Deep Learning:
Hands On

Bryon Gill

Pittsburgh Supercomputing Center

Copyright 2024

Our particular motivation

o Machine learning in the sciences went from “who cares" 10
years ago, to many cases of "this works way better than
anything else" today.

o Meanwhile, all the knowledge is still walled off in the CS
community. Usually in semester long courses.

Is this you? o This panie exciting situation has left a huge knowledge gap for
practicing scientists at all levels.

o So here we are.

PITTSBURGH
WSUPERCOMPUTING
CENTER

Unprecedented Disruption

In the history of science, | defy you to find a similarly quick paradigm shift.

10 years ago
“Neural nets will enable real time ray tracing.” Science Fiction.

“Neural nets will do protein folding.” Word salad.
5 years ago
“Neural nets will do CFD.” Well, maybe someday, but not soon.

Today
Neural net enabled algorithms are the best way to do protein folding.

Tomorrow 1@ A
Skynet will kill us all. Or at least steal our jobs. Q\
i\

\\

Why Now?

The ideas have been around for decades. Two components came together in the past 15
years to enable astounding progress:

Widespread parallel computing (GPUs)

Big data training sets

Two Perspectives

There are really two common ways to view the fundaments of deep learning.

* Inspired by biological models.

* An evolution of classic ML techniques (the perceptron).

They are both fair and useful. We’ll give each a thin slice of our attention before we move on
to the actual implementation. You can decide which perspective works for you.

Modeled After The Brain

-deep" feedforward Deep neural network
neural network

hidden layer) hidden layer 1 hidden lay hidden layer 3
input layer

input layer

N

\\&..u\(‘pm layer
A ¥ >

O

As a Highly Dimensional Non-linear Classifier

Perceptron Network

No Hidden Layer Hidden Layers
Linear Nonlinear

Courtesy: Chris Olah

Basic NN Architecture

Input Layer Hidden Layer Output Layer

Neuron y\

Synapse

In Practice

How many
outputs?

How many \
. "Non-deep" feedforward Deep neural network A)
mputs? neural network ; y
hidden layer input layer hidden layer 1 hidden layer 2 hidden layer 3 g il s 3\'./ A
Might be an
entire image.
Or could be

For an image it discreet set of
could be one How deep? classification

(or 3) per pixel. 100+ layers possibilities.

have become
common.

Inference
The "forward" or thinking step

Cat

Dog

Inference
Input and Output Layers

Cat

Dog

Inference
Weights or Parameters

O1 Weights = (-3.0, 1.0, -3.0)
02 Weights = (0.0, 1.0, 2.0)

Cat

Dog

H1 Weights = (1.0, -2.0, 2.0)
H2 Weights = (2.0, 1.0, -4.0)
H3 Weights = (1.0, -1.0, 0.0)

Activation Function

Neurons apply activation functions at these summed inputs. Activation functions
are typically non-linear. There are countless possibilities. In reality, there are
really only a few popular families:

« The Sigmoid function produces a value between 0 and 1, so it is intuitive
when a probability is desired, and was almost standard for many years.

+ The Rectified Linear activation function is zero when the input is negative and
is equal to the input when the input is positive. Rectified Linear activation
functions are currently the most popular activation function as they are more

efficient than the sigmoid or hyperbolic tangent.

Sparse activation: In a randomly initialized network, only 50% of
hidden units are active.

Better gradient propagation: Fewer vanishing gradient problems
compared to sigmoidal activation functions that saturate in both
directions.

Efficient computation: Only comparison, maybe addition and
multiplication for variants.

There are Leaky and Noisy variants.

Inference

Multiply, Add, do something non-linear.

H1 Weights = (1.0, -2.0, 2.0)
H2 Weights = (2.0, 1.0, -4.0)
H3 Weights = (1.0, -1.0, 0.0)

O1 Weights = (-3.0, 1.0, -3.0)
02 Weights = (0.0, 1.0, 2.0)

H1 = Sigmoid(0.5 * 1.0 + 0.9 * -2.0 + -0.3 * 2.0) = Sigmoid(-1.9) = .13
H2 = Sigmoid(0.5 * 2.0 + 0.9 * 1.0 + -0.3 * -4.0) = Sigmoid(3.1) = .96
H3 = Sigmoid(0.5 * 1.0 + 0.9 * -1.0 + -0.3 * 0.0) = Sigmoid(-0.4) = .40

Inference

Then do it again.

H1 Weights = (1.0, -2.0, 2.0)
H2 Weights = (2.0, 1.0, -4.0)
H3 Weights = (1.0, -1.0, 0.0)

O1 Weights = (-3.0, 1.0, -3.0)
02 Weights = (0.0, 1.0, 2.0)

O1 = Sigmoid(.13 * -3.0 + .96 * 1.0 + .40 * -3.0) = Sigmoid(-.63) = .35
02 = Sigmoid(.13 * 0.0 + .96 * 1.0 + .40 * 2.0) = Sigmoid(1.76) = .85

As A Matrix Operation

H1 Weights = (1.0, -2.0, 2.0)
H2 Weights = (2.0, 1.0, -4.0)
H3 Weights = (1.0, -1.0, 0.0)

Hidden Layer Weights Inputs

1.0 2.0 2.0 0.5 Hidden Layer Outputs

S|g(20 | 10 | 40 | % | 09): S|g(19 | 31 | 04): 13 | 96 | 04

1.0 -1.0 0.0 -0.3

Now this looks like something that we can pump through a GPU.

MENER

It is also very useful to be able to offset our inputs by some constant. You can think of this as
centering the activation function, or translating the solution (next slide). We will call this
constant the bias, and it there will often be one value per layer.

Our math for the previously calculated layer now looks like this with bias=0.1:

Hidden Layer Weights Inputs Bias

10 | 20 | 20 0.5 0.1 Hidden Layer Outputs

S|g(20 | 10 | -40 | % 09 + | o1)=S|g(18 | 32 | -03): 14 | 9 | o4

1.0 -1.0 0.0 -0.3 0.1

Linear + Nonlinear

The magic formula for a neural net is that, at each layer, we apply linear operations (which
look naturally like linear algebra matrix operations) and then pipe the final result through
some kind of final nonlinear activation function. The combination of the two allows us to do
very general transforms.

The matrix multiply provides the skew,
rotation and scale.

The bias provides the translation. I...-....I
iR EN
The activation function provides the | I...-....I
warp. IHEEEEREE
1 -----

Linear + Nonlinear

These are two very simple networks untangling spirals. Note that the second does not
succeed. With more substantial networks these would both be trivial.

Courtesy: Chris Olah

Width of Network

A very underappreciated fact about networks is that the width of any layer determines how
many dimensions it can work in. This is valuable even for lower dimension problems. How
about trying to classify (separate) this dataset:

Can a neural net do this with twisting and deforming? What good does it do to have more

than two dimensions with a 2D dataset?
Courtesy: Chris Olah

Working In Higher Dimensions

It takes at least 3

Greater depth allows us to stack these operations, and can be very effective. The gains from

depth are harder to characterize.
Courtesy: Chris Olah

Theoretically

Universal Approximation Theorem: A 1-hidden-layer feedforward network of this type can
approximate any function?, given enough width2.
Not really that useful as:
e Width could be enormous.

* Doesn't tell us how to find the correct weights.

1) Borel measurable. Basically, mostly continuous and bounded.
2) Could be exponential number of hidden units, with one unit required for each distinguishable input configuration.

Training Neural Networks

So how do we find these magic weights? We want to minimize the error on our training data.
Given labeled inputs, select weights that generate the smallest average error on the outputs.

We know that the output is a function of the weights: E(wi,w2,ws,...i1,...1:...). So to figure out

which way, and how much, to push any particular weight, say ws, we want to calculate OF

ows

%

w 0

T N

) 0.9 Ground
Truth f

For Sigmoid
1
14+et

S(t) =

If we take one small piece, it doesn't look so bad.

OF
Note that the role of the gradient, 5,,., here means that it becomes a problem if it vanishes.

This is an issue for very deep networks.

Back-Propagation

In a useful network, the chain rule results in a lot of factors for any given weight adjustment.

(n)

()Il Z
ou'?)

path (u'™1) 4 '7™2)
frommi=jtom,

From the fantastic Deep Learning, Goodfellow, Bengio and Courville.

There are a lot of dependencies going on here. It isn't obvious
that there is a viable way to do this in very large networks.

