
International HPC Summer School 2024

Introduction to OpenMP for CPUs

Introduction to OpenMP for CPUs
International HPC Summer School 2024

Ludovic Capelli

EPCC

July 8, 2024

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 1 / 154

mailto:l.capelli@epcc.ed.ac.uk
https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Acknowledgements

Individuals

The material presented in this lecture is inspired from content
developed by:

■ Dr Mark Bull

■ Prof John Urbanic

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 2 / 154

https://www.epcc.ed.ac.uk/about-us/our-team/dr-mark-bull
https://www.psc.edu/john-urbanic/
https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Acknowledgements

Contributors

In this material:

■ The slides are created using LATEXBeamer available at
https://ctan.org/pkg/beamer.

■ The sequence diagrams are created using an extended version
of the pgf-umlsd package available at
https://ctan.org/pkg/pgf-umlsd.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 3 / 154

https://ctan.org/pkg/beamer
https://ctan.org/pkg/pgf-umlsd
https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

License

License - Creative Commons BY-NC-SA-4.01

Non-Commercial you may not use the material for commercial
purposes.

Shared-Alike if you remix, transform, or build upon the
material, you must distribute your contributions
under the same license as the original.

Attribution you must give appropriate credit, provide a link
to the license, and indicate if changes were
made. You may do so in any reasonable manner,
but not in any way that suggests the licensor
endorses you or your use.

1You can find the full documentation about this license at:
https://creativecommons.org/licenses/by-nc-sa/4.0/

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 4 / 154

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

License

Nota bene

Format

This set of slides is designed to be covered as a live presentation,
and thus contains little text and explanations. It is less suitable to
be studied as a stand-alone document.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 5 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Preamble

Timetable

Designed as 30-min blocks

■ 20 minutes of teaching

■ 10 minutes of practice

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 6 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Preamble

Shared memory = ?

Figure: Link to the survey: ”Which words come to mind when thinking of
shared memory programming?”

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 7 / 154

https://app.wooclap.com/events/GKHZUH
https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Preamble

Moment of truth

Before we start:

■ Connect to the Bridges node

1 ssh your_username@login.cirrus.ad.uk

■ This repository is on Github.

■ Clone the repository used in this session

1 git clone https://github.com/capellil/
IHPCSS_Introduction_to_OpenMP_CPU_examples

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 8 / 154

https://github.com/capellil/IHPCSS_Introduction_to_OpenMP_CPU_examples
https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Preamble

Moment of truth

■ You will see it contains multiple folders, numbered.

■ Each of which will be an illustration to a concept we will see.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 9 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Preamble

Moment of truth - Running on login node

■ Go to the repository, inside the first folder.

1 cd <repository>/<language>/1.Preamble

■ Compile the source code in it

1 make

■ Run the executable.

1 ./bin/preamble

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 10 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Outline

Table of content

1 Motivation

2 How it works

3 The parallel construct

4 Data-sharing attribute clauses

5 Worksharing construct

6 Synchronisation constructs

7 Loops time

8 Reduction

9 Schedule clause

10 Summary

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 11 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Motivation

Table of Contents

1 Motivation

2 How it works

3 The parallel construct

4 Data-sharing attribute clauses

5 Worksharing construct

6 Synchronisation constructs

7 Loops time

8 Reduction

9 Schedule clause

10 Summary

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 12 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Motivation

Clock frequency

1998 First 0.1GHz CPU, Pentium II Xeon 400.

1999 First 1GHz CPU, AMD Athlon.

2001 First 2GHz CPU, Intel Pentium 4.

2002 First 3GHz CPU, Intel Pentium 4.

2012 First 4GHz CPU, AMD FX-4170.

2013 First 5GHz CPU, AMD FX-9590.

2023 First 6GHz CPU, Intel Core i9-13900KS.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 13 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Motivation

Clock frequency

1998 First 0.1GHz CPU, Pentium II Xeon 400.

1999 First 1GHz CPU, AMD Athlon.

2001 First 2GHz CPU, Intel Pentium 4.

2002 First 3GHz CPU, Intel Pentium 4.

2012 First 4GHz CPU, AMD FX-4170.

2013 First 5GHz CPU, AMD FX-9590.

2023 First 6GHz CPU, Intel Core i9-13900KS.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 13 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Motivation

Clock frequency

1998 First 0.1GHz CPU, Pentium II Xeon 400.

1999 First 1GHz CPU, AMD Athlon.

2001 First 2GHz CPU, Intel Pentium 4.

2002 First 3GHz CPU, Intel Pentium 4.

2012 First 4GHz CPU, AMD FX-4170.

2013 First 5GHz CPU, AMD FX-9590.

2023 First 6GHz CPU, Intel Core i9-13900KS.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 13 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Motivation

Clock frequency

1998 First 0.1GHz CPU, Pentium II Xeon 400.

1999 First 1GHz CPU, AMD Athlon.

2001 First 2GHz CPU, Intel Pentium 4.

2002 First 3GHz CPU, Intel Pentium 4.

2012 First 4GHz CPU, AMD FX-4170.

2013 First 5GHz CPU, AMD FX-9590.

2023 First 6GHz CPU, Intel Core i9-13900KS.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 13 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Motivation

Clock frequency

1998 First 0.1GHz CPU, Pentium II Xeon 400.

1999 First 1GHz CPU, AMD Athlon.

2001 First 2GHz CPU, Intel Pentium 4.

2002 First 3GHz CPU, Intel Pentium 4.

2012 First 4GHz CPU, AMD FX-4170.

2013 First 5GHz CPU, AMD FX-9590.

2023 First 6GHz CPU, Intel Core i9-13900KS.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 13 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Motivation

Clock frequency

1998 First 0.1GHz CPU, Pentium II Xeon 400.

1999 First 1GHz CPU, AMD Athlon.

2001 First 2GHz CPU, Intel Pentium 4.

2002 First 3GHz CPU, Intel Pentium 4.

2012 First 4GHz CPU, AMD FX-4170.

2013 First 5GHz CPU, AMD FX-9590.

2023 First 6GHz CPU, Intel Core i9-13900KS.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 13 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Motivation

Clock frequency

1998 First 0.1GHz CPU, Pentium II Xeon 400.

1999 First 1GHz CPU, AMD Athlon.

2001 First 2GHz CPU, Intel Pentium 4.

2002 First 3GHz CPU, Intel Pentium 4.

2012 First 4GHz CPU, AMD FX-4170.

2013 First 5GHz CPU, AMD FX-9590.

2023 First 6GHz CPU, Intel Core i9-13900KS.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 13 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Motivation

Clock frequency

1998 First 0.1GHz CPU, Pentium II Xeon 400.

1999 First 1GHz CPU, AMD Athlon.

2001 First 2GHz CPU, Intel Pentium 4.

2002 First 3GHz CPU, Intel Pentium 4.

2012 First 4GHz CPU, AMD FX-4170.

2013 First 5GHz CPU, AMD FX-9590.

2023 First 6GHz CPU, Intel Core i9-13900KS.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 13 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Motivation

Dawn of multi-threading

■ Can only increase clock frequency so much, due to physics.

■ The higher the frequency:

■ the bigger the loss (i.e.: heat generated)
■ the bigger the current leak

■ Instead of trying to increase the clock frequency further, what
about using multiple cores?

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 14 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Motivation

Dawn of multi-threading

■ Can only increase clock frequency so much, due to physics.

■ The higher the frequency:

■ the bigger the loss (i.e.: heat generated)

■ the bigger the current leak

■ Instead of trying to increase the clock frequency further, what
about using multiple cores?

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 14 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Motivation

Dawn of multi-threading

■ Can only increase clock frequency so much, due to physics.

■ The higher the frequency:

■ the bigger the loss (i.e.: heat generated)
■ the bigger the current leak

■ Instead of trying to increase the clock frequency further, what
about using multiple cores?

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 14 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Motivation

Dawn of multi-threading

■ Can only increase clock frequency so much, due to physics.

■ The higher the frequency:

■ the bigger the loss (i.e.: heat generated)
■ the bigger the current leak

■ Instead of trying to increase the clock frequency further, what
about using multiple cores?

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 14 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Motivation

Early days of multi-threading

■ In the early days of parallel programming, everybody was
developing their own library.

