
Bryon Gill
Pittsburgh Supercomputing Center

Copyright 2024

Intro To Big Data and Machine Learning:
Hands On

____ __
 / __/__ ___ _____/ /__
 _\ \/ _ \/ _ `/ __/ '_/
 /__ / .__/_,_/_/ /_/_\ version 1.6.0
 /_/

Using Python version 2.7.5 (default, Nov 20 2015 02:00:19)
SparkContext available as sc, HiveContext available as sqlContext.
>>>
>>> rdd1 = sc.textFile("5000_points.txt")
>>>
>>> rdd2 = rdd1.map(lambda x: x.split())
>>> rdd3 = rdd2.map(lambda x: [int(x[0]),int(x[1])])
>>>

Finding Clusters

Read into RDD

Transform to words and integers

br06% interact –n 7 –R BigRM6Jul11
wait for a job to start...
r288% module load spark
r288% pyspark

Important: Make sure you are in the directory with the data file. Otherwise, Spark
is dangerously quiet when you textFile() a file that does not exist. Lazy
evaluation’s dark side!

Shakespeare, a Data Analytics Favorite
Applying data analytics to the works of Shakespeare has become all the rage. Whether determining the legitimacy of
his authorship (it wasn’t Marlowe) or if Othello is actually a comedy (perhaps), or which word makes Macbeth so
creepy ("the", yes) it is amazing how much publishable research has sprung from the recent analysis of 400 year old
text.

We’re going to do some exercises here using a text file containing all of his works.

A modest exercise.
We have an input file, Complete _Shakespeare.txt, that you can also find at http://www.gutenberg.org/ebooks/100.
You might find it useful to have http://spark.apache.org/docs/latest/api/python/reference/api/pyspark.RDD.html#pyspark.RDD in a browser
window.

If you are starting from scratch on the login node:

#Copy all of the hands-on exercises and datasets into your home directory:
cp ~training/BigData .
interact
cd BigData/Shakespeare
module load spark
pyspark

Let the pyspark shell start up...
>>> rdd = sc.textFile("Complete_Shakespeare.txt")

Let’s try a few simple exercises.
1) Count the number of lines
2) Count the number of words (hint: Python "split" is a workhorse)
3) Count unique words
4) Count the occurrence of each word
5) Show the top 5 most frequent words

These last two are a bit more challenging. One approach is
to think “key/value”. If you go that way, think about which
data should be the key and don’t be afraid to swap it
about with value. This is a very common manipulation
when dealing with key/value organized data.

http://www.gutenberg.org/ebooks/100

>>> lines_rdd = sc.textFile("Complete_Shakespeare.txt")
>>>

>>> lines_rdd.count()
124787

>>>

>>> words_rdd = lines_rdd.flatMap(lambda x: x.split())
>>> words_rdd.count()

904061
>>>

>>> words_rdd.distinct().count()

67779
>>>

Some Simple Answers

Next, I know I'd like to end up with a pair RDD of sorted word/count pairs:

(23407, 'the'), (19540,'I'), (15682, 'to'), (15649, 'of') ...

Why not just words_rdd.countByValue()? It is an action that gives us a massive Python
unsorted dictionary of results:

... 1, 'precious-princely': 1, 'christenings?': 1, 'empire': 11, 'vaunts': 2, 'Lubber's': 1,
'poet.': 2, 'Toad!': 1, 'leaden': 15, 'captains': 1, 'leaf': 9, 'Barnes,': 1, 'lead': 101, 'Hell':
1, 'wheat,': 3, 'lean': 28, 'Toad,': 1, 'trencher!': 2, '1.F.2.': 1, 'leas': 2, 'leap': 17, ...

Where to go next? Sort this in Python or try to get back into an RDD? If this is truly BIG
data, we want to remain as an RDD until we reach our final results. So, no.