Since the number of paths from one node to a distant node can grow exponentially in the length of these paths, the
number of terms in the above sum, which is the number of such paths, can grow exponentially with depth. A large cost
would be incurred because the same computation for the subfactors would be redone many times. To avoid such

recomputation, back-propagation works as a table-filling algorithm that stores intermediate results and avoids repeating
many common subexpressions.

Back-propagation Full Story

If you have 30 minutes, and remember freshman calculus, you can understand the complete details of
the algorithm. | heartily recommend one of these.

An elegant perspective on this can be found from Chris Olah at
http://colah.github.io/posts/2015-08-Backprop .

With basic calculus you can readily work through the details. You can find an excellent explanation
from the renowned 3B/uelBrown at
https://www.youtube.com/watch?v=Illg3gGewQ5U .

To be honest, many people are happy to leave the details to TensorFlow, or whatever package they are
using. Just don't think it is beyond your understanding.

http://colah.github.io/posts/2015-08-Backprop
https://www.youtube.com/watch?v=Ilg3gGewQ5U

Solvers

However, even this efficient technique leaves us with potentially many millions of simultaneous equations to solve (real
nets have a lot of weights). And the solution space is non-convex. Fortunately, this isn't a new problem created by deep
learning, so we have options from the world of numerical methods.

The standard has been gradient descent. Variations of this have
arisen that perform better for deep learning applications.
TensorFlow will allow us to use these interchangeably - and we
will.

Most interesting recent methods incorporate momentum to
help get over a local minimum. Momentum and step size (or
learning rate) are the two hyperparameters we will encounter
later.

Wikipedia Commons

Nevertheless, we don't expect to ever find the actual global
minimum.

We could/should find the error for all the training data before updating the weights (an epoch). However it is usually
much more efficient to use a stochastic approach, sampling a random subset of the data, updating the weights, and
then repeating with another mini-batch.

Going To Play Along?

Make sure you are on a GPU node:

bridges2-1ogin014% interact -gpu -R BigGPUJulll
v001%

Load the TensorFlow 2 Container:

v001% singularity shell --nv /ocean/containers/ngc/tensorflow/tensorflow_23.04-tf2-py3.sif

And start TensorFlow: Two Other Ways To Play Along

Singularity> python From inside the container, and in the right example directory, run the python
Python 3.8.10 (default, mar 13 2023, 10:26:41) programs from the command line:

[GCC 9.4.0] on Tlinux

Type "help", "copyright", "credits" or "license"
>>> import tensorflow

>>> ...some congratulatory noise...
>>> or invoke them from within the python shell:

Singularity> python CNN_Dropout.py

>>> exec(open("./CNN_Dropout.py").read())

TensorFlow Install Learn v APl ~ Resources v More ~

: | | Documentation

Overview Python JavaScript ~ C++

Input
Model
Sequential
activations

applications

rFlow > > TensorFlo orev2.1.0 > Python

tf.keras.layers.Conv2D

eermats seeh The APl is well
, documented.

Overview TensorFlow 1 version O View source on GitHub

2D convolution layer (e.g. spatial convolution over images).

-Attention

© viewsises That is terribly unusual.

AlphaDropout

filters
dilatior

s stiania | Take advantage and

kernel_regulariz
AveragePooling2D kernel_const

' s keep a browser open as

lization

you develop.
Concatenate Used in the notebooks
itenate

Convib Used in the guide Used in the tutorials
Conv2DTran: he Keras fun A stom layers
Conv3D
Conv3DTr:
ConvLSTM2D
pping1D * Train and evaluate with K * Convolutior Neural Net

g2D c
ropping2D with tf function and « Custom training with tf.distribut

This layer creates a convolution kernel that is convolved with the layer input to produce a tensor
of outputs. If use_bias is True, a bias vector is created and added to the outputs. Finally, if
activation is not None, it is applied to the outputs as well.

DenseFeatures
DepthwiseConv2D

deserialize

Dot When using this layer as the first layer in a model, provide the keyword argument input_shape

MNIST

We now know enough to attempt a problem. Only because the TensorFlow framework, and
the Keras API, fills in a lot of the details that we have glossed over. That is one of its functions.

Our problem will be character recognition. We will learn to read handwritten digits by training
on a large set of 28x28 greyscale samples.

First we’ll do this with the simplest possible model just to show how the TensorFlow
framework functions. Then we will gradually implement our way to a quite sophisticated and
accurate convolutional neural network for this same problem.

Getting Into MINIST

import tensorflow as tf
mnist = tf.keras.datasets.mnist

(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

train_images.reshape (60000, 784)
test_images.reshape(10000, 784)

train_images
test_images

test_images = test_images.astype('float32')

train_images = train_images.astype('float32')
matplot1lib bonus insight
test_images /= 255
train_images /= 255 import matplotlib.pyplot as plt

plt.imshow(train_images[2], cmap=plt.get_cmap('gray'),
interpolation="none"')
plt.title("pigit: {}".format(train_labels[2]))

Digit: 4

Defining Our Network

Starting from zero?

import tensorflow as tf In general, initialization values are
hard to pin down analytically.
mnist = tf.keras.datasets.mnist p_ Y . Y
(train_images, train_labels), (test_images, test_labels) = mnist.load_data() Values might help optimization but
hurt generalization, or vice versa.

train_images
test_images

train_images.reshape (60000, 784)
test_images.reshape(10000, 784)

The only certainty is you need to
test_images.astype('float32') have different values to break the
train_images.astype('float32’) symmetry, or else units in the
test_images /= 255 same layer, with the same inputs,
train_images /= 255

ges / would track each other.

test_images
train_images

model = tf.keras.Sequential([Practically, we just pick some
tf.keras.layers.Dense(64, activation='relu', input_shape=(784,)), " "
tf.keras.layers.Dense(64, activation='relu'), reasonable” values.
tf.keras.layers.Dense(10, activation='softmax'),
D
model.summary ()
Layer (type) output Shape Param #
dense_6 (Dense) (None, 64) 50240
dense_7 (Dense) (None, 64) 4160
dense_8 (Dense) (None, 10) 650

Total params: 55,050
Trainable params: 55,050
Non-trainable params: 0

Softmax

why Softmax?

The values coming out of our matrix operations can have large, and negative
values. We would 1like our solution vector to be conventional probabilities
that sum to 1.0. An effective way to normalize our outputs is to use the
popular Softmax function. Let's look at an example with just three possible
digits:

Digit Output Exponential Normalized
0 4.8 121 .87
1 -2.6 0.07 .00
2 2.9 18 .13

Solving For Weights

import tensorflow as tf

mnist = tf.keras.datasets.mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

train_images.reshape (60000, 784)
test_images.reshape(10000, 784)

train_images
test_images

test_images = test_images.astype('float32')
train_images = train_images.astype('float32')

test_images /= 255
train_images /= 255

model = tf.keras.Sequential([
tf.keras.layers.Dense(64, activation='relu', input_shape=(784,)),
tf.keras.layers.Dense(64, activation='relu'),
tf.keras.layers.Dense(10, activation='softmax'),

D

model.compile(optimizer="adam', Toss='sparse_categorical_crossentropy', metrics=["'accuracy'])

Defining our error

In ML, defining the error (or loss, or cost) is often the core of defining the objective solution. Once we define the error, we
can usually plug it into a canned solver which can minimize it. Defining the error can be obvious, or very subtle, or have
multiple acceptable methods.

Clustering: For k-means we simply used the geometrical distance. It was actually the sum of the squared distances, but you
get the idea.

Image Recognition: If our algorithm tags a picture of a cat as a dog, is that a larger error than if it tags it as a horse? Or a
car? How would you quantify these?

How about if our self driving car mistakes a crosswalk for an on-ramp?!
Regression: Do you want to penalize a lot of medium errors more than an occasional large error? If you are predicting
stock prices, you most likely care more about the average, and an occasional bad call is OK. If you are projecting drug

doses, that large error could kill!

Rare events: Want to make a 99% accurate tornado warning algorithm? Just put a piece of paper up saying "No tornado
today." How do you weigh your error to deal with the significance of false negatives or positives?

GPT-

Many emerging applications can be

challenging to quantify. Some of the
things GPT-4 does are quite easy to

grade. Literally.