■ Challenging situation for everybody:

■ As a vendor: optimising every library independently is
unreasonable.

■ As a user: few to no vendor optimisations available, and no
code portability between libraries.

■ Need for standardisation.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 15 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Motivation

Early days of multi-threading

■ In the early days of parallel programming, everybody was
developing their own library.

■ Challenging situation for everybody:

■ As a vendor: optimising every library independently is
unreasonable.

■ As a user: few to no vendor optimisations available, and no
code portability between libraries.

■ Need for standardisation.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 15 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Motivation

Early days of multi-threading

■ In the early days of parallel programming, everybody was
developing their own library.

■ Challenging situation for everybody:

■ As a vendor: optimising every library independently is
unreasonable.

■ As a user: few to no vendor optimisations available, and no
code portability between libraries.

■ Need for standardisation.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 15 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Motivation

Standardisation multi-threading

■ In the 90s, efforts were made towards the development of a
standard, named Open Multi-Processing, or OpenMP.

■ Members of this team effort became the OpenMP
Architecture Review Board (ARB).

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 16 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Motivation

Standardisation multi-threading

■ In the 90s, efforts were made towards the development of a
standard, named Open Multi-Processing, or OpenMP.

■ Members of this team effort became the OpenMP
Architecture Review Board (ARB).

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 16 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Motivation

Wide community (as of 2023) - Companies

■ AMD

■ ARM

■ Fujitsu

■ HPE

■ IBM

■ Intel

■ Micron

■ NVIDIA

■ Samsung

■ Siemens

■ SiFive

■ SUSE

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 17 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Motivation

Wide community (as of 2023) - Research centres

■ Argonne National Laboratory

■ ASC / Lawrence Livermore National Laboratory

■ Barcelona Supercomputing Center

■ Brookhaven National Laboratory

■ CSC - IT Center for Science

■ EPCC

■ Lawrence Berkely National Laboratory

■ Leibniz Supercomputing Centre

■ Los Alamos National Laboratory

■ NEC

■ NASA

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 18 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Motivation

Wide community (as of 2023) - Research centres

■ Oak Ridge National Laboratory

■ Pawsey Supercomputing Research Centre

■ RWTH Aachen University

■ Sandia National Laboratory

■ Stony Brook University

■ Texas Advanced Computing Center

■ University of Basel

■ University of Bristol

■ University of Delaware

■ University of Tennessee

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 19 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Motivation

Sustained efforts

■ The OpenMP ARB published the version 1.0 of the OpenMP
standards in 1997.

■ 650-page PDF.

■ Current version 5.0 as of November 2018.

■ Minor versions 5.1 and 5.2 published, major version 6.0 in the
works.

■ It is directive-based.

■ It follows a fork-join pattern.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 20 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Motivation

Sustained efforts

■ The OpenMP ARB published the version 1.0 of the OpenMP
standards in 1997.

■ 650-page PDF.

■ Current version 5.0 as of November 2018.

■ Minor versions 5.1 and 5.2 published, major version 6.0 in the
works.

■ It is directive-based.

■ It follows a fork-join pattern.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 20 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Motivation

Sustained efforts

■ The OpenMP ARB published the version 1.0 of the OpenMP
standards in 1997.

■ 650-page PDF.

■ Current version 5.0 as of November 2018.

■ Minor versions 5.1 and 5.2 published, major version 6.0 in the
works.

■ It is directive-based.

■ It follows a fork-join pattern.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 20 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Motivation

Sustained efforts

■ The OpenMP ARB published the version 1.0 of the OpenMP
standards in 1997.

■ 650-page PDF.

■ Current version 5.0 as of November 2018.

■ Minor versions 5.1 and 5.2 published, major version 6.0 in the
works.

■ It is directive-based.

■ It follows a fork-join pattern.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 20 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Motivation

Sustained efforts

■ The OpenMP ARB published the version 1.0 of the OpenMP
standards in 1997.

■ 650-page PDF.

■ Current version 5.0 as of November 2018.

■ Minor versions 5.1 and 5.2 published, major version 6.0 in the
works.

■ It is directive-based.

■ It follows a fork-join pattern.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 20 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Motivation

Sustained efforts

■ The OpenMP ARB published the version 1.0 of the OpenMP
standards in 1997.

■ 650-page PDF.

■ Current version 5.0 as of November 2018.

■ Minor versions 5.1 and 5.2 published, major version 6.0 in the
works.

■ It is directive-based.

■ It follows a fork-join pattern.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 20 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

How it works

Table of Contents

1 Motivation

2 How it works

3 The parallel construct

4 Data-sharing attribute clauses

5 Worksharing construct

6 Synchronisation constructs

7 Loops time

8 Reduction

9 Schedule clause

10 Summary

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 21 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

How it works

Structure of a construct

In C:

1 #pragma omp <directive-name> [clause(...), ...]
2 {
3 <structured-block>
4 }

In FORTRAN:

1 !$OMP <directive-name> [clause(...), ...]
2 <structured-block>
3 !$OMP END

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 22 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

How it works

Structure of a construct

1 #pragma omp <directive-name> [clause(...), ...]
2 {
3 <structured-block>
4 }

Sentinel A bit of code that indicates the presence of an
OpenMP directive.

■ In C: #pragma omp
■ In FORTRAN: !$OMP / !$OMP END

Directive-name The name of the OpenMP directive to use.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 23 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

How it works

Structure of a construct

1 #pragma omp <directive-name> [clause(...), ...]
2 {
3 <structured-block>
4 }

Sentinel A bit of code that indicates the presence of an
OpenMP directive.

■ In C: #pragma omp
■ In FORTRAN: !$OMP / !$OMP END

Directive-name The name of the OpenMP directive to use.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 23 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

How it works

Structure of a construct

1 #pragma omp <directive-name> [clause(...), ...]
2 {
3 <structured-block>
4 }

Sentinel A bit of code that indicates the presence of an
OpenMP directive.

■ In C: #pragma omp
■ In FORTRAN: !$OMP / !$OMP END

Directive-name The name of the OpenMP directive to use.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 23 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

How it works

Structure of a construct

1 #pragma omp <directive-name> [clause(...), ...]
2 {
3 <structured-block>
4 }

Clauses A list of additional features / options to enable.

Directive The entire line, comprising the sentinel, the
directive-name and all the clauses.

Construct The directive and the structured block associated
with it.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 24 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

How it works

Structure of a construct

1 #pragma omp <directive-name> [clause(...), ...]
2 {
3 <structured-block>
4 }

Clauses A list of additional features / options to enable.

Directive The entire line, comprising the sentinel, the
directive-name and all the clauses.

Construct The directive and the structured block associated
with it.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 24 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

How it works

Structure of a construct

1 #pragma omp <directive-name> [clause(...), ...]
2 {
3 <structured-block>
4 }

Clauses A list of additional features / options to enable.

Directive The entire line, comprising the sentinel, the
directive-name and all the clauses.

Construct The directive and the structured block associated
with it.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 24 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

The parallel construct

Table of Contents

1 Motivation

2 How it works

3 The parallel construct

4 Data-sharing attribute clauses

5 Worksharing construct

6 Synchronisation constructs

7 Loops time

8 Reduction

9 Schedule clause

10 Summary

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 25 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

The parallel construct

Hello world example

In C:

1 // Main thread alone
2 printf("Hello world.\n");

In FORTRAN:

1 ! Main thread alone
2 WRITE(*, ’(A)’) ’Hello world’

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 26 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

The parallel construct

Hello world example

1 // Main thread alone
2 #pragma omp parallel
3 {
4 // All threads
5 printf("Hello world.\n");
6 }
7 // Main thread alone

■ Informed the compiler about OpenMP directives incoming
using the sentinel.

■ Passed the parallel construct.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 27 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

The parallel construct

Hello world example

1 ! Main thread alone
2 !$OMP PARALLEL
3 ! All threads
4 WRITE(*, ’(A)’) ’Hello world’
5 !$OMP END PARALLEL
6 ! Main thread alone

■ Informed the compiler about OpenMP directives incoming
using the sentinel.

