 abyss/2.0.2 anaconda/4.2.0-3.5.2
abaqus/2017 AI/anaconda2-5.1.0_gpu anaconda2/5.1.0
Abinit/7.10.5 AI/anaconda3-5.1.0_gpu anaconda2/5.2.0
Abinit/8.0.8b AI/anaconda3-5.1.0_gpu.2018-08 anaconda3/2019.03
Abinit/8.4.3 AIPS/31DEC16 anaconda3/5.1.0
abyss/1.5.2 allpaths-lg/52488 anaconda3/5.2.0(default)
...

For example, if you want to load the OpenBLAS library try module avail openblas and
module help openblas (and module spider openblas for systems using lmod).

Must first do a module load MODULE before compiling and before running.

James Willis Numerical Libraries IHPCSS - Kobe, Japan, July 12, 2024 10 / 1

Software modules

Software modules are a very common way to make software available on shared supercomputers.

$ module avail
------------------------------- /opt/modulefiles ------------------------------
abaqus/2016 abyss/2.0.2 anaconda/4.2.0-3.5.2
abaqus/2017 AI/anaconda2-5.1.0_gpu anaconda2/5.1.0
Abinit/7.10.5 AI/anaconda3-5.1.0_gpu anaconda2/5.2.0
Abinit/8.0.8b AI/anaconda3-5.1.0_gpu.2018-08 anaconda3/2019.03
Abinit/8.4.3 AIPS/31DEC16 anaconda3/5.1.0
abyss/1.5.2 allpaths-lg/52488 anaconda3/5.2.0(default)
...

For example, if you want to load the OpenBLAS library try module avail openblas and
module help openblas (and module spider openblas for systems using lmod).

Must first do a module load MODULE before compiling and before running.

James Willis Numerical Libraries IHPCSS - Kobe, Japan, July 12, 2024 10 / 1

Software modules

Software modules are a very common way to make software available on shared supercomputers.

$ module avail
------------------------------- /opt/modulefiles ------------------------------
abaqus/2016 abyss/2.0.2 anaconda/4.2.0-3.5.2
abaqus/2017 AI/anaconda2-5.1.0_gpu anaconda2/5.1.0
Abinit/7.10.5 AI/anaconda3-5.1.0_gpu anaconda2/5.2.0
Abinit/8.0.8b AI/anaconda3-5.1.0_gpu.2018-08 anaconda3/2019.03
Abinit/8.4.3 AIPS/31DEC16 anaconda3/5.1.0
abyss/1.5.2 allpaths-lg/52488 anaconda3/5.2.0(default)
...

For example, if you want to load the OpenBLAS library try module avail openblas and
module help openblas (and module spider openblas for systems using lmod).

Must first do a module load MODULE before compiling and before running.

James Willis Numerical Libraries IHPCSS - Kobe, Japan, July 12, 2024 10 / 1

Installing libraries from source

What to do when your package manager does not have the library, or it’s not in the software
module stack, and you do not have permission to install packages in the system paths?

Compile from source code with a "base" or "prefix" directory.

Common installation procedure (but read documentation!):

$./configure --prefix=<BASE>
$ make
$ make install

$ cmake -DCMAKE_INSTALL_PREFIX=<BASE>
$ make
$ make install

You choose the <BASE>, but it should be a directory that you have write permission to, e.g., a
subdirectory of your $HOME.

James Willis Numerical Libraries IHPCSS - Kobe, Japan, July 12, 2024 11 / 1

Installing libraries from source

What to do when your package manager does not have the library, or it’s not in the software
module stack, and you do not have permission to install packages in the system paths?

Compile from source code with a "base" or "prefix" directory.

Common installation procedure (but read documentation!):

$./configure --prefix=<BASE>
$ make
$ make install

$ cmake -DCMAKE_INSTALL_PREFIX=<BASE>
$ make
$ make install

You choose the <BASE>, but it should be a directory that you have write permission to, e.g., a
subdirectory of your $HOME.

James Willis Numerical Libraries IHPCSS - Kobe, Japan, July 12, 2024 11 / 1

Using libraries that are not in standard directories
For libraries that are not in standard directories, you need -I<BASE>/include and
-L<BASE>/lib options in your compilation/link commands.

