Python Programming for HPC (IHPCSS2024)

Ramses van Zon

July 10, 2024

In this session...

- Performance and Python
- 2 Profiling tools for Python
- Fast arrays for Python
- Parallel computing in Python

Setting up for this session

To get set up to following along, perform the following steps.

- Login to Bridges2:
- \$ ssh -Y USERNAME@bridges2.psc.edu
 - 2 Copy code for this session:
- \$ cp -r /jet/home/rzon/hpcpycode \$HOME
 - 3 Request interactive resources:
- \$ \$HOME/hpcpycode/interactive8.sh
 - Setup the environment:
 - Setup the chimolinent
- \$ source activate

\$ cd \$HOME/hpcpycode

(repeat the last step any time you log back in)

1. Performance and Python

Performance and Python

- Python is a high-level, interpreted language.
- Those defining features are often at odds with "high performance".
- Python is fairly easy to learn, very expressive, and, not surprisingly, very popular.
- But development in Python can be substantially easier (and thus faster) than when using compiled languages.

Example: 2D Diffusion

Suppose we are interested in the time evolution of the two-dimensional diffusion equation:

$$\frac{\partial \varrho(x,y,t)}{\partial t} = D\left(\frac{\partial^2 \varrho(x,y,t)}{\partial x^2} + \frac{\partial^2 \varrho(x,y,t)}{\partial y^2}\right)$$

on domain $[x_1,x_2]\otimes [x_1,x_2]$,

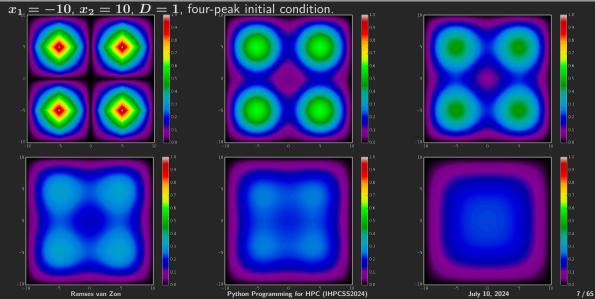
with $\varrho(x,y,t)=0$ at all times for all points on the domain boundary,

with some given initial condition $\varrho(x,y,t)=\varrho_0(x,y)$.

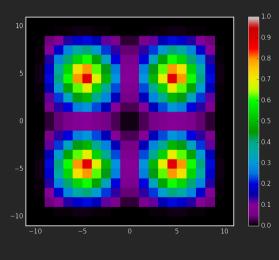
Here:

- ϱ : density
- x, y: spatial coordinates
- t: time
- D: diffusion constant

Example 1: 2D Diffusion, Result



Example 1: 2D Diffusion, the Algorithm



- Discretize space in both directions (points dx apart)
- Replace derivatives with finite differences.
- Explicit finite time stepping scheme (time step set by dx)
- For graphics: Matplotlib for Python, pgplot for C++/Fortran, every outtime time units

Parameters in file diff2dparams.py (also used by C++ and Fortran versions).

```
D = 1.0;

x1 = -10.0;

x2 = 10.0;

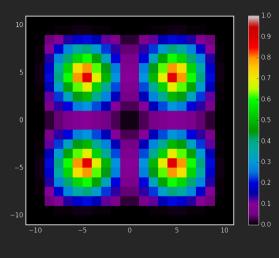
runtime = 10.0;

dx = 0.075;

outtime = 0.5;

graphics = True;
```

Example 1: 2D Diffusion, the Algorithm



- Discretize space in both directions (points dx apart)
- Replace derivatives with finite differences.
- Explicit finite time stepping scheme (time step set by dx)
- For graphics: Matplotlib for Python, pgplot for C++/Fortran, every outtime time units

Parameters in file diff2dparams.py (also used by C++ and Fortran versions).

```
D = 1.0;

x1 = -10.0;

x2 = 10.0;

runtime = 10.0;

dx = 0.075;

outtime = 0.5;

graphics = False;
```