■ Passed the parallel construct.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 28 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

The parallel construct

Before the parallel construct

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 29 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

The parallel construct

Entering parallel construct

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 30 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

The parallel construct

Inside the parallel construct

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 31 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

The parallel construct

Exiting the parallel construct

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 32 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

The parallel construct

After parallel construct

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 33 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

The parallel construct

Here comes the fork

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 34 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

The parallel construct

Here comes the join

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 35 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

The parallel construct

What output? (assuming 4 threads)

1 // Main thread alone
2 #pragma omp parallel
3 {
4 // All threads
5 printf("Hello world.\n");
6 }
7 // Main thread alone

1 ! Main thread alone
2 !$OMP PARALLEL
3 ! All threads
4 WRITE(*, ’(A)’) ’Hello world’
5 !$OMP END PARALLEL
6 ! Main thread alone

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 36 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

The parallel construct

Hello world example output.

Assuming we use 4 threads, the previous source code would
produce the following:

1 Hello world.
2 Hello world.
3 Hello world.
4 Hello world.

Note

Although lines are identical, the order in which they are printed is
not guaranteed to be consistent.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 37 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

The parallel construct

Setting the number of threads - Environment level

You can set the OpenMP environment variable

1 export OMP_NUM_THREADS=4;
2 ./MyProgram1 # Uses 4 threads
3 ./MyProgram2 # Uses 4 threads
4 ./MyProgram3 # Uses 4 threads
5 ./MyProgram4 # Uses 4 threads

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 38 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

The parallel construct

Setting the number of threads - Application level

You can set / overwrite the number of threads to use for a specific
execution:

1 OMP_NUM_THREADS=4 ./MyProgram1
2 OMP_NUM_THREADS=8 ./MyProgram2
3 OMP_NUM_THREADS=16 ./MyProgram3
4 OMP_NUM_THREADS=32 ./MyProgram4

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 39 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

The parallel construct

Setting the number of threads - Region level

You can also set / overwrite the number of threads to spawn for a
specific parallel construct using the num threads clause.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 40 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

The parallel construct

Setting the number of threads

1 #pragma omp parallel num_threads(2)
2 {
3 // There are two threads here
4 }
5 #pragma omp parallel num_threads(5)
6 {
7 // There are five threads here
8 }
9 #pragma omp parallel

10 {
11 // There are <OMP_NUM_THREADS> threads here
12 }

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 41 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

The parallel construct

Setting the number of threads

1 !$OMP PARALLEL NUM_THREADS(2)
2 ! There are two threads here
3 !$OMP END PARALLEL
4 !$OMP PARALLEL NUM_THREADS(5)
5 ! There are five threads here
6 !$OMP END PARALLEL
7 !$OMP PARALLEL
8 ! There are <OMP_NUM_THREADS> threads here
9 !$OMP END PARALLEL

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 42 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

The parallel construct

Setting the number of threads

Careful

The number of thread is set only for this specific parallel
construct. If the next parallel construct does not have a
num threads clause, it will rely on the value that was set by
OMP NUM THREADS2.

2and potentially changed with omp set num threads

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 43 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

The parallel construct

How to enable support for OpenMP directives?

■ Your compiler has built-in support for OpenMP.

■ To tell your compiler to enable support for OpenMP
directives, need to pass a flag

■ -fopenmp for GNU compilers
■ -qopenmp for Intel compilers

■ Examples for C compilers:

■ gcc -o main main.c -fopenmp
■ icc -o main main.c -qopenmp

■ Examples for FORTRAN compilers:

■ gfortran -o main main.c -fopenmp
■ ifort -o main main.c -qopenmp

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 44 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

The parallel construct

Useful functions

omp get thread num() Returns the id of the calling thread.

omp get num threads() Returns the number of threads at the
calling location.

Warning

If you call omp get num threads() outside a parallel
construct, it always returns 1.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 45 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

The parallel construct

Useful functions

omp get thread num() Returns the id of the calling thread.

omp get num threads() Returns the number of threads at the
calling location.

Warning

If you call omp get num threads() outside a parallel
construct, it always returns 1.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 45 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

The parallel construct

Useful functions

omp get thread num() Returns the id of the calling thread.

omp get num threads() Returns the number of threads at the
calling location.

Warning

If you call omp get num threads() outside a parallel
construct, it always returns 1.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 45 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

The parallel construct

Useful functions

omp get thread num() Returns the id of the calling thread.

omp get num threads() Returns the number of threads at the
calling location.

Warning

If you call omp get num threads() outside a parallel
construct, it always returns 1.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 45 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

The parallel construct

How to enable support for OpenMP functions?

■ OpenMP functions such as omp get num threads are in a
classic OpenMP header / library, which you need to include
like any other library:

■ In C: #include <omp.h>
■ In FORTRAN: USE OMP LIB

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 46 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

The parallel construct

Time to practise: 2.HelloWorld

Update the source code provided such that it prints:

1 Hello world, I am thread X. We are Y threads.

Tips

You will need:

■ the parallel construct

■ the omp get thread num function

■ the omp get num threads function

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 47 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Data-sharing attribute clauses

Table of Contents

1 Motivation

2 How it works

3 The parallel construct

4 Data-sharing attribute clauses

5 Worksharing construct

6 Synchronisation constructs

7 Loops time

8 Reduction

9 Schedule clause

10 Summary

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 48 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Data-sharing attribute clauses

What are we talking about?

Is a variable passed to a parallel region meant to be:

■ shared among all threads?

■ copied on each threads?

■ with initialised value?

■ etc...

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 49 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Data-sharing attribute clauses

What happens in this case?

1 int a = 123;
2 #pragma omp parallel
3 {
4 printf("%d.\n", a);
5 a = 456;
6 }
7 printf("%d\n", a);

1INTEGER :: a := 123;
2!$OMP PARALLEL
3PRINT *, a
4a = 456;
5!$OMP END PARALLEL
6PRINT *, a

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 50 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Data-sharing attribute clauses

Quite a few choices

■ shared

■ private

■ firstprivate

■ lastprivate

■ threadprivate

■ default(none)

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 51 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Data-sharing attribute clauses

The shared clause

■ In a parallel construct, threads all access the same
instance of a shared variable.

■ The shared variable enters the parallel construct with
its existing value.

■ In the parallel construct, all threads access the same
instance of the original variable.

■ When exiting the parallel construct, the shared variable
preserves the value it had in the construct.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 52 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Data-sharing attribute clauses

The shared clause

■ In a parallel construct, threads all access the same
instance of a shared variable.

■ The shared variable enters the parallel construct with
its existing value.

■ In the parallel construct, all threads access the same
instance of the original variable.

■ When exiting the parallel construct, the shared variable
preserves the value it had in the construct.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 52 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Data-sharing attribute clauses

The shared clause

■ In a parallel construct, threads all access the same
instance of a shared variable.

■ The shared variable enters the parallel construct with
its existing value.

■ In the parallel construct, all threads access the same
instance of the original variable.

■ When exiting the parallel construct, the shared variable
preserves the value it had in the construct.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 52 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Data-sharing attribute clauses

The shared clause

■ In a parallel construct, threads all access the same
instance of a shared variable.

■ The shared variable enters the parallel construct with
its existing value.

■ In the parallel construct, all threads access the same
instance of the original variable.

■ When exiting the parallel construct, the shared variable
preserves the value it had in the construct.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 52 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Data-sharing attribute clauses

The shared clause

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 53 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Data-sharing attribute clauses

The shared clause

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 54 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Data-sharing attribute clauses

The shared clause

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 55 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Data-sharing attribute clauses

The shared clause

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 56 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Data-sharing attribute clauses

The shared clause

1 int a = 123;
2 #pragma omp parallel shared(a)
3 {
4 printf("%d.\n", a);
5 a = 456;
6 }
7 printf("%d\n", a);

1 INTEGER :: a := 123
2 !$OMP PARALLEL SHARED(a)
3 PRINT *, a
4 a = 456
5 !$OMP END PARALLEL
6 PRINT *, a

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 57 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Data-sharing attribute clauses

The private clause

■ In a parallel construct, each thread creates its own copy
of a private variable.

■ The private variable enters the parallel construct with
an undefined value.

■ In the parallel construct, all threads access their own copy
of the original variable.

■ When exiting the parallel construct, the value of the
original variable is identical to that before it.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 58 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Data-sharing attribute clauses

The private clause

■ In a parallel construct, each thread creates its own copy
of a private variable.