Alternatively, you can omit these by setting some linux environment variables:

export CPATH="$CPATH:<BASE>/include" # compiler looks here for include files
export LIBRARY_PATH="$LIBRARY_PATH:<BASE>/lib" # and here for library files
export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:<BASE>/lib" # runtime linker looks here

You either enter these commands on the linux prompt before compiling, or, to set these
automatically when you log in, add these lines to the .bashrc file in your home folder.

The last one (LD_LIBRARY_PATH) may be necessary to run the application, even when it
was successfully built and linked already.

If the library installs binary applications (i.e. commands) as well, you’ll also need to set

export PATH="$PATH:<BASE>/bin" # linux shell looks for executables here

James Willis Numerical Libraries IHPCSS - Kobe, Japan, July 12, 2024 12 / 1

Using libraries that are not in standard directories
For libraries that are not in standard directories, you need -I<BASE>/include and
-L<BASE>/lib options in your compilation/link commands.

Alternatively, you can omit these by setting some linux environment variables:

export CPATH="$CPATH:<BASE>/include" # compiler looks here for include files
export LIBRARY_PATH="$LIBRARY_PATH:<BASE>/lib" # and here for library files
export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:<BASE>/lib" # runtime linker looks here

You either enter these commands on the linux prompt before compiling, or, to set these
automatically when you log in, add these lines to the .bashrc file in your home folder.

The last one (LD_LIBRARY_PATH) may be necessary to run the application, even when it
was successfully built and linked already.

If the library installs binary applications (i.e. commands) as well, you’ll also need to set

export PATH="$PATH:<BASE>/bin" # linux shell looks for executables here

James Willis Numerical Libraries IHPCSS - Kobe, Japan, July 12, 2024 12 / 1

Using libraries that are not in standard directories
For libraries that are not in standard directories, you need -I<BASE>/include and
-L<BASE>/lib options in your compilation/link commands.

Alternatively, you can omit these by setting some linux environment variables:

export CPATH="$CPATH:<BASE>/include" # compiler looks here for include files
export LIBRARY_PATH="$LIBRARY_PATH:<BASE>/lib" # and here for library files
export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:<BASE>/lib" # runtime linker looks here

You either enter these commands on the linux prompt before compiling, or, to set these
automatically when you log in, add these lines to the .bashrc file in your home folder.

The last one (LD_LIBRARY_PATH) may be necessary to run the application, even when it
was successfully built and linked already.

If the library installs binary applications (i.e. commands) as well, you’ll also need to set

export PATH="$PATH:<BASE>/bin" # linux shell looks for executables here

James Willis Numerical Libraries IHPCSS - Kobe, Japan, July 12, 2024 12 / 1

2

So many libraries, so little time. . .

James Willis Numerical Libraries IHPCSS - Kobe, Japan, July 12, 2024 13 / 1

Some libraries for scientific computing (CPU)
BLAS interface for libraries for
basic linear algebra operations.
C C++ Fortran

LAPACK Linear solvers,
eigenvalue problems, SVD,
factorization. C C++ Fortran Python

ScaLAPACK Distributed
version of LAPACK. C C++ Fortran

ARPACK-NG and SLEPc
Eigenvalue problems. C C++ Fortran

Boost Peer-reviewed portable
C++ source libraries C++

Eigen Matrices, vectors,
numerical solvers, . . . C++

FFTW Fourier and related
transforms. C C++ Fortran

HDF5 and NetCDF Portable
data model, library, and file
formats. C C++ Fortran

GSL Numerical analysis library.
C C++

PETSc Scalable (parallel)
solution of partial differential
equations. C C++ Fortran

Armadillo Matrix and vector
maths similar to MATLAB. C++

Blaze Dense and sparse
arithmetic. C++

Dlib Machine learning
algorithms and tools. C++

Mlpack Machine learning
algorithms. C++ Python

Trilinos algorithms etc. for the
solution of large-scale, complex
multi-physics engineering and
scientific problems. C C++

James Willis Numerical Libraries IHPCSS - Kobe, Japan, July 12, 2024 14 / 1

Some libraries for scientific computing (CPU)
BLAS interface for libraries for
basic linear algebra operations.
C C++ Fortran

LAPACK Linear solvers,
eigenvalue problems, SVD,
factorization. C C++ Fortran Python