Example 1: 2D Diffusion, Performance

The files diff2d.cpp, diff2.f90 and diff2d.py contain the same code in C++, Fortran, and Python.

```
$ time make diff2d_cpp.ex diff2d_f90.ex
g++ -c -03 -march=native -o diff2d_cpp.o diff2d.cpp
g++ -c -03 -march=native -o diff2dplot_cpp.o diff2dplot.cpp
g++ -o diff2d_cpp.ex diff2d_cpp.o diff2dplot_cpp.o -lcpgplot -lx11 -lxcb -ldl -lxau -lgfortran
gfortran -c -03 -march=native -o pgplot90.o pgplot90.f90
gfortran -c -03 -march=native -o diff2dplot_f90.o diff2dplot.f90
gfortran -c -03 -march=native -o diff2d f90.o diff2d.f90
```

gfortran -o diff2d_f90.ex diff2d_f90.o diff2dplot_f90.o pgplot90.o -lcpgplot -lpgplot -lX11 -lxcb -ldl -

Elapsed: 1.18 seconds

```
$ time ./diff2d_cpp.ex > output_c.txt
Elapsed: 0.52 seconds
```

```
$ time ./diff2d_f90.ex > output_f.txt
```

Elapsed: 0.43 seconds

Ramene van Zon

Elapsed: 212.41 seconds

The Python version is $400 \times$ slower than the compiled versions!

This doesn't look promising for Python for HPC.

Then why do we bother with Python?

dens[i][j] = a*b

if graphics: plotdens(dens,x[0],x[-1],first=True)

lapl = [[0.0]*npnts for i in range(npnts)]

Ramses van Zon

print(simtime)


```
for s in range(nsteps):
from diff2dplot import plotdens
                                                      for i in range(1,nrows+1):
from diff2dparams import D,x1,x2,runtime,dx,outtime,
                                                      for j in range(1,ncols+1):
      = int((x2-x1)/d
                                                       lapl[i][j] = (dens[i+1][j]+dens[i-1][j]
nrows
                                                                          +dens[i][j+1]+dens[i][j-1]
     = nrows
npnts
      = nrows + 2
                                                                          -4*dens[i][j])
      = (x2-x1)/nrows
dx
                                                      for i in range(1,nrows+1):
      = 0.25*dx**2/D
                                                      for j in range(1,ncols+1):
nsteps = int(runtime/dt)
                                                        densnext[i][j]=dens[i][j]+(D/dx**2)*dt*lapl[i][j]
nper
      = int(outtime/dt)
                                                      dens. densnext = densnext. dens
if nper==0: nper = 1
                                                      simtime += dt
x=[x1+((i-1)*(x2-x1))/nrows for i in range(npnts)]
                                                      if (s+1)%nper == 0:
dens
```

if first: plt.clf(); plt.ion()

if first: plt.colorbar()

Python Programming for HPC (IHPCSS2024) nlt nause (0 1)

plt.imshow(dens,interpolation='none',aspect='equal'

extent=(x1,x2,x1,x2), vmin=0.0, vmax=1.0, cmap='nipy

July 10, 2024

```
if nper==0: nper = 1
x=[x1+((i-1)*(x2-x1))/nrows for i in range(npnts)]
dens = [[0.0]*npnts for i in range(npnts)]
densnext = [[0.0]*npnts for i in range(npnts)]
simtime = 0*dt
for i in range(1,npnts-1):
    a = 1 - abs(1 - 4*abs((x[i]-(x1+x2)/2)/(x2-x1)))
    for j in range(1,npnts-1):
        b = 1 - abs(1 - 4*abs((x[j]-(x1+x2)/2)/(x2-x1)))
        isimtime += dt
    if (s+1)*nper == 0:
        print(simtime)
        if graphics: plotdens(dens,x[0],x[-1])
        # diff2dplot.py
        def plotdens(dens,x1,x2,first=False):
        import os
        import os
        import matplotlib.pyplot as plt
```

11/65

Then why do we bother with Python?

Fast development

- Python lends itself easily to writing clear, concise code.
- Python is very flexible: large set of very useful packages.
- Easy of use \rightarrow shorter development time

Performance hit depends on application

- Python's performance hit is most prominent on 'tightly coupled' calculation on fundamental data types that are known to the CPU (integers, doubles), which is exactly the case for the 2d diffusion.
- It does much less worse on file I/O, text comparisons, etc.
- Hooks to compiled libraries to remove worst performance pitfalls.
- Some Python packages compile computations on the fly.