■ The private variable enters the parallel construct with
an undefined value.

■ In the parallel construct, all threads access their own copy
of the original variable.

■ When exiting the parallel construct, the value of the
original variable is identical to that before it.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 58 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Data-sharing attribute clauses

The private clause

■ In a parallel construct, each thread creates its own copy
of a private variable.

■ The private variable enters the parallel construct with
an undefined value.

■ In the parallel construct, all threads access their own copy
of the original variable.

■ When exiting the parallel construct, the value of the
original variable is identical to that before it.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 58 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Data-sharing attribute clauses

The private clause

■ In a parallel construct, each thread creates its own copy
of a private variable.

■ The private variable enters the parallel construct with
an undefined value.

■ In the parallel construct, all threads access their own copy
of the original variable.

■ When exiting the parallel construct, the value of the
original variable is identical to that before it.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 58 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Data-sharing attribute clauses

The private clause

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 59 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Data-sharing attribute clauses

The private clause

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 60 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Data-sharing attribute clauses

The private clause

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 61 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Data-sharing attribute clauses

The private clause

1 int a = 123;
2 #pragma omp parallel private(a)
3 {
4 printf("%d.\n", a);
5 a = 456;
6 }
7 printf("%d\n", a);

1 INTEGER :: a := 123
2 !$OMP PARALLEL PRIVATE(a)
3 PRINT *, a
4 a = 456
5 !$OMP END PARALLEL
6 PRINT *, a

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 62 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Data-sharing attribute clauses

The firstprivate clause

■ In a parallel construct, each thread creates its own copy
of a firstprivate variable.

■ The firstprivate variable enters the parallel
construct with the value that the original variable had.

■ In the parallel construct, all threads access their own
initialised copy of the original variable.

■ When exiting the parallel construct, the value of the
original variable is identical to that before it.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 63 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Data-sharing attribute clauses

The firstprivate clause

■ In a parallel construct, each thread creates its own copy
of a firstprivate variable.

■ The firstprivate variable enters the parallel
construct with the value that the original variable had.

■ In the parallel construct, all threads access their own
initialised copy of the original variable.

■ When exiting the parallel construct, the value of the
original variable is identical to that before it.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 63 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Data-sharing attribute clauses

The firstprivate clause

■ In a parallel construct, each thread creates its own copy
of a firstprivate variable.

■ The firstprivate variable enters the parallel
construct with the value that the original variable had.

■ In the parallel construct, all threads access their own
initialised copy of the original variable.

■ When exiting the parallel construct, the value of the
original variable is identical to that before it.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 63 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Data-sharing attribute clauses

The firstprivate clause

■ In a parallel construct, each thread creates its own copy
of a firstprivate variable.

■ The firstprivate variable enters the parallel
construct with the value that the original variable had.

■ In the parallel construct, all threads access their own
initialised copy of the original variable.

■ When exiting the parallel construct, the value of the
original variable is identical to that before it.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 63 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Data-sharing attribute clauses

The firstprivate clause

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 64 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Data-sharing attribute clauses

The firstprivate clause

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 65 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Data-sharing attribute clauses

The firstprivate clause

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 66 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Data-sharing attribute clauses

The firstprivate clause

1 int a = 123;
2 #pragma omp parallel firstprivate(a)
3 {
4 printf("%d.\n", a);
5 a = 456;
6 }
7 printf("%d\n", a);

1 INTEGER :: a := 123
2 !$OMP PARALLEL FIRSTPRIVATE(a)
3 PRINT *, a
4 a = 456
5 !$OMP END PARALLEL
6 PRINT *, a

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 67 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Data-sharing attribute clauses

The default clause

■ By default, in a parallel construct, variables are passed as
shared.

■ However, it is good practice to avoid relying on implicitly
declared data-sharing attributes.

■ Specifying the clause default(none) requires explicitly
passing every variable.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 68 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Data-sharing attribute clauses

The default clause

■ By default, in a parallel construct, variables are passed as
shared.

■ However, it is good practice to avoid relying on implicitly
declared data-sharing attributes.

■ Specifying the clause default(none) requires explicitly
passing every variable.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 68 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Data-sharing attribute clauses

The default clause

■ By default, in a parallel construct, variables are passed as
shared.

■ However, it is good practice to avoid relying on implicitly
declared data-sharing attributes.

■ Specifying the clause default(none) requires explicitly
passing every variable.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 68 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Data-sharing attribute clauses

The default clause

1 int a = 123;
2 #pragma omp parallel default(none)
3 {
4 // Compiler complains because variable "a" is not

specified.
5 a = 456;
6 }

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 69 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Data-sharing attribute clauses

Variables with same data-sharing

When you have multiple variables that are under the same
data-sharing attribute, you can chain them using comma ‘,’ as
separators:

1 #pragma omp parallel default(none) shared(a,b) \
2 private(c,d)
3 {
4 // Your code
5 }

What’s with ’\’?

To write OpenMP directives on multiple line, use the
corresponding line breaker, ‘\’ in C and ‘&’ in FORTRAN.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 70 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Data-sharing attribute clauses

Variables with same data-sharing

When you have multiple variables that are under the same
data-sharing attribute, you can chain them using comma ‘,’ as
separators:

1 #pragma omp parallel default(none) shared(a,b) \
2 private(c,d)
3 {
4 // Your code
5 }

What’s with ’\’?

To write OpenMP directives on multiple line, use the
corresponding line breaker, ‘\’ in C and ‘&’ in FORTRAN.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 70 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Data-sharing attribute clauses

OpenMP directives with line breaks

1 #pragma omp parallel default(none) shared(a,b) \
2 private(c,d)
3 {
4 // Your code
5 }

1 !$OMP PARALLEL DEFAULT(NONE) SHARED(a,b) &
2 !$OMP PRIVATE(c,d)
3 ! Your code
4 !$OMP END PARALLEL

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 71 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Data-sharing attribute clauses

Time to practise: 3.DataSharing

Update the source code provided such that each variable gets
assigned the correct data-sharing attribute.

Tips

You will need the following clauses:

■ shared

■ private

■ firstprivate

■ default

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 72 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Worksharing construct

Table of Contents

1 Motivation

2 How it works

3 The parallel construct

4 Data-sharing attribute clauses

5 Worksharing construct

6 Synchronisation constructs

7 Loops time

8 Reduction

9 Schedule clause

10 Summary

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 73 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Worksharing construct

Worksharing constructs

■ single

■ master3

3Deprecated from OpenMP version 5.2

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 74 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Worksharing construct

The single construct

■ The single construct indicates that the associated
structured block is to be executed only by one thread, not all
threads.

■ You do not know which thread will execute it.

■ Implicit synchronisation at the end.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 75 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Worksharing construct

The single construct - Example

1 #pragma omp parallel
2 {
3 printf("This is executed by all threads.\n");
4 #pragma omp single
5 {
6 printf("This is executed by one thread.\n");
7 }
8 printf("This is executed by all threads again.\n");
9 }

1 !$OMP PARALLEL
2 PRINT *, "This is executed by all threads."
3 !$OMP SINGLE
4 PRINT *, "This is executed by one thread."
5 !$OMP END SINGLE
6 PRINT *, "This is executed by all threads again."
7 !$OMP END PARALLEL

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 76 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Worksharing construct

The master construct

■ Only the master thread executes the associated structured
block.

■ The master thread is the thread that runs the program and
is present outside parallel constructs.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 77 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Worksharing construct

The master construct

■ Only the master thread executes the associated structured
block.

■ The master thread is the thread that runs the program and
is present outside parallel constructs.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 77 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Worksharing construct

The master construct - Example

1 #pragma omp parallel
2 {
3 // All threads
4 #pragma omp master
5 {
6 // Only master thread
7 }
8 // All threads
9 }

1!$OMP PARALLEL
2! All threads
3!$OMP MASTER
4! Only master thread
5!$OMP END MASTER
6! All threads
7!$OMP END PARALLEL

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 78 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Worksharing construct

Difference between master and single constructs

■ The single construct indicates that one thread, any thread,
will execute the associated structured block.

■ The master construct indicates that master thread, and
only this thread, will execute the associated structured block.