ScaLAPACK Distributed
version of LAPACK. C C++ Fortran

ARPACK-NG and SLEPc
Eigenvalue problems. C C++ Fortran

Boost Peer-reviewed portable
C++ source libraries C++

Eigen Matrices, vectors,
numerical solvers, . . . C++

FFTW Fourier and related
transforms. C C++ Fortran

HDF5 and NetCDF Portable
data model, library, and file
formats. C C++ Fortran

GSL Numerical analysis library.
C C++

PETSc Scalable (parallel)
solution of partial differential
equations. C C++ Fortran

Armadillo Matrix and vector
maths similar to MATLAB. C++

Blaze Dense and sparse
arithmetic. C++

Dlib Machine learning
algorithms and tools. C++

Mlpack Machine learning
algorithms. C++ Python

Trilinos algorithms etc. for the
solution of large-scale, complex
multi-physics engineering and
scientific problems. C C++

James Willis Numerical Libraries IHPCSS - Kobe, Japan, July 12, 2024 14 / 1

Some libraries for scientific computing (CPU)
BLAS interface for libraries for
basic linear algebra operations.
C C++ Fortran

LAPACK Linear solvers,
eigenvalue problems, SVD,
factorization. C C++ Fortran Python

ScaLAPACK Distributed
version of LAPACK. C C++ Fortran

ARPACK-NG and SLEPc
Eigenvalue problems. C C++ Fortran

Boost Peer-reviewed portable
C++ source libraries C++

Eigen Matrices, vectors,
numerical solvers, . . . C++

FFTW Fourier and related
transforms. C C++ Fortran

HDF5 and NetCDF Portable
data model, library, and file
formats. C C++ Fortran

GSL Numerical analysis library.
C C++

PETSc Scalable (parallel)
solution of partial differential
equations. C C++ Fortran

Armadillo Matrix and vector
maths similar to MATLAB. C++

Blaze Dense and sparse
arithmetic. C++

Dlib Machine learning
algorithms and tools. C++

Mlpack Machine learning
algorithms. C++ Python

Trilinos algorithms etc. for the
solution of large-scale, complex
multi-physics engineering and
scientific problems. C C++

James Willis Numerical Libraries IHPCSS - Kobe, Japan, July 12, 2024 14 / 1

Some libraries for scientific computing (GPU)

cuBLAS / rocBLAS GPU-accelerated BLAS implementations

cuSOLVER / rocSOLVER(β) / MAGMA GPU-accelerated LAPACK-like libraries

cuSPARSE / rocSPARSE GPU-accelerated sparse matrix libraries

cuFFT / rocFFT GPU-accelerated Fast Fourier Transforms libraries

cuRAND / rocRAND Random number generation on the GPU

NPP (CUDA) Performance primitives for image & video processing

Thrust GPU-accelerated STL-like library (parallel algorithms)

James Willis Numerical Libraries IHPCSS - Kobe, Japan, July 12, 2024 15 / 1

Some libraries for scientific computing (Python)

NumPy Faster arrays for Python. Mind all the lessons from the HPC Python programming
session!

SciPy Provides many user-friendly and efficient numerical routines such as routines for numerical
integration and optimization.

Numba JIT compilation of a subset of Python and NumPy code into fast machine code.

Pandas Tabular data manipulation and analysis.

scikit-learn (sklearn) Machine Learning in Python. Simple and efficient tools for data mining and
data analysis.

TensorFlow & PyTorch Neural nets/deep learning libraries.

Stan, PyMC Statistical modelling, data analysis, and Bayesian predictions.

James Willis Numerical Libraries IHPCSS - Kobe, Japan, July 12, 2024 16 / 1

3

Example: GNU Scientific Library (GSL)

James Willis Numerical Libraries IHPCSS - Kobe, Japan, July 12, 2024 17 / 1

Example: GNU Scientific Library (GSL)

Is a C library containing many useful scientific routines, such as:
Root finding

Minimization

Sorting

Integration, differentiation, interpolation,
approximation

Statistics, histograms, fitting

Monte Carlo integration, simulated
annealing

ODEs

Polynomials, permutations

Special functions

Vectors, matrices

Note: C library means we’ll likely need to deal with some pointers and casts.