2. Profiling Tools for Python

Wall-clock performance

- Performance is about maximizing the utility of a resource.
- This could be cpu processing power, memory, network, file I/O, etc.
- We will focus on wall-clock performance here.

Time Profiling by function

 To consider the computational performance of functions, but not of individual lines in your code. there is the package called cProfile.

Time Profiling by line

 To find cpu performance bottlenecks by line of code, there are packages like line profiler and scalene.

The cProfile Package

\$ python -m cProfile -s cumulative diff2d.py

- Use cProfile or profile to know in which functions your script spends its time.
- You usually do this on a smaller but representative case.
- The code should be reasonably modular, i.e., with separate functions for different tasks, for cProfile to be useful.

```
Example
```

```
2492205 function calls in 521.392 seconds
Ordered by: cumulative time
ncalls
        tottime
                percall
                        cumtime
                                percall filename: lineno(function)
         0.028
                  0.028
                        521.392
                                521.392 diff2d.pv:11(<module>)
                                521.364 diff2d.py:14(main)
        515.923 515.923 521.364
2411800 5.429 0.000 5.429 0.000 {range}
 80400 0.012 0.000 0.012 0.000 {abs}
        0.000 0.000 0.000 0.000 diff2dplot.py:5(<module>)
                                  0.000 diff2dparams.py:1(<module>)
         0.000
                 0.000
                         0.000
```

The line_profiler package

- Use line_profiler to know, line-by-line, where your script spends its time.
- You usually do this on a smaller but representative case.
- First thing to do is to have your code in a function.
- You also need to modify your script slightly:
 - ► Decorate your function with @profile
 - ► Run your script on the command line with
 - \$ kernprof -1 -v SCRIPTNAME

line_profiler script instrumentation

Script before:

```
x=[1.0]*(2048*2048)
a=str(x[0])
a+="\nis a one\n"
del x
print(a)
```

Script after:

```
#file: profileme.py
@profile
def profilewrapper():
    x=[1.0]*(2048*2048)
    a=str(x[0])
    a+="\nis a one\n"
    del x
    print(a)
profilewrapper()
```

Run at the command line:

```
$ kernprof -l -v profileme.py
```

Output of line_profiler

\$ kernprof -l -v profileme.py


```
is a one
Wrote profile results to profileme.pv.lprof
Timer unit: 1e-06 s
Total time: 0.018683 s
File: profileme.py
Function: profilewrapper at line 2
Line #
                       Time Per Hit
                                      % Time Line Contents
                                              @profile
    3
                                              def profilewrapper():
                                        41.8 x=[1.0]*(2048*2048)
                     7816.0
                              7816.0
                                         0.2 a=str(x[0])
                       43.0
                                43.0
                                         0.0 a+="\pi a one\n"
                        3.0
                                3.0
                    10783.0 10783.0
                                        57.7 del x
```

38.0

38.0

print(a)

0.2

The Scalene Package

- Python Profiler for CPU, memory, and GPU
- Fast
- Accurate
- Distinguished Python from C code
- No decorator required

Scalene Usage

\$ scalene diff2d.py

On your local computer, this would launch the result in a browser:

hover over bars to see breakdowns; click on COLUMN HEADERS to sort.

show all | hide all | only display profiled lines 🛂

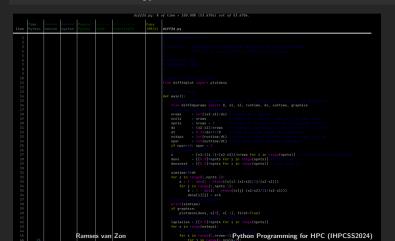
▼/scratch/rzon/hpcpv3matter/diff2d main source.pv: % of time = 100.0% (562.671ms) out of 562.671ms.

```
LINE PROFILE (click to reset order)
TIME
           /scratch/rzon/hpcpv3matter/diff2d main source.pv
          22 💥 🥖
                 for s in range(nsteps):
          23 🂥 🥖 for i in range(1,nrows+1):
                        for i in range(1.ncols+1):
                             laplacian[i][j] = (dens[i+1][j]+dens[i-1][j]
          26 Ramese van Zon
                                          p...tdens[i][j+1]+dens[i][j-1]e4*dens[i][j])
```