5PT-4

Uniform Ba B “E+MPT 298 /400 (~90th)
163 (~88th)
T Evidence-Based Reading & Writing 710/ 800 (~93rd)
" Math 700/ 800 (~89th)
Graduate Record Examination (GRE) Quantitative 163 /170 (~80th)
aduate Record Examination (GRE) Verbal 169 /170 (~99th)
mination (GRE) Writing 4/6 (~54th)
ABO Semifinal Exam 2020 87 /150 (99th - 100th)
am 2022 36/60
elf-Assessment Program 75 %
Codeforces Rating 392 (below 5th)
AP Art History 5 (86th - 100th)
AP Biology 5 (85th - 100th)
AP Calculus BC 4 (43rd - 59th)
hemistry 4 (71st - 88th)
e and Composition 2 (14th - 44th)
ure and Composition 2 (8th - 22nd)
AP Environmental Science 5 (91st - 100th)
AP Macroeconomics 5 (84th - 100th)
AP Microeconomics 5 (82nd - 100th)
AP Physics 2 4 (66th - 84th)
AP Psychology 5 (83rd - 100th)
Sth - 100th)
jovernment 5 (88th - 100th)
US History 5 (89th - 100th)
AP World History 4 (65th - 87th)
AMC 10° 30/ 150 (6th - 12th)
AMC 12} 60/ 150 (45th - 66th)
Introducts Sommelier (theory knowledge 92 %
Certified Sommelier (theory knowle 86 %
Advanced Sommelier (theory knowledge) 77 %
Leetcode (easy) 31/41
Leetcode (medium) 21/80

Leetcode (hard) 3/45

Table 1. GPT performance on academic and profi
conditions and scoring of the e; W
specific rubrics, as well as the percentile of test-

GPT-4 (no vision)

298 /400 (~90th)
161 (~83rd)
710 /800 (~93rd)
690 / 800 (~89th)
157 /170 (~62nd)
165 /170 (~96th)

87 /150 (99th - 100th)
38760
75 %
392 (below 5th)

5 (86th - 100th)

5 (85th - 100th)

4 (43rd - 59th)

4 (71st - 88th)

2 (14th - 44th)

2 (8th - 22nd)

5 (91st - 100th)

5 (84th - 100th)

4 (60th - 82nd)

4 (66th - 84th)

5 (83rd - 100th)

5 (85th - 100th)

5 (88th - 100th)

4 (74th - 89th)

4 (65th - 87th)
36/ 150 (10th - 19th)
48 /150 (19th - 40th)

92 %
86 %
77 %
31/41
21/80

3/45

GPT
3 /400 (~10th)
149 (~40th)
670/ 800 (~87th)
0 / 800 (~70th)
147 /170 (~25th)
154 /170 (~63rd)
4/6 (~54th)
43/150 (31st - 33rd)
24/60
3%
260 (below 5th)
5 (86th - 100th)
4 (62nd - 85th)
1 (Oth - 7th)
2 (22nd - 46th)
2 (14th - 44th)
2 (8th - 22nd)
5 (91st - 100th)
2(33rd - 48th)
4 (60th - 82nd)
3 (30th - 66th)
5 (83rd - 100th)
3 (40th - 63rd)
4 (77th th)
4 (74th - 89th)
4 (65th - 87th)
36/ 150 (10th - 19th)
30/ 150 (4th - 8th)
80 %
e
46 %
12/41
8/80
0/45

How do we even?

But some of the capabilities, especially the generative ones, defy simple quantification.

What is funny about this image? Describe it panel by panel.

n write a poem about traffic

Paint a photo of Disneyland in the style of Vincent Van Gogh

In the heart of a bustling city's night,

th light

\\\1\\\ N \“\‘\\ \.\
Q

Red, a quardian with a stern, watchful eye

Perhaps most interesting,
i e ;s ottt some of these capabilities
The image shows : ckage for a "Lightning Cable" adapter with three pa We re n 't e nti rely a nti Ci pated c

Panel A smartphone with a connector (a large, blue, 15-

nector ally used for computer monitors) plugged into its charging -po a nd We re emergent!

Panel 2: The package for the "Lightning Cable" adapter with a pi
. ,.'.. e - ’f’. *f -
In unity they stand, those traffic light sentries k‘i - S - o
' = : - - > 4

Panel 3: A close-up of the VGA connector with a small Lightning con-

M‘m won -

a VGA connector on it.
A dance of transitions, a cycle of entry,

nector (used for charging iPhones and other Apple devices) at the end.

i
e

o
"f'ﬁ‘

.'}t
i
4
.'.';'

-~
. .. = . — & \ o1
oo o : e s - And so, in the chaos, a patter ign A T —— o
The humor in this image comes from the absurdity of pl g a large, 0 N Ehe chacs 2 pet = S T e e i~ P
F € S - -4 - - S — - -
outdated VGA connector into a small, modern smartphone char. The rhythm of life, in colors of traffic lights - D WD — SR - —— ' — * 9

Do we need a comedian with a calculator? Or a poetry reviewer? Or an art critic?

Overfitting

/

Cross Entropy

Given the sensible way we have constructed these outputs, the Cross Entropy Loss
function is a good way to define the error across all possibilities. Better than

squared error, which we have been using until now. It is defined as -X y_ log vy,
or if this really is a "0", y_=(1,0,0), and
-110g(0.87) - 010g(0.0001) - 0log(0.13) = -10g(0.87) = -0.13

It somewhat penalizes a slightly wrong guess, or an "unconfident" right guess, and
greatly penalizes a very wrong guess.

You can also think that it "undoes" the Softmax, if you want.

Training

import tensorflow as tf
mnist = tf.keras.datasets.mnist

(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

train_images
test_images

train_images.reshape (60000, 784)
test_images.reshape(10000, 784)

test_images = test_images.astype('float32')
train_images = train_images.astype('float32')

test_images /= 255
train_images /= 255

model = tf.keras.Sequential([
tf.keras.layers.Dense(64, activation='relu', input_shape=(784,)),
tf.keras.layers.Dense(64, activation='relu'),
tf.keras.layers.Dense(10, activation='softmax'),

D

model.compile(optimizer="adam', Toss='sparse_categorical_crossentropy', metrics=['accuracy'])

history = model.fit(train_images, train_labels, batch_size=128, epochs=40, verbose=1, validation_data=(test_images, test_labels))

RGSUltS Accuracy or Loss?

history = model.fit(train_images, ..., ...) fitting.

plt.
plt.
plt.
plt.
plt.
plt.

plt.
plt.
plt.
plt.
plt.
plt.
plt.

Loss is the "mathematical" value we have

matplotlib bonus insight A .
specified in our model to use for parameter

/sample - Toss: 0.3971 - accuracy:

plot(history.history['accuracy'])
plot(history.history['val_accuracy'])
title('Model accuracy')
ylabel('Accuracy"')

xTabel1('Epoch")

legend(['Train', 'Test'], loc="upper

/sample - loss: 0.1696 - accuracy:| Accuracy is simply how many we get right
when we test our model as an application.
It might not apply to a non-classification
problem (think Stable Diffusion) and it
doesn't capture how much right or wrong we
are (we could be very confident that a dog
is a cat).

Model loss

plot(history.history['loss'])
plot(history.history['val_loss'])
title('Model loss')

ylabel('Loss"')

xTabel1('Epoch")

legend(['Train', 'Test'], loc="upper
show()

The two are normally closely related and
track each other. we will choose Accuracy
for our graphs. Any user understands what
accuracy represents.

Test

0.9755

o
0
=}

why would the test accuracy ever be better than the training
(as momentarily happens here)?

Accuracy
o
o
»

The training value is the average over each batch, and the
test value is only at the end of the epoch, when the model
tends to be at least slightly better.

Later on we will see that regularization techniques (which
are only turned on for training) also add to this effect.