James Willis Numerical Libraries IHPCSS - Kobe, Japan, July 12, 2024 18 / 1

Example: GNU Scientific Library (GSL)

Is a C library containing many useful scientific routines, such as:
Root finding

Minimization

Sorting

Integration, differentiation, interpolation,
approximation

Statistics, histograms, fitting

Monte Carlo integration, simulated
annealing

ODEs

Polynomials, permutations

Special functions

Vectors, matrices

Note: C library means we’ll likely need to deal with some pointers and casts.

James Willis Numerical Libraries IHPCSS - Kobe, Japan, July 12, 2024 18 / 1

GSL root finding example (gslrx.cpp)
Suppose we want to find where f(x) = a cos(sin(v + wx)) + bx− cx2 is zero.

#include <iostream>
#include <gsl/gsl_roots.h>
#include <gsl/gsl_errno.h>

struct Params {double v, w, a, b, c;};

double examplefunction(double x, void* param){
auto [v, w, a, b, c] = *(Params*)param;
return a*cos(sin(v+w*x))+b*x-c*x*x;

}

int main() {
double x_lo = -4.0;
double x_hi = 5.0;
Params args = {0.3, 2./3., 2., 1./1.3, 1/30.};
gsl_root_fsolver* solver;
solver = gsl_root_fsolver_alloc(

gsl_root_fsolver_brent);

gsl_function fwrapper;
fwrapper.function = examplefunction;
fwrapper.params = &args;
gsl_root_fsolver_set(solver,&fwrapper,x_lo,x_hi);

std::cout << "iter lower upper root err\n";
int status, iter = 0;
do {
gsl_root_fsolver_iterate(solver);
double x_rt = gsl_root_fsolver_root(solver);
double x_lo = gsl_root_fsolver_x_lower(solver);
double x_hi = gsl_root_fsolver_x_upper(solver);
std::cout << iter++ <<" "<< x_lo <<" "<< x_hi

<<" "<< x_rt <<" "<<x_hi-x_lo<<"\n";
status=gsl_root_test_interval(x_lo,x_hi,0,1e-3);

} while (status==GSL_CONTINUE and iter < 100);
gsl_root_fsolver_free(solver);

}

James Willis Numerical Libraries IHPCSS - Kobe, Japan, July 12, 2024 19 / 1

GSL root finding example (gslrx.cpp)
Suppose we want to find where f(x) = a cos(sin(v + wx)) + bx− cx2 is zero.

#include <iostream>
#include <gsl/gsl_roots.h>
#include <gsl/gsl_errno.h>

struct Params {double v, w, a, b, c;};

double examplefunction(double x, void* param){
auto [v, w, a, b, c] = *(Params*)param;
return a*cos(sin(v+w*x))+b*x-c*x*x;

}

int main() {
double x_lo = -4.0;
double x_hi = 5.0;
Params args = {0.3, 2./3., 2., 1./1.3, 1/30.};
gsl_root_fsolver* solver;
solver = gsl_root_fsolver_alloc(

gsl_root_fsolver_brent);

gsl_function fwrapper;
fwrapper.function = examplefunction;
fwrapper.params = &args;
gsl_root_fsolver_set(solver,&fwrapper,x_lo,x_hi);

std::cout << "iter lower upper root err\n";
int status, iter = 0;
do {
gsl_root_fsolver_iterate(solver);
double x_rt = gsl_root_fsolver_root(solver);
double x_lo = gsl_root_fsolver_x_lower(solver);
double x_hi = gsl_root_fsolver_x_upper(solver);
std::cout << iter++ <<" "<< x_lo <<" "<< x_hi

<<" "<< x_rt <<" "<<x_hi-x_lo<<"\n";
status=gsl_root_test_interval(x_lo,x_hi,0,1e-3);

} while (status==GSL_CONTINUE and iter < 100);
gsl_root_fsolver_free(solver);

}

James Willis Numerical Libraries IHPCSS - Kobe, Japan, July 12, 2024 19 / 1

GSL root finding example (gslrx.cpp)
Suppose we want to find where f(x) = a cos(sin(v + wx)) + bx− cx2 is zero.