Scalene Usage on the Command-Line

You can also tell scalene not to generate the HTML but to report the results to the command line instead, as follows:

\$ scalene --cli diff2d.py



3. Fast Arrays for Python

Lists aren't the ideal data type

Python lists can do funny things that you don't expect, if you're not careful.

- Lists are just a collection of items, of any type.
- If you do mathematical operations on a list, you won't get >>> b = [3,5,5,6] what you expect.
- These are not the ideal data type for scientific computing.
- Arrays are a much better choice, but are not a native Python data type.

[1, 2, 3, 4]

>>> a

The NumPy Package

- Almost everything that you want to do starts with NumPy.
- Contains arrays of various types and forms: zeros, ones, linspace, etc.

```
>>> from numpy import zeros, ones
```

```
>>> zeros(5)
array([0.. 0.. 0.. 0.. 0.])
```

- >>> ones(5, dtvpe=int)
- array([1, 1, 1, 1, 1])
- >>> zeros([2,2])

array([[0., 0.],

- [0..0.]
- >>> from numpy import arange

- >>> arange(5)
- array([0, 1, 2, 3, 4])
- >>> from numpy import linspace
- >>> linspace(1,5)
- arrav([1.
 - , 1.08163265, 1.16326531, 1.24489796, 1.326530
 - 1.40816327, 1.48979592, 1.57142857, 1.65306122, 1.734693
 - 1.81632653, 1.89795918, 1.97959184, 2.06122449, 2.142857
 - 2.2244898 , 2.30612245, 2.3877551 , 2.46938776, 2.551020 2.63265306. 2.71428571. 2.79591837. 2.87755102. 2.959183

 - 3.04081633. 3.12244898. 3.20408163. 3.28571429. 3.367346 3.44897959, 3.53061224, 3.6122449, 3.69387755, 3.775510
 - 4.26530612. 4.34693878. 4.42857143. 4.51020408. 4.591836 4.67346939, 4.75510204, 4.83673469, 4.91836735, 5.
- >>> linspace(1,5,6)

array([1., 1.8, 2.6, 3.4, 4.2, 5.])

3.85714286, 3.93877551, 4.02040816, 4.10204082, 4.183673

Element-wise arithmetic

vector-vector & vector-scalar multiplication

- 1-D arrays are often called 'vectors'.
 - When vectors are multiplied with *, you get element-by-element multiplication.

(Or use the 'dot' method in Python < 3.5)

- When vectors are multiplied by a scalar
 (a 0-D array), you also get element-by-element
- multiplication.To get an inner product, use @.
- To get all liller product, use .

```
>>> import numpy as np
```

- >>> a = np.arange(4)
- >>> b = np.arange(3., 7.)

(array([0, 1, 2, 3]), array([3., 4., 5., 6.]), 2)

- >>> c = 2
- >>> a, b, c
- >>> a * b array([0., 4., 10., 18.])
- >>> a * c
 array([0, 2, 4, 6])
- >>> b * c
- array([6., 8., 10., 12.])

32.0

Matrix-vector multiplication

- A 2-D array is sometimes called a 'matrix'.
 - Matrix-scalar multiplication with * gives element-by-element multiplication.
 - Matrix-vector multiplication with * give a kind-of element-by-element multiplication
 - kind-of element-by-element multiplicatio

 For a linear-algebra-type matrix-vector
 - For a linear-algebra-type matrix-vector multiplication, use @.