■ The single construct has an implicit barrier at the end
while the master construct does not.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 79 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Worksharing construct

Time to practise: 4.WhoseTurn

Update the source code provided such that each statement gets
printed by the corresponding thread.

Tips

You will need the following directives:

■ single

■ master

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 80 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Synchronisation constructs

Table of Contents

1 Motivation

2 How it works

3 The parallel construct

4 Data-sharing attribute clauses

5 Worksharing construct

6 Synchronisation constructs

7 Loops time

8 Reduction

9 Schedule clause

10 Summary

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 81 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Synchronisation constructs

Synchronisation constructs

1 int thread_count = 0;
2 #pragma omp parallel default(none) shared(thread_count)
3 {
4 thread_count++;
5 #pragma omp single
6 {
7 printf("There are %d threads.\n", thread_count);
8 }
9 }

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 82 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Synchronisation constructs

Synchronisation constructs

1 INTEGER :: thread_count := 0
2 !$OMP PARALLEL DEFAULT(NONE) SHARED(thread_count)
3 thread_count = thread_count + 1
4 !$OMP SINGLE
5 WRITE(*,’A,I0,A’) ’There are ’, thread_count, ’

threads.’
6 !$OMP END SINGLE
7 !$OMP END PARALLEL

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 83 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Synchronisation constructs

Incrementing a variable - what we expect

Thread 0 Memory Thread 1

Read value

Value is 0

Write 1

Read value

Value is 1

Write 2

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 84 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Synchronisation constructs

Incrementing a variable - what can happen at times

Thread 0 Memory Thread 1

Read value

Value is 0

Read value

Value is 0

Write 1

Write 1

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 85 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Synchronisation constructs

Synchronisation constructs

■ barrier

■ critical

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 86 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Synchronisation constructs

The barrier construct

■ The barrier construct is a stand-alone directive: it has no
associated structured block.

■ When a thread reaches the barrier, it waits until all other
threads in the parallel construct do the same.

■ Once all threads reached the barrier, their execution resumes.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 87 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Synchronisation constructs

The barrier construct

■ The barrier construct is a stand-alone directive: it has no
associated structured block.

■ When a thread reaches the barrier, it waits until all other
threads in the parallel construct do the same.

■ Once all threads reached the barrier, their execution resumes.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 87 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Synchronisation constructs

The barrier construct

■ The barrier construct is a stand-alone directive: it has no
associated structured block.

■ When a thread reaches the barrier, it waits until all other
threads in the parallel construct do the same.

■ Once all threads reached the barrier, their execution resumes.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 87 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Synchronisation constructs

The barrier construct - Example

1 #pragma omp parallel
2 {
3 #pragma omp master
4 {
5 // Busy for 3 seconds
6 }
7 #pragma omp barrier
8 }

1!$OMP PARALLEL
2!$OMP MASTER
3! Busy for 3 seconds
4!$OMP END MASTER
5!$OMP BARRIER
6!$OMP END PARALLEL

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 88 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Synchronisation constructs

The critical construct

■ The structured block associated to a critical construct is
executed by every thread, but never more than one thread at
a time.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 89 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Synchronisation constructs

The critical construct - Example

1 #pragma omp parallel
2 {
3 // All threads
4 #pragma omp critical
5 {
6 // One thread at a time
7 }
8 // All threads
9 }

1!$OMP PARALLEL
2! All threads
3!$OMP CRITICAL
4! One thread at a time
5!$OMP END CRITICAL
6! All threads
7!$OMP END PARALLEL

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 90 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Synchronisation constructs

Named critical construct

The critical construct also accepts an optional name clause.

■ critical constructs with the same name are mutually
exclusive

■ critical constructs with no name are given the same
default name, so are mutually exclusive

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 91 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Synchronisation constructs

Named critical construct

The critical construct also accepts an optional name clause.

■ critical constructs with the same name are mutually
exclusive

■ critical constructs with no name are given the same
default name, so are mutually exclusive

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 91 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Synchronisation constructs

Named critical construct

The critical construct also accepts an optional name clause.

■ critical constructs with the same name are mutually
exclusive

■ critical constructs with no name are given the same
default name, so are mutually exclusive

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 91 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Synchronisation constructs

Named critical construct - Example

1 #pragma omp parallel
2 {
3 #pragma omp critical (A)
4 {
5 // Exclusive with 3rd
6 }
7 #pragma omp critical (B)
8 {
9 // No exclusivity

10 }
11 #pragma omp critical (A)
12 {
13 // Exclusive with 1st
14 }
15 }

1!$OMP PARALLEL
2!$OMP CRITICAL (A)
3! Exclusive with 3rd
4!$OMP END CRITICAL
5!$OMP CRITICAL (B)
6! No exclusivity
7!$OMP END CRITICAL
8!$OMP CRITICAL (A)
9! Exclusive with 1st
10!$OMP END CRITICAL
11!$OMP END PARALLEL

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 92 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Synchronisation constructs

Time to practise: 5.Synchronisation

Update the source code provided, so that the number of threads is
incremented correctly. Also, only once the variable has its final
value should one thread print it.

Tips

You will need the following directives:

■ critical

■ barrier

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 93 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Loops time

Table of Contents

1 Motivation

2 How it works

3 The parallel construct

4 Data-sharing attribute clauses

5 Worksharing construct

6 Synchronisation constructs

7 Loops time

8 Reduction

9 Schedule clause

10 Summary

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 94 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Loops time

Time to parallelise loops!

1 for(int i=0; i<8; i++)
2 {
3 a[i] = b[i] + c[i];
4 }

1INTEGER :: i=0
2DO i=1,8
3a[i] = b[i] + c[i];
4END DO

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 95 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Loops time

Time to parallelise loops!

1 #pragma omp parallel
2 {
3 for(int i=0; i<8; i++)
4 {
5 a[i] = b[i] + c[i];
6 }
7 }

1INTEGER :: i=0
2!$OMP PARALLEL
3DO i=1,8
4a[i] = b[i] + c[i];
5END DO
6!$OMP END PARALLEL

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 96 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Loops time

What we think we asked for

Thread
Iteration

0 1 2 3 4 5 6 7

0

1

2

3

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 97 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Loops time

What we actually asked for

Thread
Iteration

0 1 2 3 4 5 6 7

0

1

2

3

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 98 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Loops time

The for / do constructs

1 #pragma omp parallel
2 {
3 for(int i=0; i<8; i++)
4 {
5 a[i] = b[i] + c[i];
6 }
7 }

1INTEGER :: i=0
2!$OMP PARALLEL
3DO i=1,8
4a[i] = b[i] + c[i];
5END DO
6!$OMP END PARALLEL

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 99 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Loops time

The for / do constructs

1 #pragma omp parallel
2 {
3 #pragma omp for
4 for(int i=0; i<8; i++)
5 {
6 a[i] = b[i] + c[i];
7 }
8 }

1INTEGER :: i=0
2!$OMP PARALLEL
3!$OMP DO
4DO i=1,8
5a[i] = b[i] + c[i];
6END DO
7!$OMP END DO
8!$OMP END PARALLEL

Note

In C, there are no brackets following a for directive.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 100 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Loops time

The for / do constructs

1 #pragma omp parallel
2 {
3 #pragma omp for
4 for(int i=0; i<8; i++)
5 {
6 a[i] = b[i] + c[i];
7 }
8 }

1INTEGER :: i=0
2!$OMP PARALLEL
3!$OMP DO
4DO i=1,8
5a[i] = b[i] + c[i];
6END DO
7!$OMP END DO
8!$OMP END PARALLEL

Note

In C, there are no brackets following a for directive.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 100 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Loops time

Jackpot.

Thread
Iteration

0 1 2 3 4 5 6 7

0

1

2

3

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 101 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Loops time

The combined parallel and for / do constructs

1 #pragma omp parallel for
2 for(int i=0; i<8; i++)
3 {
4 a[i] = b[i] + c[i];
5 }

1INTEGER :: i=0
2!$OMP PARALLEL DO
3DO i=1,8
4a[i] = b[i] + c[i];
5END DO
6!$OMP END PARALLEL DO

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 102 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Loops time

Time to conquer the world.

1 int total = 0;
2 for(int i=0; i<8; i++)
3 {
4 total++;
5 }

1INTEGER :: total=0
2INTEGER :: i=0
3DO i=1,8
4total = total + 1
5END DO

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 103 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Loops time

Time to conquer the world.