>>> lines_rdd = sc.textFile("Complete_Shakespeare.txt")
>>>

>>> lines_rdd.count()
124787

>>>

>>> words_rdd = lines_rdd.flatMap(lambda x: x.split())
>>> words_rdd.count()

904061
>>>

>>> words_rdd.distinct().count()

67779
>>>

>>> key_value_rdd = words_rdd.map(lambda x: (x,1))
>>>

>>> key_value_rdd.take(5)

[('The', 1), ('Project', 1), ('Gutenberg', 1), ('EBook', 1), ('of', 1)]
>>>

>>> word_counts_rdd = key_value_rdd.reduceByKey(lambda x,y: x+y)
>>> word_counts_rdd.take(5)

[('fawn', 11), ('considered-', 1), ('Fame,', 3), ('mustachio', 1), ('protested,', 1)]

>>>
>>> flipped_rdd = word_counts_rdd.map(lambda x: (x[1],x[0]))

>>> flipped_rdd.take(5)
[(11, 'fawn'), (1, 'considered-'), (3, 'Fame,'), (1, 'mustachio'), (1, 'protested,')]

>>>

>>> results_rdd = flipped_rdd.sortByKey(False)
>>> results_rdd.take(5)

[(23407, 'the'), (19540, 'I'), (18358, 'and'), (15682, 'to'), (15649, 'of')]
>>>

Some Harder Answers

Turn these into k/v pairs

Reduce to get words counts

Flip keys and values
so we can sort on
wordcount instead of
words.

results_rdd = lines_rdd.flatMap(lambda x: x.split()).map(lambda x: (x,1)).reduceByKey(lambda x,y: x+y).map(lambda x: (x[1],x[0])).sortByKey(False)

Things data
scientists do.

Some Homework Problems for the ambitious.

To do research-level text analysis, we generally want to clean up our input. Here are some of the kinds of things you
could do to get a more meaningful distinct word count.

1) Remove punctuation. Often punctuation is just noise, and it is here. Do a Map and/or Filter (some punctuation is
attached to words, and some is not) to eliminate all punctuation from our Shakespeare data. Note that if you are
familiar with regular expressions, Python has a ready method to use those.

2) Remove stop words. Stop words are common words that are also often uninteresting ("I", "the", "a"). You can
remove many obvious stop words with a list of your own, and the MLlib that we are about to investigate has a
convenient StopWordsRemover() method with default lists for various languages.

3) Stemming. Recognizing that various different words share the same root ("run", "running") is important, but not so
easy to do simply. Once again, Spark brings powerful libraries into the mix to help. A popular one is the Natural
Language Tool Kit. You should look at the docs, but you can give it a quick test quite easily:

import nltk
from nltk.stem.porter import *
stemmer = PorterStemmer()
stems_rdd = words_rdd.map(lambda x: stemmer.stem(x))

Why all these dimensions?

The problems we are going to address, as well as the ones you are likely to encounter, are naturally highly
dimensional. If you are new to this concept, lets look at an intuitive example to make it less abstract.

Category Purchase Total ($)

Children's Clothing $800

Pet Supplies $0

Cameras (Dash, Security, Baby) $450

Containers (Storage) $350

Romance Book $0

Remodeling Books $80

Sporting Goods $25

Children's Toys $378

Power Tools $0

Computers $0

Garden $0

Children's Books $180

... ...

< 2900 Categories >

This is a 2900 dimensional vector.

Why all these dimensions?

If we apply our newfound clustering expertise, we might find we have 80 clusters (with an acceptable
error).

People spending on “child’s toys “ and “children’s clothing” might cluster with “child’s books” and, less
obvious, "cameras (Dashcams, baby monitors and security cams)", because they buy new cars and are
safety conscious. We might label this cluster "Young Parents". We also might not feel obligated to label the
clusters at all. We can now represent any customer by their distance from these 80 clusters.

Customer Representation

Cluster Young
Parents

College
Athlete

Auto
Enthusiast

Knitter Steelers Fan Shakespeare
Reader

Sci-Fi Fan Plumber ...

Distance 0.02 2.3 1.4 8.4 2.2 14.9 3.3 0.8 ...

We have now accomplished two things:
• we have compressed our data
• learned something about our customers (who to send a dashcam promo to).

80 dimensional vector.