Let's Go Wider

import tensorflow as tf

mnist = tf.keras.datasets.mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

train_images.reshape (60000, 784)
test_images.reshape (10000, 784)

train_images =
test_images =
test_images = test_images.astype('float32')
train_images = train_images.astype('float32')

test_images /= 255
train_images /= 255

model = tf.keras.Sequential([
tf.keras.layers.Dense(512, activation='relu', input_shape=(784,)),
tf.keras.layers.Dense(512, activation='relu'),
tf.keras.layers.Dense(10, activation='softmax'),

D
model.compile(optimizer="adam', Toss='sparse_categorical_crossentropy', metrics=['accuracy'])

model.fit(train_images, train_labels, batch_size=128, epochs=30, verbose=1, validation_data=(test_images, test_labels))

Wider Results

Epoch 30/30
60000/60000 [] - 2s 32us/sample - Toss: 0.0083 - accuracy: 0.9977 - val_loss: 0.1027 - val_accuracy: 0.9821

Model accuracy

wider
modeT.summary ()
Layer (type) output Shape Param #
dense_18 (Dense) (None, 512) 401920
§ dense_19 (Dense) (None, 512) 262656
g dense_20 (Dense) (None, 10) 5130

Total params: 669,706
Trainable params: 669,706
Non-trainable params: 0O

55,050 for 64 wide Model

Maybe Deeper?

import tensorflow as tf

mnist = tf.keras.datasets.mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

train_images.reshape (60000, 784)
test_images.reshape (10000, 784)

train_images =
test_images =
test_images = test_images.astype('float32')
train_images = train_images.astype('float32')

test_images /= 255
train_images /= 255

model = tf.keras.Sequential([
tf.keras.layers.Dense(512, activation='relu', input_shape=(784,)),
tf.keras.layers.Dense(512, activation='relu'),
tf.keras.layers.Dense(512, activation='relu'),
tf.keras.layers.Dense(10, activation='softmax'),

D
model.compile(optimizer="adam', Toss='sparse_categorical_crossentropy', metrics=['accuracy'])

model.fit(train_images, train_labels, batch_size=128, epochs=30, verbose=1, validation_data=(test_images, test_labels))

Wide And Deep Results

é6660/60000 [] - 3s 45us/sample - loss: 0.0119 - accuracy: 0.9967 - val_loss: 0.1183 - val_accuracy: 0.9800

Model accuracy

Deep and Wwide

modeT.summary ()

Layer (type) output Shape Param #
dense_24 (Dense) (None, 512) 401920
- dense_25 (Dense) (None, 512) 262656
% dense_26 (Dense) (None, 512) 262656
v
= dense_27 (Dense) (None, 10) 5130

Total narame: Q32 ,362

Recap s: 932,362
arams: 0

FC 64,64 97.5
FC 512,512 98.2

FC 521,512,512 98.0

Brute Force Does Not Work

You usually can't just brute force your way into success. Beyond the obvious time and
memory costs, you are opening yourself up to

e Overfitting

* Vanishing gradients

We will have to be smarter than "bigger is better" about choosing our hyperparameters.
One very smart thing to do is to choose a more appropriate architecture.

Image Recognition Done Right: CNNs

AlexNet won the 2012 ImageNet LSVRC and changed the DL world.

4M

16M

37T™M

442K

884K

307K

35K

Image Object Recognition [Krizhevsky, Sutskever, Hinton 2012]

Convolution

Al | A2 | A3 06
T |12 |13 |14 A4 | A5| A6 y,
I5 116 |17 |18 A7 | A8 | A9 //,

19 1110|111 |112 __—51 | 82 B3

113|114 | 115|116

B4 | B5| B6

Input Values

B7 | B8 | B9

Filters

06:A1-[1+A2°I-2+A3-[3
+Ay-I5+ As- I+ Ag - I7
+A7-IQ+A8-]10+A9°IM

Convolution

Boundary and Index Accounting

0 0 o0 Al | A2 | A3
L1213 |14 A4 | A5 | A6
—
e
5116|1718 A7 A9
\A(\
19 111|112
i B1| B2 | B3| [0V
11311 50116
R B4 | BS B/G/
Input Values
B7Z+B8 | B9
Filters

Output

O17 = B5-11+Bg- 1o+ Bg- I5+ Bg- I

Images: Wikipedia

Straight Convolution

Edge Detector

Simplest Convolution Net

Courtesy: Chris Olah

Stacking Convolutions

Courtesy: Chris Olah

Demos

Style vs. Content: Your own algorithms

Input Volume (+pad 1) (7x7x3)

:, 0]

x[:

© © o o © o o™X =1 @ @) @f @) @ @

=l =] o o] =] o] ol

—

—

’

0
0

[§9]

S O N

ot

= =

(3]

[§9]

(3]

(3]

0 0 0
2 1 0
1 2 0
2
1|1 o
o [T o
0 o |
0 0 0
2 0 0
1 0
20 0
1 [o [[o
11 Jko
010 [[o |
0 0 0
0 0
0 0
1 0
2 2 "
2 0
|0 0

Filter WO (3x3x3)
wO[:,:,0]
-1 0 -1

0 0 -

Bias b0 (/X 1x1)
b0Lo/s, 0]

Filter W1 (3x3x3)

Output Volume (3x3x

wlfl:,:,0 o[:,:,0]
1 [0 5 20
1L i 4 2 0
11 |1 S [ON BB
wll77, 1 of:,:,1]
0 ||-1 4 8 3
o J6 o | 7 11 4
1 [[o |fo 3 7
wl[:, ;/72]
1 Lo |-
0 1
)/1 -1

Bias blA1x1x1)

bl

7,1, 0]

toggle movement

From the very nice
Stanford CS231n

course at
http://cs231n.gith
ub.io/convolution
al-networks/

Stride =2

http://cs231n.github.io/convolutional-networks/
http://cs231n.github.io/convolutional-networks/
http://cs231n.github.io/convolutional-networks/

Convolution Math

Each Convolutional Layer:
Inputs a volume of size W,xHxD, (D is depth)

Requires four hyperparameters:
Number of filters K
their spatial extent N
the stride S
the amount of padding P

Produces a volume of size WyxHyxDg
WO= (W|_ N +2P)/S+1
HO = (H| _F +2P) / S+1
Dy =K

This requires N-N-D, weights per filter, for a total of N-N-D,-K weights and K biases

In the output volume, the d-th depth slice (of size W, x Hp) is the result of performing a convolution of the d-
th filter over the input volume with a stride of S, and then offset by d-th bias.

I et

/)
i Rp
N
iz

1) /| YAS

ik S
Ul %

A7V
Vi

Van(\2

<tg.
€
m..u.¢@.

Courtesy: Chris Olah

A Groundbreaking Example

These are the 96 first layer 11x11 (x3, RGB, stacked here) filters from AlexNet.

I

Among the several novel techniques combined in this work (such
as aggressive use of RelLU), they used dual GPUs, with different
flows for each, communicating only at certain layers. A result is
that the bottom GPU consistently specialized on color
information, and the top did not.

Let's Start Small

import tensorflow as tf

mnist = tf.keras.datasets.mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

train_images = train_images.reshape(60000, 28, 28, 1)
test_images = test_images.reshape(10000, 28, 28, 1)
train_images, test_images = train_images/255, test_images/255

model = tf.keras.Sequential([
tf.keras.layers.conv2D(32, (3,3), activation='relu', input_shape=(28,28,1)),
tf.keras.layers.MaxPooling2D(2,2),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(100, activation='relu'),
tf.keras.layers.Dense(10, activation='softmax')

D

model.compile(optimizer=tf.keras.optimizers.sGD(1r=0.01, momentum=0.9), loss='sparse_categorical_crossentropy', metrics=['accuracy'])

model.fit(train_images, train_labels, batch_size=32, epochs=10, verbose=1, validation_data=(test_images, test_labels))

Early CNN Results

Epoch 10/10
60000/60000 [] - 12s 198us/sample - Toss: 0.0051 - accuracy: 0.9989 - val_Tloss: 0.0424 - val_accuracy: 0.9874

Primitive CNN
Model accuracy
modeT.summary ()
Layer (type) output Shape Param #
conv2d_1 (Conv2D) (None, 26, 26, 32) 320
max_pooling2d_1 (None, 13, 13, 32) 0
g flatten_1 (Flatten) (None, 5408) 0
2 dense_38 (Dense) (None, 100) 540900
dense_39 (Dense) (None, 10) 1010
Score Thus Far ms: 542,230
FC (64,64) 97.5 E?gafgg;a;;‘?’éw
FC (512,512) 98.2

FC (521,512,512) 98.0

CNN (1 Tayer) 98.7

Scaling Up The CNN

import tensorflow as tf

mnist = tf.keras.datasets.mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

train_images = train_images.reshape(60000, 28, 28, 1)
test_images = test_images.reshape(10000, 28, 28, 1)
train_images, test_images = train_images/255, test_images/255

model = tf.keras.Sequential([
tf.keras.layers.conv2D(32, (3,3), activation='relu', input_shape=(28,28,1)),
tf.keras.layers.cConv2D(64, (3,3), activation='relu'),
tf.keras.layers.MaxPooling2D(2,2),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dense(10, activation='softmax')