1 int total = 0;
2 #pragma omp parallel for
3 for(int i=0; i<8; i++)
4 {
5 total++;
6 }

1INTEGER :: total=0
2INTEGER :: i=0
3!$OMP PARALLEL DO
4DO i=1,8
5total = total + 1
6END DO
7!$OMP PARALLEL DO

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 104 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Loops time

Time to practise: 6.Loops

Update the source code provided, so that the code relies on a loop
to achieve something that is now done in a different way.

Tips

You will need the following directives:

■ for / do

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 105 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Reduction

Table of Contents

1 Motivation

2 How it works

3 The parallel construct

4 Data-sharing attribute clauses

5 Worksharing construct

6 Synchronisation constructs

7 Loops time

8 Reduction

9 Schedule clause

10 Summary

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 106 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Reduction

The reduction clause

■ The reduction clause accepts two arguments:

■ The reduction operation
■ The reduced variable

■ When encountering a reduction clause, each thread makes
its own local copy of the reduced variable, before reducing
them back into the original variable at the end of the
reduction region.

Note

The reduction clause is shown here as a clause to a for / for
construct, however, it is a clause that can be used in a parallel
construct.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 107 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Reduction

The reduction clause

■ The reduction clause accepts two arguments:

■ The reduction operation

■ The reduced variable

■ When encountering a reduction clause, each thread makes
its own local copy of the reduced variable, before reducing
them back into the original variable at the end of the
reduction region.

Note

The reduction clause is shown here as a clause to a for / for
construct, however, it is a clause that can be used in a parallel
construct.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 107 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Reduction

The reduction clause

■ The reduction clause accepts two arguments:

■ The reduction operation
■ The reduced variable

■ When encountering a reduction clause, each thread makes
its own local copy of the reduced variable, before reducing
them back into the original variable at the end of the
reduction region.

Note

The reduction clause is shown here as a clause to a for / for
construct, however, it is a clause that can be used in a parallel
construct.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 107 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Reduction

The reduction clause

■ The reduction clause accepts two arguments:

■ The reduction operation
■ The reduced variable

■ When encountering a reduction clause, each thread makes
its own local copy of the reduced variable, before reducing
them back into the original variable at the end of the
reduction region.

Note

The reduction clause is shown here as a clause to a for / for
construct, however, it is a clause that can be used in a parallel
construct.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 107 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Reduction

The reduction clause

■ The reduction clause accepts two arguments:

■ The reduction operation
■ The reduced variable

■ When encountering a reduction clause, each thread makes
its own local copy of the reduced variable, before reducing
them back into the original variable at the end of the
reduction region.

Note

The reduction clause is shown here as a clause to a for / for
construct, however, it is a clause that can be used in a parallel
construct.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 107 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Reduction

The reduction clause

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 108 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Reduction

The reduction clause

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 109 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Reduction

The reduction clause

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 110 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Reduction

The reduction clause

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 111 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Reduction

The reduction clause

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 112 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Reduction

The reduction clause

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 113 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Reduction

The reduction clause

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 114 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Reduction

The reduction operators

Operator C FORTRAN
Sum + +
Difference - -
Product * *
Minimum min min
Maximum max max
Logical AND && .and.
Logical OR || .or.
Bit-wise AND & iand
Bit-wise OR | ior
Bit-wise exclusive or ˆ ieor
Logical equivalence n/a .eqv.
Logical non-equivalence n/a .neqv.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 115 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Reduction

The reduction clause - Example

1 int total = 0;
2 #pragma omp parallel for default(none) shared(total)
3 for(int i=0;i<8;i++)
4 {
5 total++;
6 }

1 INTEGER :: i
2 !$OMP PARALLEL DO DEFAULT(NONE) SHARED(total)
3 DO i=1,8
4 total = total + 1
5 END DO
6 !$OMP END PARALLEL DO

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 116 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Reduction

The reduction clause - Example

1 #pragma omp parallel for default(none) \
2 reduction(+:total)
3 for(int i=0;i<8;i++)
4 {
5 total++;
6 }

1 INTEGER :: i
2 !$OMP PARALLEL DO DEFAULT(NONE) REDUCTION(+:total)
3 DO i=1,8
4 total = total + 1
5 END DO
6 !$OMP END PARALLEL DO

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 117 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Reduction

The atomic construct

■ First scenario: we have threads that issue different types of
operations on the given variable, so it cannot be encapsulated
inside a single reduction (for example, calculating the min of
their variable and next line calculating their max of their
variable). Example:

1 #pragma omp parallel reduction(min/max:a)
2 {
3 a = min(a, some_value);
4 a = max(a, some_other_value);
5 }

1 !$OMP PARALLEL REDUCTION(MIN/MAX:a)
2 a = MIN(a, some_value);
3 a = MAX(a, some_other_value);
4 !$OMP END PARALLEL

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 118 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Reduction

The atomic construct

■ Second scenario: we have threads using a reduction, however
they need the result before the end of the parallel region.
Example:

1 #pragma omp parallel reduction(+:a)
2 {
3 a++;
4 #pragma omp barrier
5 }

1 !$OMP PARALLEL REDUCTION(+:a)
2 a = a + 1
3 !$OMP BARRIER
4 !$OMP END PARALLEL

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 119 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Reduction

The atomic construct - Example

1 int total = 0;
2 #pragma omp parallel for default(none) shared(total)
3 for(int i=0;i<8;i++)
4 {
5 total++;
6 }

1 INTEGER :: i
2 !$OMP PARALLEL DO DEFAULT(NONE) SHARED(+:total)
3 DO i=1,8
4 total = total + 1
5 END DO
6 !$OMP END PARALLEL DO

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 120 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Reduction

The atomic construct - Example

1 #pragma omp parallel for default(none) \
2 shared(total)
3 for(int i=0;i<8;i++)
4 {
5 #pragma omp atomic
6 total++;
7 }

1 INTEGER :: i
2 !$OMP PARALLEL DO DEFAULT(NONE) SHARED(+:total)
3 DO i=1,8
4 !$OMP ATOMIC
5 total = total + 1
6 !$OMP END ATOMIC
7 END DO
8 !$OMP END PARALLEL DO

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 121 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Reduction

Time to practise: 7.Reduction

Update the source code provided such that the different
calculations performed in the loop are ported to a parallelised loop,
without using critical or barrier constructs.

Tips

You will need:

■ the reduction clause

■ the atomic construct

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 122 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Schedule clause

Table of Contents

1 Motivation

2 How it works

3 The parallel construct

4 Data-sharing attribute clauses

5 Worksharing construct

6 Synchronisation constructs

7 Loops time

8 Reduction

9 Schedule clause

10 Summary

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 123 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Schedule clause

schedule clause

■ Use in the for / do directive.

■ Indicates how the iterations are to be distributed across
threads.

■ Multiple scheduling kinds available.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 124 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Schedule clause

Scheduling kinds

There are 5 different scheduling kinds available in OpenMP:

■ static4

■ dynamic

■ guided

■ auto

■ runtime

4Although implementation-specific, usually, the static scheduling kind is the default.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 125 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Schedule clause

Scheduling kinds: static

1 ... schedule(static, chunksize)

■ Packs iterations in chunks of <chunksize> consecutive
iterations

■ Distributes iterations in a round robin fashion.

■ Chunk size optional, defaults to 1/n for every thread5.

5approximately

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 126 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Schedule clause

Scheduling kinds: static

1 ... schedule(static, chunksize)

■ Packs iterations in chunks of <chunksize> consecutive
iterations

■ Distributes iterations in a round robin fashion.

■ Chunk size optional, defaults to 1/n for every thread5.

5approximately

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 126 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Schedule clause

Scheduling kinds: static

1 ... schedule(static, chunksize)

■ Packs iterations in chunks of <chunksize> consecutive
iterations

■ Distributes iterations in a round robin fashion.

■ Chunk size optional, defaults to 1/n for every thread5.

5approximately

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 126 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Schedule clause

Scheduling kinds: static

1 ... schedule(static, chunksize)

■ Packs iterations in chunks of <chunksize> consecutive
iterations

■ Distributes iterations in a round robin fashion.