(Or use the 'dot' method in Python < 3.5)

 $\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} * \begin{bmatrix} b_1 \\ b_2 \\ b_2 \end{bmatrix} = \begin{bmatrix} a_{11} * b_1 & a_{12} * b_2 & a_{13} * b_3 \\ a_{21} * b_1 & a_{22} * b_2 & a_{23} * b_3 \end{bmatrix}$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} @ \begin{bmatrix} b_1 \\ b_2 \\ b_2 \end{bmatrix} = \begin{bmatrix} a_{11} * b_1 + a_{12} * b_2 + a_{13} * b_3 \\ a_{21} * b_1 + a_{22} * b_2 + a_{23} * b_3 \end{bmatrix}$$

26 / 65

July 10, 2024

>>> import numpy as np

>>> b = np.arange(1,4); b

[2, 6, 12]])

array([1, 2, 3])

array([[1, 4, 9],

>>> a * h

>>> a @ b

>>> a = np.array([[1,2,3], [2,3,4]])

Matrix-matrix multiplication

Not surprisingly, matrix-matrix multiplication is also element-wise unless performed with @.

>>> a * b
$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} * \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} a_{11} * b_{11} & a_{12} * b_{12} \\ a_{21} * b_{21} & a_{22} * b_{22} \end{bmatrix}$$

array([[9, 8], [16, 17]])
$$\begin{bmatrix} a_{11} & a_{12} \end{bmatrix} \cap \begin{bmatrix} b_{11} & b_{12} \end{bmatrix} \quad \begin{bmatrix} a_{11} * b_{11} + a_{12} * b_{21} & a_{11} * b_{12} + a_{12} * b_{22} \end{bmatrix}$$

>>> a @ b

Does changing to NumPy arrays help?

Let's return to our 2D diffusion example.

Note: Restore the original diff2dparam.py!

Pure Python implementation:

\$ time python diff2d.py > output_p.txt

Elapsed: 212.41 seconds

NumPy implementation:

\$ time python diff2d_slow_numpy.py > output_p.txt

Elapsed: 650.86 seconds

Hmm, not really

Really not!

So what gives?

Let's inspect the code


```
from diff2dplot import plotdens
from diff2dparams import D,x1,x2,runtime,dx,outtime, book at all those loops and indices!
import numpy as np
                                                       Look at all those loops and indices!
       = int((x2-x1)/d
nrows
ncols = nrows
                                                       lapl = np.zeros((npnts,npnts))
npnts = nrows + 2
                                                       for s in range(nsteps):
       = (x2-x1)/nrows
dx
                                                        for i in range(1,nrows+1):
       = 0.25*dx**2/D
dt
                                                         for j in range(1,ncols+1):
nsteps = int(runtime/dt)
                                                          lapl[i][j] = (dens[i+1][j]+dens[i-1][j]
       = int(outtime/dt)
nper
                                                                             +dens[i][j+1]+dens[i][j-1]
if nper==0: nper = 1
                                                                             -4*dens[i][i])
         = np.linspace(x1-dx,x2+dx,num=npnts)
                                                        for i in range(1,nrows+1):
         = np.zeros((npnts.npnts))
dens
                                                         for j in range(1,ncols+1):
densnext = np.zeros((npnts,npnts))
                                                          densnext[i][i]=dens[i][i]+(D/dx**2)*dt*lapl[i][i]
simtime = 0*dt
                                                        dens, densnext = densnext, dens
for i in range(1,npnts-1):
                                                        simtime += dt
 a = 1 - abs(1 - 4*abs((x[i]-(x1+x2)/2)/(x2-x1)))
                                                        if (s+1)%nper == 0:
 for j in range(1,npnts-1):
                                                         print(simtime)
  b = 1 - abs(1 - 4*abs((x[i]-(x1+x2)/2)/(x2-x1)))
                                                         if graphics: plotdens(dens,x[0],x[-1])
  dens[i][j] = a*b
print(simtime)
if graphics: plotdens(dens,x[0],x[-1],first=True) "Why does that matter?" you ask?

Python Programming for HPC (IMPCSS2024)

July 10. 20
```

July 10, 2024

Python overhead

- Python's overhead comes mainly from its interpreted and dynamic nature.
- The diff2d_slow_numpy.py code uses NumPy arrays, but still has a loop over indices.
- In each iteration, Python code has to be interpreted and integer manipulation have to be performed, regardless of whether you're using numpy arrays.
- NumPy will not give much speedup until you use its element-wise 'vectorized' operations.