#include <iostream>
#include <gsl/gsl_roots.h>
#include <gsl/gsl_errno.h>

struct Params {double v, w, a, b, c;};

double examplefunction(double x, void* param){
auto [v, w, a, b, c] = *(Params*)param;
return a*cos(sin(v+w*x))+b*x-c*x*x;

}

int main() {
double x_lo = -4.0;
double x_hi = 5.0;
Params args = {0.3, 2./3., 2., 1./1.3, 1/30.};
gsl_root_fsolver* solver;
solver = gsl_root_fsolver_alloc(

gsl_root_fsolver_brent);

gsl_function fwrapper;
fwrapper.function = examplefunction;
fwrapper.params = &args;
gsl_root_fsolver_set(solver,&fwrapper,x_lo,x_hi);

std::cout << "iter lower upper root err\n";
int status, iter = 0;
do {
gsl_root_fsolver_iterate(solver);
double x_rt = gsl_root_fsolver_root(solver);
double x_lo = gsl_root_fsolver_x_lower(solver);
double x_hi = gsl_root_fsolver_x_upper(solver);
std::cout << iter++ <<" "<< x_lo <<" "<< x_hi

<<" "<< x_rt <<" "<<x_hi-x_lo<<"\n";
status=gsl_root_test_interval(x_lo,x_hi,0,1e-3);

} while (status==GSL_CONTINUE and iter < 100);
gsl_root_fsolver_free(solver);

}

James Willis Numerical Libraries IHPCSS - Kobe, Japan, July 12, 2024 19 / 1

Compilation and linkage
Lots of gsl... stuff.

The rest is just wrappers, setting up
parameters and calling the appropriate
functions.

There are pointers and typecasts,
because we’re dealing with a C library.

How to compile on the command line?

module load gcc
g++ gslrx.cpp -o gslrx -lgsl -lgslcblas

1. When using software modules, you don’t
need the -I and -L options.
2. GSL is usually a module (not on Bridges2).

Output
$./gslrx
iter lower upper root err
0 -4 -1.27657 -1.27657 2.72343
1 -1.95919 -1.27657 -1.95919 0.682622
2 -1.75011 -1.27657 -1.75011 0.473542
3 -1.75011 -1.74893 -1.74893 0.001179

James Willis Numerical Libraries IHPCSS - Kobe, Japan, July 12, 2024 20 / 1

Compilation and linkage
Lots of gsl... stuff.

The rest is just wrappers, setting up
parameters and calling the appropriate
functions.

There are pointers and typecasts,
because we’re dealing with a C library.

How to compile on the command line?

module load gcc
g++ gslrx.cpp -o gslrx -lgsl -lgslcblas

1. When using software modules, you don’t
need the -I and -L options.
2. GSL is usually a module (not on Bridges2).

Output
$./gslrx
iter lower upper root err
0 -4 -1.27657 -1.27657 2.72343
1 -1.95919 -1.27657 -1.95919 0.682622
2 -1.75011 -1.27657 -1.75011 0.473542
3 -1.75011 -1.74893 -1.74893 0.001179

James Willis Numerical Libraries IHPCSS - Kobe, Japan, July 12, 2024 20 / 1

Compilation and linkage
Lots of gsl... stuff.

The rest is just wrappers, setting up
parameters and calling the appropriate
functions.

There are pointers and typecasts,
because we’re dealing with a C library.

How to compile on the command line?

module load gcc
g++ gslrx.cpp -o gslrx -lgsl -lgslcblas

1. When using software modules, you don’t
need the -I and -L options.
2. GSL is usually a module (not on Bridges2).

Output
$./gslrx
iter lower upper root err
0 -4 -1.27657 -1.27657 2.72343
1 -1.95919 -1.27657 -1.95919 0.682622
2 -1.75011 -1.27657 -1.75011 0.473542
3 -1.75011 -1.74893 -1.74893 0.001179

James Willis Numerical Libraries IHPCSS - Kobe, Japan, July 12, 2024 20 / 1

Compilation and linkage
Lots of gsl... stuff.

The rest is just wrappers, setting up
parameters and calling the appropriate
functions.

There are pointers and typecasts,
because we’re dealing with a C library.

How to compile on the command line?

module load gcc
g++ gslrx.cpp -o gslrx -lgsl -lgslcblas

1. When using software modules, you don’t
need the -I and -L options.
2. GSL is usually a module (not on Bridges2).

Output
$./gslrx
iter lower upper root err
0 -4 -1.27657 -1.27657 2.72343
1 -1.95919 -1.27657 -1.95919 0.682622
2 -1.75011 -1.27657 -1.75011 0.473542
3 -1.75011 -1.74893 -1.74893 0.001179

James Willis Numerical Libraries IHPCSS - Kobe, Japan, July 12, 2024 20 / 1

Compilation and linkage
Lots of gsl... stuff.