■ Chunk size optional, defaults to 1/n for every thread5.

5approximately

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 126 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Schedule clause

schedule(static,1)

Thread
Iteration

0 1 2 3 4 5 6 7

0

1

2

3

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 127 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Schedule clause

schedule(static,2)

Thread
Iteration

0 1 2 3 4 5 6 7

0

1

2

3

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 128 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Schedule clause

schedule(static,3)

Thread
Iteration

0 1 2 3 4 5 6 7

0

1

2

3

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 129 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Schedule clause

Scheduling kinds: static

Pros:

■ Every thread knows in advance every iteration it will process
in the entire iteration set.

■ Has a low overhead.

Cons:

■ Struggles with load imbalance, where iterations may contain
different amounts of work.

schedule(static, 1) to the rescue!

Using schedule(static, 1) would indeed address the lack of
load balancing. However, the cache usage would decrease, due to
the hindered data locality.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 130 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Schedule clause

Scheduling kinds: static

Pros:

■ Every thread knows in advance every iteration it will process
in the entire iteration set.

■ Has a low overhead.

Cons:

■ Struggles with load imbalance, where iterations may contain
different amounts of work.

schedule(static, 1) to the rescue!

Using schedule(static, 1) would indeed address the lack of
load balancing. However, the cache usage would decrease, due to
the hindered data locality.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 130 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Schedule clause

Scheduling kinds: static

Pros:

■ Every thread knows in advance every iteration it will process
in the entire iteration set.

■ Has a low overhead.

Cons:

■ Struggles with load imbalance, where iterations may contain
different amounts of work.

schedule(static, 1) to the rescue!

Using schedule(static, 1) would indeed address the lack of
load balancing. However, the cache usage would decrease, due to
the hindered data locality.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 130 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Schedule clause

Scheduling kinds: static

Pros:

■ Every thread knows in advance every iteration it will process
in the entire iteration set.

■ Has a low overhead.

Cons:

■ Struggles with load imbalance, where iterations may contain
different amounts of work.

schedule(static, 1) to the rescue!

Using schedule(static, 1) would indeed address the lack of
load balancing. However, the cache usage would decrease, due to
the hindered data locality.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 130 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Schedule clause

Scheduling kinds: static

Pros:

■ Every thread knows in advance every iteration it will process
in the entire iteration set.

■ Has a low overhead.

Cons:

■ Struggles with load imbalance, where iterations may contain
different amounts of work.

schedule(static, 1) to the rescue!

Using schedule(static, 1) would indeed address the lack of
load balancing. However, the cache usage would decrease, due to
the hindered data locality.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 130 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Schedule clause

Scheduling kinds: static

Pros:

■ Every thread knows in advance every iteration it will process
in the entire iteration set.

■ Has a low overhead.

Cons:

■ Struggles with load imbalance, where iterations may contain
different amounts of work.

schedule(static, 1) to the rescue!

Using schedule(static, 1) would indeed address the lack of
load balancing. However, the cache usage would decrease, due to
the hindered data locality.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 130 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Schedule clause

Scheduling kinds: dynamic

1 ... schedule(dynamic, chunksize)

■ Distributes the first n chunks to the n threads.

■ Serving on a first-come-first-served basis afterwards

■ Chunk size optional, defaults to 1.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 131 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Schedule clause

Scheduling kinds: dynamic

1 ... schedule(dynamic, chunksize)

■ Distributes the first n chunks to the n threads.

■ Serving on a first-come-first-served basis afterwards

■ Chunk size optional, defaults to 1.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 131 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Schedule clause

Scheduling kinds: dynamic

1 ... schedule(dynamic, chunksize)

■ Distributes the first n chunks to the n threads.

■ Serving on a first-come-first-served basis afterwards

■ Chunk size optional, defaults to 1.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 131 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Schedule clause

Scheduling kinds: dynamic

1 ... schedule(dynamic, chunksize)

■ Distributes the first n chunks to the n threads.

■ Serving on a first-come-first-served basis afterwards

■ Chunk size optional, defaults to 1.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 131 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Schedule clause

schedule(dynamic,1)

Thread
Iteration

0 1 2 3 4 5 6 7

0

1

2

3

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 132 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Schedule clause

schedule(dynamic,1)

Thread
Iteration

0 1 2 3 4 5 6 7

0

1

2

3

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 133 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Schedule clause

schedule(dynamic,1)

Thread
Iteration

0 1 2 3 4 5 6 7

0

1

2

3

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 134 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Schedule clause

schedule(dynamic,1)

Thread
Iteration

0 1 2 3 4 5 6 7

0

1

2

3

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 135 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Schedule clause

schedule(dynamic,1)

Thread
Iteration

0 1 2 3 4 5 6 7

0

1

2

3

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 136 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Schedule clause

schedule(dynamic,2)

Thread
Iteration

0 1 2 3 4 5 6 7

0

1

2

3

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 137 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Schedule clause

Scheduling kinds: dynamic

Pros:

■ Can more efficiently address load imbalance.

Cons:

■ Has an overhead greater than static since it needs to have
threads coordinate and synchronise to know who takes the
next chunk.

■ Must find the right chunk size.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 138 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Schedule clause

Scheduling kinds: dynamic

Pros:

■ Can more efficiently address load imbalance.

Cons:

■ Has an overhead greater than static since it needs to have
threads coordinate and synchronise to know who takes the
next chunk.

■ Must find the right chunk size.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 138 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Schedule clause

Scheduling kinds: dynamic

Pros:

■ Can more efficiently address load imbalance.

Cons:

■ Has an overhead greater than static since it needs to have
threads coordinate and synchronise to know who takes the
next chunk.

■ Must find the right chunk size.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 138 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Schedule clause

Scheduling kinds: dynamic

Pros:

■ Can more efficiently address load imbalance.

Cons:

■ Has an overhead greater than static since it needs to have
threads coordinate and synchronise to know who takes the
next chunk.

■ Must find the right chunk size.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 138 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Schedule clause

Scheduling kinds: dynamic

Pros:

■ Can more efficiently address load imbalance.

Cons:

■ Has an overhead greater than static since it needs to have
threads coordinate and synchronise to know who takes the
next chunk.

■ Must find the right chunk size.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 138 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Schedule clause

Scheduling kinds: guided

1 ... schedule(guided, chunksize)

■ Packs iterations in chunks of consecutive iterations, using a
decreasing chunksize.

■ The chunksize is 1/n of the remaining iteration count.

■ Will decrease, until reaching <chunksize>6.

■ Like dynamic, rest of chunks served on first-come-first-served
basis.

■ The chunksize is optional, defaults to 1.

6The sequentially last chunk might contain fewer than chunksize iterations

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 139 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Schedule clause

Scheduling kinds: guided

1 ... schedule(guided, chunksize)

■ Packs iterations in chunks of consecutive iterations, using a
decreasing chunksize.

■ The chunksize is 1/n of the remaining iteration count.

■ Will decrease, until reaching <chunksize>6.

■ Like dynamic, rest of chunks served on first-come-first-served
basis.

■ The chunksize is optional, defaults to 1.

6The sequentially last chunk might contain fewer than chunksize iterations

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 139 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Schedule clause

Scheduling kinds: guided

1 ... schedule(guided, chunksize)

■ Packs iterations in chunks of consecutive iterations, using a
decreasing chunksize.

■ The chunksize is 1/n of the remaining iteration count.

■ Will decrease, until reaching <chunksize>6.

■ Like dynamic, rest of chunks served on first-come-first-served
basis.

■ The chunksize is optional, defaults to 1.

6The sequentially last chunk might contain fewer than chunksize iterations

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 139 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Schedule clause

Scheduling kinds: guided

1 ... schedule(guided, chunksize)

■ Packs iterations in chunks of consecutive iterations, using a
decreasing chunksize.

■ The chunksize is 1/n of the remaining iteration count.

■ Will decrease, until reaching <chunksize>6.

■ Like dynamic, rest of chunks served on first-come-first-served
basis.

■ The chunksize is optional, defaults to 1.

6The sequentially last chunk might contain fewer than chunksize iterations

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 139 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Schedule clause

Scheduling kinds: guided

1 ... schedule(guided, chunksize)

■ Packs iterations in chunks of consecutive iterations, using a
decreasing chunksize.