D

model.compile(optimizer=tf.keras.optimizers.sGD(1r=0.01, momentum=0.9), loss='sparse_categorical_crossentropy', metrics=['accuracy'])

model.fit(train_images, train_labels, batch_size=32, epochs=10, verbose=1, validation_data=(test_images, test_labels))

Deeper CNN Results

Epoch 15/15
60000/60000 [] - 34s 566us/sample - loss: 0.0052 - accuracy: 0.9985 - val_loss: 0.0342 - val_accuracy: 0.9903

Model accuracy Deeper CNN
Ove rﬁtti n modeT.summary()
E; Layer (type) output Shape Param #
conv2d_4 (Conv2D) (None, 26, 26, 32) 320
. conv2d_5 (Conv2D) (None, 24, 24, 64) 18496
g max_pooling2d_3 (None, 12, 12, 64) 0]
= flatten_3 (Flatten) (None, 9216) 0]
dense 42 (Dense) (None, 128) 1179776
Score Thus Far
) (None, 10) 1290
FC (64,64) 97.5
,199,882
FC (512,512) 98.2 s: 1,199,882
arams: 0O

FC (521,512,512) 98.0
CNN (1 Tayer) 98.7

CNN (2 Layer) 99.0

Overfitting = Memorization

We now have enough parameters that the network is prone to memorizing instead of learning. This will only get worse
as our larger and smarter networks grow into billions of parameters.

>
@)
©
e
3
[v]
[v]
<<

Dropout

Model accuracy
As we know by now, we need some form of
Ove rflttl ng regulérlzatlon to help with th.e -overflttlng.. One
seemingly crazy way to do this is the relatively new

technique (introduced by the venerable Geoffrey
Hinton in 2012) of Dropout.

Some view it as an ensemble method that trains multiple data models simultaneously. One neat perspective
of this analysis-defying technique comes from Jiirgen Schmidhuber, another innovator in the field; under
certain circumstances, it could also be viewed as a form of training set augmentation: effectively, more and

more informative complex features are removed from the training data.

CNN With Dropout

import tensorflow as tf

mnist = tf.keras.datasets.mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

train_images = train_images.reshape(60000, 28, 28, 1)
test_images = test_images.reshape(10000, 28, 28, 1)
train_images, test_images = train_images/255, test_images/255

model = tf.keras.Sequential([
tf.keras.layers.conv2D(32, (3,3), activation='relu', input_shape=(28,28,1)),
tf.keras.layers.cConv2D(64, (3,3), activation='relu'),
tf.keras.layers.MaxPooling2D(2,2),
tf.keras.layers.Dropout(0.25),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dropout(0.5),
tf.keras.layers.Dense(10, activation='"softmax')

1

Parameter is fraction to drop.

model.compile(optimizer=tf.keras.optimizers.sGD(1r=0.01, momentum=0.9), loss='sparse_categorical_crossentropy', metrics=['accuracy'])

model.fit(train_images, train_labels, batch_size=32, epochs=10, verbose=1, validation_data=(test_images, test_labels))

testing.

Drop out is not used in the final, trained, network.
Similarly, it is automatically disabled here during

Help From Dropout

Epoch 15/15

60000/60000 [] - 40s 667us/sample - loss: 0.0187 - accuracy: 0.9935 - val_loss: 0.0301 - val_accuracy: 0.9919
Model accuracy propout NN
modeT.summary ()
Layer (type) Output Shape Param #
conv2d_12 (Conv2D) (None, 26, 26, 32) 320
conv2d_13 (Conv2D) (None, 24, 24, 64) 18496
> max_pooling2d_7 (None, 12, 12, 64) 0
% dropout_4 (Dropout) (None, 12, 12, 64) 0
B flatten_7 (Flatten) (None, 9216) 0
Score Thus Far (Dense) (None, 128) 1179776
FC (64,64) 97.5 (Dropout) (None, 128) 0]
FC (512,512) 98.2 (Dense) (None, 10) 1290
FC (521,512,512) 98.0 ams: 1,199,882
params: 1,199,882
CNN (1 Tayer) 98.7 Able params: 0
CNN (2 Layer) 99.0
CNN with Dropout 99.2

Batch Normalization

Another "between layers" layer that is quite popular is Batch Normalization. This technique really helps with vanishing or exploding

gradients. So it is better with deeper networks.

* Maybe not so compatible with Dropout, but the subject of research (and debate).

* Maybe Apply Dropout after all BN layers: https://arxiv.org/pdf/1801.05134.pdf

» Before or after non-linear activation function? Oddly, also open to debate. But, it may be more appropriate after the activation function if
for s-shaped functions like the hyperbolic tangent and logistic function, and before the activation function for activations that result in
non-Gaussian distributions like ReLU.

How could we apply it before of after our activation function if we wanted to? We haven't been peeling our layers apart, but we can micro-
manage more if we want to:

mode]
mode]
mode]

mode]
mode]
mode]

.add(tf.
.add(tf.
.add(tf.

.add(tf.
.add(tf.
.add(tf.

keras
keras
keras

keras
keras
keras

.layers.
.layers.
.layers.

.layers.
.layers.
.layers.

conv2D(64, (3, 3), use_bias=False))
BatchNormalization())
Activation("relu™))

conv2D(64, kernel_size=3, strides=2, padding="same"))
LeakyReLU(aTpha=0.2))
BatchNormalization(momentum=0.8))

There are also normalizations that work on single samples instead of batches, so better for recurrent networks. In TensorFlow we have
Group Normalization, Instance Normalization and Layer Normalization.

Trying Batch Normalization

import tensorflow as tf

mnist = tf.keras.datasets.mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

train_images = train_images.reshape(60000, 28, 28, 1)
test_images = test_images.reshape(10000, 28, 28, 1)
train_images, test_images = train_images/255, test_images/255

model = tf.keras.Sequential([
tf.keras.layers.conv2D(32, (3,3), activation='relu', input_shape=(28,28,1)),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.cConv2D(64, (3,3), activation='relu'),
tf.keras.layers.MaxPooling2D(2,2),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.Dense(10, activation='"softmax')

D

model.compile(optimizer=tf.keras.optimizers.sGD(1r=0.01, momentum=0.9), loss='sparse_categorical_crossentropy', metrics=['accuracy'])

model.fit(train_images, train_labels, batch_size=32, epochs=10, verbose=1, validation_data=(test_images, test_labels))

Not So Helpful

Epoch 15/15
60000/60000 [] - 50s 834us/sample - Toss: 0.0027 - accuracy: 0.9993 - val_Tloss: 0.0385 - val_accuracy: 0.9891

Model accuracy Batch Normalization CNN
modeT.summary ()
Layer (type) output Shape Param #
conv2d_2 (Conv2D) (None, 26, 26, 32) 320
batch_normalization (None, 26, 26, 32) 128
>
E conv2d_3 (Conv2D) (None, 24, 24, 64) 18496
>
E max_noolinag2d 1 (None, 12, 12, 64) 0
Score Thus Far
ation_1 (None, 12, 12, 64) 256
FC (64,64) 97.5
tten) (None, 9216) 0
FC (512,512) 98.2
) (None, 128) 1179776
FC (521,512,512) 98.0
ation_2 (Batch (None, 128) 512
CNN (1 Tayer) 98.7
) (None, 10) 1290
CNN (2 Layer) 99.0
1,200,778
CNN with Dropout 99.2 ms: 1,200,330
params: 448
Batch Normalization 98.9

Real Time Demo

This amazing, stunning, demo from Adam Harley is very similar to what we just did, but
different enough to be interesting.

https://aharley.github.io/nn vis/cnn/2d.html

It is worth experiment with. Note that this is an excellent demonstration of how efficient the forward

network is. You are getting very real-time analysis from a lightweight web program. Training it took
some time.

https://aharley.github.io/nn_vis/cnn/2d.html

Draw your number here

0123456789
-

[T EET RETI I W R BT BT P B R B BT RE D PR ERL PR B PREY PREPTR TTETT TTEEEE T N R]

LR N L} EEN EEN BN NEEE N BEN BN NC N N EmOES SN BEEE BN N BN - W NN NN NEE EEN BN BEE EEE =
‘ ll=
o .. aar
Downsampled drawing: }2 - ' -ll
= .] -
First guess: g i ot | Saains
Second guess: \g i
i
Layer visibility
d
Input layer Show IIL
-
Convolution layer 1 Show
Downsampling layer 1 Show |Fq-u
Convolution layer 2 Show

Downsampling layer 2 Show
Fully-connected layer 1 Show
Fully-connected layer 2 Show

Output layer Show

Hands-On Exercise: Fashion MNIST

We have done very well with MNIST, and trying to improve it much more will have very diminishing returns. Let us find a
more challenging problem.