Curse of Dimensionality

This is a good time to point out how our intuition can lead us astray as we increase the dimensionality of our problems - which we will
certainly be doing - and to a great degree. There are several related aspects to this phenomenon, often referred to as the Curse of
Dimensionality. One root cause of confusion is that our notion of Euclidian distance starts to fail in higher dimensions.

These plots show the distributions of pairwise distances
between randomly distributed points within differently
dimensioned unit hypercubes. Notice how all the points start
to be about the same distance apart.

One can imagine this makes life harder on a clustering
algorithm!

There are other surprising effects: random vectors are
almost all orthogonal; the unit sphere takes almost no
volume in the unit square. These cause all kinds of problems
when generalizing algorithms from our lowly 3D world.

Metrics

Even the definition of distance (the metric) can vary based upon application. If you are solving chess problems, you might find the
Manhattan distance (or taxicab metric) to be most useful.

Image Source: Wikipedia

For comparing text strings, we might choose one of dozens of different metrics. For spell checking you might want one that is
good for phonetic distance, or maybe edit distance. For natural language processing (NLP), you probably care more about tokens.

For genomics, you might care more about string sequences.

Some useful measures don't even qualify as metrics (usually because they fail the triangle inequality: a + b ≥ c).

Alternative DR: Principal Component Analysis

3D Data Set Maybe mostly 1D!

Alternative DR: Principal Component Analysis

Flatter 2D-ish Data Set View down the 1st Princ. Comp.

Why So Many Alternatives?

Let's look at one more example today. Suppose we are tying to do a Zillow type of analysis and predict home values based upon available
factors. We may have an entry (vector) for each home that captures this kind of data:

Home Data

Latitude 4833438 north

Longitude 630084 east

Last Sale Price $ 480,000

Last Sale Year 1998

Width 62

Depth 40

Floors 3

Bedrooms 3

Bathrooms 2

Garage 2

Yard Width 84

Yard Depth 60

... ...

There may be some opportunities to reduce the dimension of the vector here. Perhaps clustering on the geographical coordinates...

Principal Component Analysis Fail

1st Component Off
Data Not Very Linear

D x W Is Not Linear
But (DxW) Fits Well

Non-Linear PCA?
A Better Approach in the next session!

Why the fascination with linear techniques?

The Streetlight Effect

This is a very real and powerful force
throughout the sciences.

It is not because practitioners are dumb.

But, it is also very often neither explained
nor justified.

Which leads to great confusion.

Why Would An Image Have 784 Dimensions?

MNIST 28x28
greyscale images

Central Hypothesis of Modern DL

Data Lives On
A Lower Dimensional

Manifold

3

6

4

0

8

9

7

2

1

Maybe Very Contiguous

Maybe A Small Set
Of Disconnected

9
5

7
3

4

Images from Wikipedia

import numpy as np
import matplotlib.pyplot as plt
from sklearn import (datasets, decomposition, manifold, random_projection)

def draw(X, title):

 plt.figure()
 plt.xlim(X.min(0)[0],X.max(0)[0]); plt.ylim(X.min(0)[1],X.max(0)[1])
 plt.xticks([]); plt.yticks([])
 plt.title(title)
 for i in range(X.shape[0]):

 plt.text(X[i, 0], X[i, 1], str(y[i]), color=plt.cm.Set1(y[i] / 10.))

digits = datasets.load_digits(n_class=6)
X = digits.data
y = digits.target

rp = random_projection.SparseRandomProjection(n_components=2, random_state=42)
X_projected = rp.fit_transform(X)
draw(X_projected, "Sparse Random Projection of the digits")

X_pca = decomposition.PCA(n_components=2).fit_transform(X)
draw(X_pca, "PCA (Two Components)")

tsne = manifold.TSNE(n_components=2, init='pca', random_state=0)
X_tsne = tsne.fit_transform(X)

draw(X_tsne, "t-SNE Embedding")

plt.show()

Testing These Ideas With Scikit-learn
Sparse

How does all this fit together?

AI
ML

DL
nee Neural Nets

Big
 Data

Character Recognition
Capchas

Chess
Go

Character Recognition
Capchas

Chess
Go

DL
Angsty Poetry

Paintings of
Monkeys Piloting Jets