■ The chunksize is 1/n of the remaining iteration count.

■ Will decrease, until reaching <chunksize>6.

■ Like dynamic, rest of chunks served on first-come-first-served
basis.

■ The chunksize is optional, defaults to 1.

6The sequentially last chunk might contain fewer than chunksize iterations

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 139 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Schedule clause

Scheduling kinds: guided

1 ... schedule(guided, chunksize)

■ Packs iterations in chunks of consecutive iterations, using a
decreasing chunksize.

■ The chunksize is 1/n of the remaining iteration count.

■ Will decrease, until reaching <chunksize>6.

■ Like dynamic, rest of chunks served on first-come-first-served
basis.

■ The chunksize is optional, defaults to 1.

6The sequentially last chunk might contain fewer than chunksize iterations

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 139 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Schedule clause

Scheduling kinds: guided

Pros:

■ Allows more efficient processing of decreasing workloads
(upper triangular matrices etc...)

Cons:

■ Has an overhead greater than static since it needs to have
threads coordinate and synchronise to know who takes the
next chunk.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 140 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Schedule clause

Scheduling kinds: guided

Pros:

■ Allows more efficient processing of decreasing workloads
(upper triangular matrices etc...)

Cons:

■ Has an overhead greater than static since it needs to have
threads coordinate and synchronise to know who takes the
next chunk.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 140 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Schedule clause

Scheduling kinds: guided

Pros:

■ Allows more efficient processing of decreasing workloads
(upper triangular matrices etc...)

Cons:

■ Has an overhead greater than static since it needs to have
threads coordinate and synchronise to know who takes the
next chunk.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 140 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Schedule clause

Scheduling kinds: guided

Pros:

■ Allows more efficient processing of decreasing workloads
(upper triangular matrices etc...)

Cons:

■ Has an overhead greater than static since it needs to have
threads coordinate and synchronise to know who takes the
next chunk.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 140 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Schedule clause

Scheduling kinds: guided

Pros:

■ Allows more efficient processing of decreasing workloads
(upper triangular matrices etc...)

Cons:

■ Has an overhead greater than static since it needs to have
threads coordinate and synchronise to know who takes the
next chunk.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 140 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Schedule clause

schedule(guided,2)

Thread
Iteration

0 1 2 3 4 5 6 7 8

0

1

2

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 141 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Schedule clause

schedule(guided,2)

Thread
Iteration

0 1 2 3 4 5 6 7 8

0

1

2

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 142 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Schedule clause

schedule(guided,2)

Thread
Iteration

0 1 2 3 4 5 6 7 8

0

1

2

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 143 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Schedule clause

schedule(guided,2)

Thread
Iteration

0 1 2 3 4 5 6 7 8

0

1

2

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 144 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Schedule clause

schedule(guided,2)

Thread
Iteration

0 1 2 3 4 5 6 7 8

0

1

2

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 145 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Schedule clause

Scheduling kinds: auto

1 ... schedule(auto)

■ Schedule applied is implementation defined.

■ No chunk size.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 146 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Schedule clause

Scheduling kinds: auto

Pros:

■ Easy to trigger.

■ Can give access to implementation-specific tricks.

Cons:

■ Have no control to tweak it.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 147 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Schedule clause

Scheduling kinds: auto

Pros:

■ Easy to trigger.

■ Can give access to implementation-specific tricks.

Cons:

■ Have no control to tweak it.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 147 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Schedule clause

Scheduling kinds: auto

Pros:

■ Easy to trigger.

■ Can give access to implementation-specific tricks.

Cons:

■ Have no control to tweak it.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 147 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Schedule clause

Scheduling kinds: auto

Pros:

■ Easy to trigger.

■ Can give access to implementation-specific tricks.

Cons:

■ Have no control to tweak it.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 147 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Schedule clause

Scheduling kinds: auto

Pros:

■ Easy to trigger.

■ Can give access to implementation-specific tricks.

Cons:

■ Have no control to tweak it.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 147 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Schedule clause

Scheduling kinds: runtime

■ How to use: schedule(runtime)

■ Scheduling kind applied is the one in application at runtime,
see omp set schedule.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 148 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Schedule clause

Scheduling kinds: runtime

1 void omp_set_schedule(schedule, chunksize);

Figure: C binding of omp set schedule

1 PROCEDURE omp_set_schedule(kind, chunk_size)
2 INTEGER(KIND=omp_sched_kind) :: kind
3 INTEGER :: chunk_size

Figure: FORTRAN-90 binding of omp set schedule

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 149 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Schedule clause

Time to practise: 8.Schedules

You are provided with a source code that has multiple for loops.
The objective is to find the best scheduling kind for each.

Tips

You may need:

■ static

■ dynamic

■ guided

■ auto

■ runtime

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 150 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Summary

Table of Contents

1 Motivation

2 How it works

3 The parallel construct

4 Data-sharing attribute clauses

5 Worksharing construct

6 Synchronisation constructs

7 Loops time

8 Reduction

9 Schedule clause

10 Summary

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 151 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Summary

There is more to see...

■ Task-based parallelism

■ Collapsing loops

■ Tiling loops

■ Hyperthreading

■ False-sharing

■ Asynchrony

■ A lot more...

The best place to learn more about OpenMP and how it works, to
get the specifications and so on is the OpenMP forum website.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 152 / 154

https://www.openmp.org
https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Summary

There is more to see...

■ Task-based parallelism

■ Collapsing loops

■ Tiling loops

■ Hyperthreading

■ False-sharing

■ Asynchrony

■ A lot more...

The best place to learn more about OpenMP and how it works, to
get the specifications and so on is the OpenMP forum website.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 152 / 154

https://www.openmp.org
https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Summary

There is more to see...

■ Task-based parallelism

■ Collapsing loops

■ Tiling loops

■ Hyperthreading

■ False-sharing

■ Asynchrony

■ A lot more...

The best place to learn more about OpenMP and how it works, to
get the specifications and so on is the OpenMP forum website.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 152 / 154

https://www.openmp.org
https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Summary

There is more to see...

■ Task-based parallelism

■ Collapsing loops

■ Tiling loops

■ Hyperthreading

■ False-sharing

■ Asynchrony

■ A lot more...

The best place to learn more about OpenMP and how it works, to
get the specifications and so on is the OpenMP forum website.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 152 / 154

https://www.openmp.org
https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Summary

There is more to see...

■ Task-based parallelism

■ Collapsing loops

■ Tiling loops

■ Hyperthreading

■ False-sharing

■ Asynchrony

■ A lot more...

The best place to learn more about OpenMP and how it works, to
get the specifications and so on is the OpenMP forum website.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 152 / 154

https://www.openmp.org
https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Summary

There is more to see...

■ Task-based parallelism

■ Collapsing loops

■ Tiling loops

■ Hyperthreading

■ False-sharing

■ Asynchrony

■ A lot more...

The best place to learn more about OpenMP and how it works, to
get the specifications and so on is the OpenMP forum website.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 152 / 154

https://www.openmp.org
https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Summary

There is more to see...

■ Task-based parallelism

■ Collapsing loops

■ Tiling loops

■ Hyperthreading

■ False-sharing

■ Asynchrony

■ A lot more...

The best place to learn more about OpenMP and how it works, to
get the specifications and so on is the OpenMP forum website.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 152 / 154

https://www.openmp.org
https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Summary

There is more to see...

■ Task-based parallelism

■ Collapsing loops

■ Tiling loops

■ Hyperthreading

■ False-sharing

■ Asynchrony

■ A lot more...

The best place to learn more about OpenMP and how it works, to
get the specifications and so on is the OpenMP forum website.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 152 / 154

https://www.openmp.org
https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Summary

Post-workshop survey

Figure: Link to the post-workshop survey.

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 153 / 154

https://app.wooclap.com/GKHZUH/questionnaires/668b3373048c65a3cfc0bbcb
https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

International HPC Summer School 2024

Introduction to OpenMP for CPUs

Summary

Feel free to connect

Figure: Link to LinkedIn profile

Version 1.3.0 EPCC - Ludovic Capelli (l.capelli@epcc.ed.ac.uk) 154 / 154

https://www.epcc.ed.ac.uk
mailto:l.capelli@epcc.ed.ac.uk