We have a very obvious and incremental nest step with Fashion MNIST. These are 60,000 training images, and 10,000 test
images of 10 types of clothing, in 28x28 greyscale. Sound familiar?

190 TRATITTRE Y FRET ARNIT 27
pEbtias AT R
(T
ﬂ%miﬁg!;nw nagmgmMnnéamﬁnﬂ 8
EAAMANANARCAN -QARMAEA BARUGEM
AMAEABAGARAAA Dm0 08 @RAREAT
R i mn
i] I
oggnon‘:iowtgno d*fggaainzn g
BACAGALOMFASAARAOAI OMARAORRAR
e L
f*}f: A \mf:l 3-‘4.?&,2«;.(.;:_4 o
T LT
fOARAAETOmUAN TAAAMACAW I RAEAT

= Ry e ‘“J“&!-ﬂf“‘ e it 0D e e
- Mt S Ot ot it s Ml Mt B s Bt i MDA
i i o e ol D ol ot -t s Ll B il L M D s o e MM i B
armyeBhiasmojusarasese s uwlos e
Wy §EcEe e BLCRen™ § - w i BE S
W lgEAs AREEnEnleg GEOed . @EHYLS s
VYWYV VVVNIIRESI Y FVYRVIVEYEYY]
AANRLBP 2L BB AARAL=PR A= ANA
PYIRYPVIFVIPYYIYVP VPPNV IYFIVY VR

' PITTSBURGH
SUPERCOMPUTING
CENTER

Exercises

We are going to leave you with a few substantial problems that you are now equipped to tackle. Feel free to use your
extended workshop access to work on these, and remember that additional time is an easy Startup Allocation away. Of
course everything we have done is standard and you can work on these problems in any reasonable environment.

You may have wondered what else was to be found at tf.keras.datasets. The answer is many interesting problems. The
obvious follow-on is:

Fashion MINIST

These are 60,000 training images, and 10,000 test
images of 10 types of clothing, in 28x28 greyscale.
Sound familiar? A more challenging drop-in for MNIST.

| DD RDB—=- =l
DB Y

g
|
%
:

This will be our exercise. Tweak the hyperparameters
of our CNN_dropout.py script to try to get a better
categorization of the MNIST clothing dataset than
what we started with. Change values, add layers, play
around and think through what’s happening and we’ll
review some suggested solutions at the end.

Fashion MNIST

It is very easy to just change one line of code and we are using this new and more challenging dataset:

mnist = tf.keras.datasets.fashion_mnist

And, if you run using our current networks, you even get reasonable results. You should consider this your "baseline”.
However, we now have a lot more room for improvement.

Your job is to find a better network, and get those improvements. You have plenty of hyperparameters to play with here, so
you won't be short of options to explore.

You can change some of the obvious ones we have just investigated in obvious ways (brute force, bigger, bigger!) or you can
peruse the documentation for inspiration.

This is an open-ended research project. There is no right answer, and you may even surpass my own solutions. However, if you
put in a reasonable effort you should have no problem getting a measurable improvement over the baseline. And if you want
to determine what a reasonable ceiling might be, | suggest a little Googling. A literature search is the essential starting point
for any deep learning project!

' PITTSBURGH
SUPERCOMPUTING
CENTER

Adding TensorBoard To Your Code

TensorBoard is a very versatile tool that allows us multiple types of insight into our TensorFlow codes. We need only
add a callback into the model to activate the necessary logging.

model.compile(optimizer="adam', Toss='sparse_categorical_crossentropy', metrics=['accuracy'])
tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir='TB_logDir', histogram_freq=1)

history = model.fit(train_images, train_labels, batch_size=128, epochs=15, verbose=1,
validation_data=(test_images, test_labels), callbacks=[tensorboard_callback])

TensorBoard runs as a server, because it has useful run-time capabilities, and requires you to start it separately, and to
access it via a browser.

If you are running on Bridges login nodes, from your computer something like:
Somewhere else:

ssh -2 -Nf -L 6006:127.0.0.1:6006 br014.bridges2.psc.edu
tensorboard --logdir=TB_logD

If you are running on a Bridges compute nodes, you need to use the compute's
Somewhere else: IB address/hostname, for example:

Start your Browser and point it at port 6006: http://localhost:6006/ ssh -2 -Nf -L 6006:r001.ib.bridges2.psc.edu:6006 br014.bridges2.psc.edu

TensorBoard Analysis

The most obvious thing we can do is to look at our training loss. Note that TB is happy to do this in real-time as the
model runs. This can be very useful for you to monitor overfitting.

[J Show data download links [J show data download links

[7] Ignore outliers in chart scaling [[J 1gnore outliers in chart scaling

epoch_accuracy epoch_accuracy

Tooltip sorting method: default

Tooltip sorting method: default

epoch_accuracy

Smoothing Smoothing

Horizontal Axis

epoch_loss epoch_loss

epoch_loss

O validation

LE ALL RUNS

TB_logD:i

Name Smoothed Value Step Time Relative
. train 0.259 0.259 0 Fri Apr 3,03:30:35 0Os

Our F”-St Model © validation 0.05134 005134 0 FriApr3,03:3035 Os
64 Wide FC

Our CNN

TensorBoard Parameter Visualization

Distribution View
And we can observe the time evolution of our
weights and biases, or at least their B o201 emel0
distributions.

conv2d_1

This can be very telling, but requires some
deeper application and architecture dependent
understanding.

conv2d

conv2d/bias_0 w&n) conv2d/kernel_0

dense_1

dense_1/bias_0 8 dense_1/kernel_0

Histogram View

TensorBoard Add Ons

TensorBoard has lots of extended capabilities. Two particularly useful and powerful ones are Hyperparameter Search and
Performance Profiling.

Performance Profiling

ON DEVICE: TOTAL SELF-TIME (GROUPED BY TYPE) ON DEVICE: TOTAL SELF-TIME

Hyperparameters
num_units

1% 16.000 5

&4 32.000 Session Group Show a
dropout Name. Metrics ~ Mum-units dropout optimizer Accuracy s ur /
3df0d7cfasbecsa 077550 =

32.000 0.20000 sgd
g (devioa:GRUT (9 7)
Stream #146(MemcpyH2D,Memcg
Stream #147(MemcpyH2D)
16 0.20000 adam 0 Stream #148(MemcpyD2H)
Stream #149(MemcpyD2D,Memcg
optimizer st 245b 6 010000 adam 0.83210 Stream #165(Compute)

adam Steps
4 sgd 682 2 32 0.10000 0 v TensorFlow Name Scope

32.000 0.20000 adam

0.20000
Metrics

Accuracy 7b29: 32 0.10000

ae235909ecdedd 6.0 0.10000 sgd 0.77700 “

Sorting TensorFlow Ops
v IhostCPU (pid 49
v main/253344

Status

Unknown [& Success

I Failure % Runnina

tf_GPU_Event_Manager/253990
tf_GPU_Event_Manager/253993
Number of matching session f_GPU_Event_Manager/253995
nrovner @ tf_GPU_Event_Manager/253997

Paging

if_GPU_Event_Manager/253999

tf_GPU_Event_Manager/254001

H y p e rpa ram ete r Se arc h f_GPU_Event_Manager/254003

tf_GPU_Event_Manager/254005
v tf_Compute/254007

Requires some scripting on your part. Look at

https://www.tensorflow.org/tensorboard/hyperparameter_t Going beyond basics, like 10 time, requires integration of hardware

uning_with_hparams for a good introduction. specific tools. This is well covered if you are using NVIDIA, otherwise
you may have a little experimentation to do. The end result is a user
friendly interface and valuable guidance.