The rest is just wrappers, setting up
parameters and calling the appropriate
functions.

There are pointers and typecasts,
because we’re dealing with a C library.

How to compile on the command line?

module load gcc
g++ gslrx.cpp -o gslrx -lgsl -lgslcblas

1. When using software modules, you don’t
need the -I and -L options.
2. GSL is usually a module (not on Bridges2).

Output
$./gslrx
iter lower upper root err
0 -4 -1.27657 -1.27657 2.72343
1 -1.95919 -1.27657 -1.95919 0.682622
2 -1.75011 -1.27657 -1.75011 0.473542
3 -1.75011 -1.74893 -1.74893 0.001179

James Willis Numerical Libraries IHPCSS - Kobe, Japan, July 12, 2024 20 / 1

Compilation and linkage
Lots of gsl... stuff.

The rest is just wrappers, setting up
parameters and calling the appropriate
functions.

There are pointers and typecasts,
because we’re dealing with a C library.

How to compile on the command line?

GSL root finding documentation:
https://www.gnu.org/software/gsl/doc/html/roots.html

module load gcc
g++ gslrx.cpp -o gslrx -lgsl -lgslcblas

1. When using software modules, you don’t
need the -I and -L options.
2. GSL is usually a module (not on Bridges2).

Output
$./gslrx
iter lower upper root err
0 -4 -1.27657 -1.27657 2.72343
1 -1.95919 -1.27657 -1.95919 0.682622
2 -1.75011 -1.27657 -1.75011 0.473542
3 -1.75011 -1.74893 -1.74893 0.001179

James Willis Numerical Libraries IHPCSS - Kobe, Japan, July 12, 2024 20 / 1

4

Using a C or C++ library in Python

James Willis Numerical Libraries IHPCSS - Kobe, Japan, July 12, 2024 21 / 1

But I only like Python!

No problem! Most numerical libraries have a Python API.

If not, you can create your own wrapper using PyBind11, ctypes, SWIG or f2py for Fortran code.

Lets look at an example using PyBind11

James Willis Numerical Libraries IHPCSS - Kobe, Japan, July 12, 2024 22 / 1

But I only like Python!

No problem! Most numerical libraries have a Python API.

If not, you can create your own wrapper using PyBind11, ctypes, SWIG or f2py for Fortran code.

Lets look at an example using PyBind11

James Willis Numerical Libraries IHPCSS - Kobe, Japan, July 12, 2024 22 / 1

But I only like Python!

No problem! Most numerical libraries have a Python API.

If not, you can create your own wrapper using PyBind11, ctypes, SWIG or f2py for Fortran code.

Lets look at an example using PyBind11

James Willis Numerical Libraries IHPCSS - Kobe, Japan, July 12, 2024 22 / 1

PyBind11 example

Suppose we want to use cuFFT to calculate a Fourier transform, but in Python.

We first write a function in C++ that wraps the library call

Then use PyBind11 to create a Python “package”, which we can import and use like any other.

Note: GPU-based FFT functionality (via cuFFT or otherwise) is provided by some packages on
PyPI already.

James Willis Numerical Libraries IHPCSS - Kobe, Japan, July 12, 2024 23 / 1

PyBind11 example

Suppose we want to use cuFFT to calculate a Fourier transform, but in Python.

We first write a function in C++ that wraps the library call

Then use PyBind11 to create a Python “package”, which we can import and use like any other.

Note: GPU-based FFT functionality (via cuFFT or otherwise) is provided by some packages on
PyPI already.

James Willis Numerical Libraries IHPCSS - Kobe, Japan, July 12, 2024 23 / 1

PyBind11 example

Suppose we want to use cuFFT to calculate a Fourier transform, but in Python.

We first write a function in C++ that wraps the library call

Then use PyBind11 to create a Python “package”, which we can import and use like any other.

Note: GPU-based FFT functionality (via cuFFT or otherwise) is provided by some packages on
PyPI already.

James Willis Numerical Libraries IHPCSS - Kobe, Japan, July 12, 2024 23 / 1

PyBind11 example (pycufft.cu)
This is the wrapper, defining a C++ function, that calls the cuFFT C function.