Scaling Up

You may have the idea that deep learning has a voracious appetite for GPU cycles. That is absolutely the case, and the leading edge of research
is currently limited by available resources. Researchers routinely use many GPUs to train a model. Conversely, the largest resources demand
that you use them in a parallel fzglio= Tt ik : e oo Mo ndCh b

strategy = tf.distribute.Mirror
with strategy.scope():
model = tf.keras.Sequential
tf.keras.layers.Dropout
tf.keras.layers.Dense(u

D

model.compile(...)
model.fit(...)

An alternative that has proven i
MNI¢

Horovod: 1initialize Horovod.
hvd.initQ

Horovod: pin GPU to be used to process Tc
config = tf.cConfigProto()
config.gpu_options.allow_growth = True
config.gpu_options.visible_device_list = st
K.set_session(tf.Session(config=config))

Horovod: adjust number of epochs based or
epochs = int(math.ceil(12.0 / hvd.size())

Horovod: adjust learning rate based on nu
opt = keras.optimizers.Adadelta(1.0 * hvd.s

Horovod: add Horovod Distributed Optimize
opt = hvd.Distributedoptimizer(opt)

model.compile(loss=keras.losses.categorical

callbacks = [hvd.callbacks.BroadcastGlobal\v

v

>
©
Q.
@)
-
(V8
Q.
-
|

Q
P
=
o}
o

Total trainin

Memory and compute requirements

100,000

10,000

100 1,000 10,000

Model memory requirement , GB

Exponential growth of neural networks (source: Cerebras)

if hvd.rank() == 0: callbacks.append(keras.cdi ivdCKks.MOUE ILNECKPUINILL ./ CHNECKPU ITIL-{€POULH} .11 J)

Averaged
Gradients

Averaged
Gradients

Averaged
| Gradients [
\ N
\ .

bmpute Model 3. Average Gradients 4. Update Model
tes (Gradients)

listributed deep learning in TensorFlow
> Del Balso

Jsing Horovod with a Keras MNIST code at:
an/latest/keras.html

https://horovod.readthedocs.io/en/latest/keras.html

Scaling Up Massively

Horovod demonstrates its excellent scalability with a Climate Analytics code that won the Gordon Bell prize in 2018. It
predicts Tropical Cyclones and Atmospheric River events based upon climate models. It shows not only the reach of
deep learning in the sciences, but the scale at which networks can be trained.

* 1.13 ExaFlops (mixed precision) peak training performance

* 0On45606 GPU nodes (27,360 GPUs total)

* High-accuracy (harder when predicting "no hurricane today" is
98% accurate), solved with weighted loss function.

* Layers each have different learning rate

Exascale Deep Learning for Climate Analytics
Kurth, et. al.

Data Augmentation

As I've mentioned, labeled data is valuable. This type of supervised learning often requires human-labeled data.
Getting more out of our expensive data is very desirable. More datapoints generally equals better accuracy. The
process of generating more training data from our existing pool is called Data Augmentation, and is an extremally

common technique, especially for classification How many samples do we need?

Our MNIST network has learned to recognize Vg 1. ic another hyperparameter (yes), where we can

only offer a vague rule of thumb. And that suggestion is
What if we wanted to teach it: about 5000 per category for competence, 10 million for

a real task with human performance.

Scale Invariance Rotation Invariance Noise Tolerance Translation Invariance

You can see how straightforward and mechanical this is. And yet very effective. You will often see detailed
explanations of the data augmentation techniques employed in any given project.

Note that tf.image makes many of these processes very convenient.

from __future__ import print_function

import argparse

import torch

import torch.nn as nn

import torch.nn.functional as F

import torch.optim as optim

from torchvision import datasets, transforms
from torch.optim.lr_scheduler import StepLR

class Net(nn.Module):
def __init__(self):

super(Net, self)._init__Q
self.convl = nn.Conv2d(1, 32, 3, 1)
self.conv2 = nn.Conv2d(32, 64, 3, 1)
self.dropoutl = nn.Dropout2d(0.25)
self.dropout2 = nn.Dropout2d(0.5)
self.fcl = nn.Linear (9216, 128)
self.fc2 = nn.Linear (128, 10)

def forward(self, x):
self.convl(x)
F.relu(x)
self.conv2(x)
F.relu(x)
F.max_pool2d(x, 2)
self.dropoutl(x)
torch.flatten(x, 1)
self.fcl(x)
F.relu(x)
self.dropout2(x)

X self.fc2(x)

output = F.log_softmax(x, dim=1)
return output

X X X X X X X X X X

def train(args, model, device, train_loader, optimizer, epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = F.n11_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / Ten(train_loader), loss.item()))

det test(args, model, device, test_loader):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad(Q):
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)

test_loss += F.nl1_loss(output, target, reduction='sum').item() # sum up batch loss
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability

correct += pred.eq(target.view_as(pred)).sum().item()

test_loss /= len(test_loader.dataset)

PyTorch CNN MNIST

Not a fair comparison of terseness as this version has a
lot of extra flexibility.

From:
https://github.com/pytorch/examples/blob/master/mnist/main.py

h'.format(

pose ([

model = Net().to(device)
optimizer = optim.Adadelta(model.parameters(), lr=args.1r)

scheduler = StepLR(optimizer, step_size=1l, gamma=args.gamma)
for epoch in range(l, args.epochs + 1):
train(args, model, device, train_loader, optimizer, epoch)
test(args, model, device, test_loader)
scheduler.step(Q

if args.save_model:

torch.save(model.state_dict(), "mnist_cnn.pt")

if _name__ == '_main__":
mainQ)

https://github.com/pytorch/examples/blob/master/mnist/main.py

More tf.keras.datasets Fun

per capita crime rate by town

proportion of residential land

proportion of non-retail busing

Charles River dummy variable (

nitric oxides concentration (p4

average number of rooms per dwd

B H H roportion of owner-occupied u

Boston Housing Predict housing prices base upon crime, zoning, pollution, etc. Feiohted distances 1o five Bocd

index of accessibility to radif

full-value property-tax rate pd
pupil-teacher ratio by town

10008(Bk - ©.63)72 where Bk is {

% lower status of the populatid

Median value of owner-occupied

horse

CIFAR10 32x32 color images in 10 classes.

lawn_mower

CIFAR100 Like CIFAR10 but with 100 non-overlapping classes.

ere . . 1 have been known to fall asleep during films, but this...
IMDB 1 sentence pOSItlve or negatlve reviews. Mann photographs the Alberta Rocky Mountains in a superb fashion...
This is the kind of film for a snowy Sunday afternoon...
Reuters 46 topics in newswire form.

Its december acquisition of space co it expects earnings per share in 1987 of 1 15 to 1 30 dlrs per share up from
70 cts in 1986 the company said pretax net should rise to nine to 10 mln dlrs from six mln dlrs in 1986 and rental

operation revenues to 19 to 22 mln dlrs from 12 5 mln dlrs it said cash flow per share this year should be 2 50 to
three dlrs reuters...

Endless Exercises

Kaggle Challenge

The benchmark driven nature of deep learning and competitions:
research, and its competitive consequences, have EAEIE ool Stesl Defect Detection
found a nexus at Kaggle.com. There you can find S

over 20,000 datasets:

Can you detect and classify defects in steel?

Using News to Predict Stock Movements $100,000
. 292

ams

TWO SIGMA

';”« Shared Cars Locatiol BIG DATA
Ny [cOMPETITION

NYS Environmental Remediation Sites

APTOS 2019 Blindness Detection

UW Madison Course . SIIM-ACR Pneumothorax Segmentation
Identify P

Google-Landmarks Dataset

Search Engine Results - Flig - Predicting Molecular Properties

- Ramen Ratings
Crimes in Boston
=]

Goodreads-books ") US Public Assistance for Women and Childrer

rec

) Digit Recognizer Knowledge
! Chennai Water Managemel Chess Game Dataset (Lichess) Learn comput on fundament N eams

Vega shrink-wrapper
Electric Motor Temperature

Los Angeles Parking Citations

4 2l Gas Prices in Brazil
i S==R US Traffic Fatality Records

Some
Hands-On Problem
Solutions

—

Where to start?

Step 1: what do I mean by "better network"? This sounds like an actual research assignment! well, if I run this

import tensorflow as tf

mnist = tf.keras.datasets.fashion_mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data(Q)

train_images = train_images.reshape(60000, 28, 28, 1)
test_images = test_images.reshape(10000, 28, 28, 1)
train_images, test_images = train_images/255, test_images/255

model = tf.keras.Sequential([
tf.keras.layers.Conv2D(32, (3,3), activation='relu', input_shape=(28,28,1)),
tf.keras.layers.Conv2D(64, (3,3), activation='relu'),
tf.keras.layers.mMaxPooling2D(2,2),
tf.keras.layers.Dropout(0.25),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(128, activation="'relu'),
tf.keras.layers.Dropout(0.5),
tf.keras.layers.Dense(10, activation='softmax')

m

model.compile(optimizer=tf.keras.optimizers.sGD(1r=0.01, momentum=0.9), loss='sparse_categorical_crossentropy', metrics=["accuracy'])

model.fit(train_images, train_labels, batch_size=32, epochs=10, verbose=1, validation_data=(test_images, test_labels))

we get this for our baseline.

Epoch 15/15
469/469 [] - 1s 3ms/step - Toss: 0.1213 - accuracy: 0.9555 - val_loss: 0.2384 - val_accuracy: 0.9284

Step 2: As per my hint (and I hope your
developing instincts), a good place to gain some
perspective is always a Tittle research.

It looks Tike some networks are getting 96%.

It also Tooks Tike those are some fancy networks.

Maybe I'11 click a few more of those links...

How far to go?

https://paperswithcode.com > sota > image-classification-o...

Fashion-MNIST Benchmark (Image Classification) - Papers ...

@ About featured snippets =

People also ask

Google fashion mnist best accuracy X ‘ 4 Q
Q Al [Images [] Videos) Shopping (& News : More Tools
About 175,000 results (0.49 seconds)
Image Classification on Fashion-MNIST
Rank Model Accuracy
1 Fine-Tuning DARTS 96.91
2 SHELCESIELCECT)] 96.41
3 PreAct-ResNet18 + FMix
4 Random Erasing
7 more rows

B Feedback

What is a good Fashion-MNIST accuracy?

What is the highest accuracy on MNIST?

Still researching.

This top 1link happens to provide a nice summary - -
of the state-of-the-art in MNIST. That "kmnist" Dataset Model Best Epoch Train Loss Train Acc. Val. Loss Val. Acc.
. . kmnist mobilenet_v2 89 0.036 99.988 0.095 98.468
is a Japanese character version. kmnist resnet101) 0.020 99.993 0.097 98.147
kmnist resnet14 73 0.021 99.975 0.070 98.748
kmnist resnet152 85 0.020 99.988 0.090 98.197
we know Alexnet is a big complex and powerful t:::‘: :‘:Z:;Z ;; ggfg gg~£; gg;z gg~§§§

. . . S S| 4 . A a

network, and yet it isn't doing as well as our —— resnet50 80 0.020 99.982 0.097 98067
baseline. This 1is a clue that bigger is not kmnist resnet9 54 0.008 99.997 0.069 98.528
better. kmnist vggllbn 62 0.016 99.998 0.078 98.427
kmnist vggl3 bn 54 0.016 99.980 0.069 98.698
kmnist vggl6_bn 79 0.015 99.998 0.070 98.698
kmnist vgg19_bn 99 0.015 99.998 0.078 98.518
Those other networks are also pretty big and fashionmnist _ alexnet 97 0.296 89.248 0308 89.042
fancy. So it Tooks Tike getting even 94% here fashionmnist ~ densenet121 92 0.037 99.947 0.266 93.950
i S a b'l o ask . fashionmnist densenet161 93 0.038 99.937 0.264 94.171
fashionmnist ~ densenet169 97 0.038 99.933 0.258 94.291
fashionmnist googlenet 96 0.044 99.973 0.240 93.439
fashionmnist inception_v3 97 0.050 99.861 0.244 94.441
And we know I v m not an un reasonab‘l e -Fe-l -I ow. So fashionmnist mobilenet_v2 98 0.040 99.913 0.252 93.860
' . . fashionmnist ~ resnet101 94 0.019 99.985 0.281 93.740
let's set our sights appropriately. e — 89 0.021 99.997 0228 94.040
fashionmnist resnet152 91 0.020 99.970 0.286 93.770
fashionmnist resnet18 86 0.020 99.998 0.228 93.970
fashionmnist resnet34 96 0.018 99.993 0.261 93.910
fashionmnist resnet50 89 0.019 99.985 0.261 93.810
fashionmnist resnet9 63 0.009 99.998 0.203 94.071
fashionmnist ~ vggll_bn 91 0.017 100.000 0.229 93.600
fashionmnist ~ vggl3_bn 80 0.017 99.998 0.211 94.111
fashionmnist vggl6_bn 86 0.018 99.995 0.226 94.030
fashionmnist ~ vgg19_bn 95 0.018 99.987 0.244 93.960

CNN Filter DB: An Empirical Investigation of Trained Convolutional Filters. Paul Gavrikov and Janis Keupe

As per this analysis of the dataset, there are
a lot debatable labels, and some that are
apparently wrong.

This is just a trickier problem. Especially at
this resolution.

I could not find the number for "superhuman"
on this dataset, but it is clearly Tower than
for the digits.

Why so hard?

fa L ’

Figure 7. Very hard or mislabelled thumbnails in Fashion-MNIST.
A.T-shirt with person. B. Coat with person C .Dress with person. D.
Dress with two parts. E .Dress with bloomers. F. T-shirts.

OVERHEAD MNIST: A BENCHMARK SATELLITE DATASET David A. Noever and Samantha E. Miller Noever

Get to work!

Step 3: There is no substitute for trial and
error with the hyperparameters. Maybe we can
hope to spot a trend.

This is a great example of the kind of approach
to take.

This made it to over 94%.
Nesterov 7s just a fancier version of

gradient descent (it "looks ahead")
that you can select.

Change from Base Code (Acc 88

Wider (512) 0.8927
38

Deeper (512,512,512)
CNN (1 layer) - 100 Epochs

CNN (2 layers) (32, 64)

Accuracy

0.8896
8790

0.
0.9223

O 2 layer) (1,60

.5) - 100 Epochs

Drop (0.5,0.5) - 80 Epochs 0.9338
Batch Normalization

Changing Activation Function (“sigmoid”)
Conv2D strides =), Ir = 0.02, momentum = 0.9
Conv2D strides = (3,3), Ir = 0.02, momentum = 0.8
Ir = 0.02, momentum = 0.9

—n

Changing (padding="same") - 40 epochs

Changing (padding="same") - 80 epochs

Dropout (0.6,0.6), Epochs = 40
Dropout (0.75,0.75), Epochs = 40
Dropout (0.2,0.6), Epochs = 40
Dropout (0.2,0.6), Epochs = 100
Dropout (0.6,0.6), Epochs = 100

nesterov=True, Epochs = 100

0.9372
9

Dropout (0.5,0.6), Epochs = 40

Another fine pursuit of good
hyperparameters.

93.7% and a systematic two-
steps-forward-one-step-back
attack.

Model

Baseline w/ Dropout (trained for 20 epochs)

Changed optimizer to ADAM

Increase first conv layer to 64 filters

Increase second conv layer to 128 filters

Increase dense layer to 192

Increase dense layer to 256

Increase dropout after conv layer to 0.4

Increase dropout after conv layer to 0.5

W[I|N[o VD [WN [~ %

Add conv layer with 96 filters between existing conv layers

=
o

Removed new layer, added third conv layer with 192 filters

=
[N

Add dense layer with 256 neurons, dropout 0.5

[y
N

Reduce dropout of new layer to 0.25

[y
w

Remove dropout of new layer

[
iy

Change new layer to have 320 neurons, reintroduce 0.25 dropout

[
93]

Revert to model 10, changed third conv layer to have 224 filters

=
[e)]

Revert to model 10, changed second conv layer to have 192 filters

[
~

Changed first conv layer to have 128 filters

[
(0]

Revert to model 16, increase dense layer to have 320 neurons

[
(o]

Revert to model 16, train for 30 epochs

N
o

Changed third conv layer to have 256 filters, train for 25 epochs

N
[

Changed dense layer to have 320 neurons

N
N

Changed dense layer to have 512 neurons

N
w

Add BatchNorm after all conv layers before pooling

N
B

Add first dense layer with 1024 neurons, dropout 0.5

N
%]

Add conv layer with 64 filters and BatchNorm after first layer

N
D

Revert to model 16, add BatchNorm after all conv layers before pooling