#include <complex>
#include <cufft.h>
#include <vector>

std::vector<std::complex<float>>
fft(const std::vector<float>& signal)

{
const size_t size = signal.size();
float *signal_d;
cudaMalloc((void**)&signal_d,
size*sizeof(float));

cudaMemcpy(signal_d, signal.data(),
size*sizeof(float), cudaMemcpyHostToDevice);

float2 *result_d;
cudaMalloc((void**)&result_d,
(size/2+1)*sizeof(float2));

cufftHandle plan;
cufftPlan1d(&plan, size, CUFFT_R2C, 1);
cufftExecR2C(plan, (cufftReal*)signal_d,
(cufftComplex*)result_d);

std::vector<std::complex<float>>
result(size/2+1);

cudaMemcpy(result.data(), result_d,
(size/2+1)*sizeof(float2),
cudaMemcpyDeviceToHost);

cudaFree(signal_d);
cudaFree(result_d);
cufftDestroy(plan);
return result;

}

#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
#include <pybind11/complex.h>
PYBIND11_MODULE(pycufft, m) {

m.doc() = "cuFFT wrapper";
m.def("fft", &fft, "docstring");

}

James Willis Numerical Libraries IHPCSS - Kobe, Japan, July 12, 2024 24 / 1

PyBind11 example (pycufft.cu)
This is the wrapper, defining a C++ function, that calls the cuFFT C function.

#include <complex>
#include <cufft.h>
#include <vector>

std::vector<std::complex<float>>
fft(const std::vector<float>& signal)

{
const size_t size = signal.size();
float *signal_d;
cudaMalloc((void**)&signal_d,
size*sizeof(float));

cudaMemcpy(signal_d, signal.data(),
size*sizeof(float), cudaMemcpyHostToDevice);

float2 *result_d;
cudaMalloc((void**)&result_d,
(size/2+1)*sizeof(float2));

cufftHandle plan;
cufftPlan1d(&plan, size, CUFFT_R2C, 1);
cufftExecR2C(plan, (cufftReal*)signal_d,
(cufftComplex*)result_d);

std::vector<std::complex<float>>
result(size/2+1);

cudaMemcpy(result.data(), result_d,
(size/2+1)*sizeof(float2),
cudaMemcpyDeviceToHost);

cudaFree(signal_d);
cudaFree(result_d);
cufftDestroy(plan);
return result;

}

#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
#include <pybind11/complex.h>
PYBIND11_MODULE(pycufft, m) {

m.doc() = "cuFFT wrapper";
m.def("fft", &fft, "docstring");

}

James Willis Numerical Libraries IHPCSS - Kobe, Japan, July 12, 2024 24 / 1

PyBind11 example (pycufft_example.py)

This is an example of a Python script using our wrapped library.

import pycufft, numpy as np
w0 = 5 # rad/s
t_max = 20 # s
n = 2048
t = np.linspace(0, t_max, n)
x = np.sin(w0*t)
result = pycufft.fft(x)
mag = np.abs(result)
w_recovered = mag.argmax() * 2*np.pi/t_max
print(f'Recovered angular frequency: {w_recovered} rad/s')

Note that the return type of our wrapped function is a list, we can ask PyBind11 to return a
NumPy array, but that doesn’t fit on one slide

James Willis Numerical Libraries IHPCSS - Kobe, Japan, July 12, 2024 25 / 1

PyBind11 example (how to use on Bridges2)
(1) Copy code for Python session if you haven’t done so already:

cp -r /jet/home/rzon/hpcpycode ~

(2) Activate environment:

source ~/hpcpycode/activate

(3) Load the CUDA module and compile the shared object file:

module load cuda
nvcc -O3 -shared -std=c++17 -Xcompiler="-Wall -fPIC" \
$(python3 -m pybind11 --includes) pycufft.cu \
-o pycufft.cpython-38-x86_64-linux-gnu.so -lcufft

(4) Try running the script:

srun --partition=GPU-shared --gres=gpu:v100-32:1 \
--time=00:01:00 python pycufft_example.py

James Willis Numerical Libraries IHPCSS - Kobe, Japan, July 12, 2024 26 / 1

PyBind11 example (how to use on Bridges2)
(1) Copy code for Python session if you haven’t done so already:

cp -r /jet/home/rzon/hpcpycode ~

(2) Activate environment:

source ~/hpcpycode/activate

(3) Load the CUDA module and compile the shared object file:

module load cuda
nvcc -O3 -shared -std=c++17 -Xcompiler="-Wall -fPIC" \
$(python3 -m pybind11 --includes) pycufft.cu \
-o pycufft.cpython-38-x86_64-linux-gnu.so -lcufft

(4) Try running the script:

srun --partition=GPU-shared --gres=gpu:v100-32:1 \
--time=00:01:00 python pycufft_example.py

James Willis Numerical Libraries IHPCSS - Kobe, Japan, July 12, 2024 26 / 1

PyBind11 example (how to use on Bridges2)
(1) Copy code for Python session if you haven’t done so already:

cp -r /jet/home/rzon/hpcpycode ~

(2) Activate environment:

source ~/hpcpycode/activate

(3) Load the CUDA module and compile the shared object file:

module load cuda
nvcc -O3 -shared -std=c++17 -Xcompiler="-Wall -fPIC" \
$(python3 -m pybind11 --includes) pycufft.cu \
-o pycufft.cpython-38-x86_64-linux-gnu.so -lcufft

(4) Try running the script:

srun --partition=GPU-shared --gres=gpu:v100-32:1 \
--time=00:01:00 python pycufft_example.py

James Willis Numerical Libraries IHPCSS - Kobe, Japan, July 12, 2024 26 / 1

PyBind11 example (how to use on Bridges2)
(1) Copy code for Python session if you haven’t done so already:

cp -r /jet/home/rzon/hpcpycode ~

(2) Activate environment:

source ~/hpcpycode/activate

(3) Load the CUDA module and compile the shared object file:

module load cuda
nvcc -O3 -shared -std=c++17 -Xcompiler="-Wall -fPIC" \
$(python3 -m pybind11 --includes) pycufft.cu \
-o pycufft.cpython-38-x86_64-linux-gnu.so -lcufft

(4) Try running the script:

srun --partition=GPU-shared --gres=gpu:v100-32:1 \
--time=00:01:00 python pycufft_example.py

James Willis Numerical Libraries IHPCSS - Kobe, Japan, July 12, 2024 26 / 1

Final remarks

“Do not reinvent the wheel”, i.e. reuse libraries already developed.

Use mature libraries, well-known in the corresponding field/community. They have been
developed, maintained, debugged, tested, optimised and are really good at the task(s) in
question.

Libraries are a cornerstone element in modularity and professional sofware development.

Consider including further elements of software engineering, such as, automation (via make
or cmake) of compilation and linking – helps with compilation flags and cross-platform
developments.

James Willis Numerical Libraries IHPCSS - Kobe, Japan, July 12, 2024 27 / 1

Final remarks

“Do not reinvent the wheel”, i.e. reuse libraries already developed.

Use mature libraries, well-known in the corresponding field/community. They have been
developed, maintained, debugged, tested, optimised and are really good at the task(s) in
question.

Libraries are a cornerstone element in modularity and professional sofware development.

Consider including further elements of software engineering, such as, automation (via make
or cmake) of compilation and linking – helps with compilation flags and cross-platform
developments.

James Willis Numerical Libraries IHPCSS - Kobe, Japan, July 12, 2024 27 / 1

Final remarks

“Do not reinvent the wheel”, i.e. reuse libraries already developed.

Use mature libraries, well-known in the corresponding field/community. They have been
developed, maintained, debugged, tested, optimised and are really good at the task(s) in
question.

Libraries are a cornerstone element in modularity and professional sofware development.

Consider including further elements of software engineering, such as, automation (via make
or cmake) of compilation and linking – helps with compilation flags and cross-platform
developments.

James Willis Numerical Libraries IHPCSS - Kobe, Japan, July 12, 2024 27 / 1

Final remarks

“Do not reinvent the wheel”, i.e. reuse libraries already developed.

Use mature libraries, well-known in the corresponding field/community. They have been
developed, maintained, debugged, tested, optimised and are really good at the task(s) in
question.

Libraries are a cornerstone element in modularity and professional sofware development.

Consider including further elements of software engineering, such as, automation (via make
or cmake) of compilation and linking – helps with compilation flags and cross-platform
developments.

James Willis Numerical Libraries IHPCSS - Kobe, Japan, July 12, 2024 27 / 1