How to write vectorized Python code

This is easiest explained by example:

```
Instead of
                                                        You would write:
                                                        a = np.linspace(0.0, 1.0, 100)
a = np.linspace(0.0, 1.0, 101)
b = np.linspace(1.0, 2.0, 101)
                                                        b = np.linspace(1.0, 2.0, 100)
c = np.ndarray(100)
                                                        c = a + b
for i in range(100):
  c[i] = a[i] + b[i]
And to deal with shifts, instead of
                                                        You would write:
a = np.linspace(0.0, 1.0, 101)
                                                        a = np.linspace(0.0, 1.0, 101)
b = np.linspace(1.0, 2.0, 101)
                                                        b = np.linspace(1.0, 2.0, 101)
```

Python Programming for HPC (IHPCSS2024)

c = a[0:100] + b[1:101]

Vectorization results in

c = np.ndarray(100)

for i in range(100): c[i] = a[i] + b[i+1]

- shorter Python code
- less repeatedly interpreted lines

Ramene van Zon

calls to C or Fortran functions by NumPy.

31 / 65

Does changing to NumPy really help?

Diffusion example:

Pure Python implementation:

\$ time python diff2d.py > output_p.txt

Elapsed: 212.41 seconds

NumPy vectorized implementation:

\$ time python diff2d_numpy.py > output_n.txt

Elapsed: 2.39 seconds

Yeah! 50× speed-up

Reality check: NumPy vs. compiled code

Diffusion example:

NumPy, vectorized implementation:

```
$ time python diff2d_numpy.py > output_n.txt
```

Elapsed: 2.28 seconds

Compiled versions:

```
$ time ./diff2d_cpp.ex > output_c.txt
```

Elapsed: 0.51 seconds

\$ time ./diff2d_f90.ex > output_f.txt

Elapsed: 0.43 seconds

Typically, Python+NumPy is still 5 - 20 imes slower than compiled.

What about Cython?

- Cython is a compiler for Python code.
- Almost all Python is valid Cython.
- Typically used for packages, to be used in regular Python scripts.

Let's look at the timing first:

```
$ make -f Makefile_cython
python diff2dnumpylibsetup.py build_ext --inplace
```

- \$ time python diff2d_numpy.py > output_n.txt
- Elapsed: 2.26 seconds
- \$ time python diff2d_numpy_cython.py > output_nc.txt Elapsed: 2.46 seconds

It is still Python!

- The compilation preserves the pythonic nature of the language, i.e. garbage collection, range checking, reference counting, etc., are still done: no performance enhancement.
- If you want to get around that, you need to use Cython specific extensions that use C types.
- That would be a whole session in and of itself.

4. Parallel computing in Python

Parallel Python

We will look at a number of approaches to parallel programming with Python:

Package	Functionality
numexpr numba multiprocessing mpi4py dask ray and dask	threaded parallelization of certain numpy expressions just-in-time compiler for Python functions create processes that behave more like threads message passing between processes task-based parallelism task-based parallelism

Unavailable approaches

- Threads in Python: these are like pthreads, but even worse: they do not run simultaneously because
 of the global interpreted lock.
- OpenMP in Python: compiler directive-based techniques do not work since there is no compiler.

Note about using GPUs in Python

There are roughly two ways that make this possible:

- 9 By using packages that allow you to write CUDA-like kernels.
 - We won't have time to cover that here, but check out Numba.
- ² Using a formalism that uses GPUs in its implementation, e.g. Tensorflow.
 - If a package supports this, great, use it, but it doesn't change how you use it.

The Numexpr Package

The numexpr package is useful if you're doing array algebra:

- It is essentially a just-in-time compiler for NumPy.
- It takes matrix expressions, breaks things up into threads, and does the calculation in parallel.
- Somewhat awkwardly, it takes its input in as a string.
- In some situations using numexpr can significantly speed up your calculations.
- This is the closest thing to "OpenMP-ing a loop" in Python.

Numexpr in a nutshell

- Give it an array arithmetic expression, and it will compile and run it, and return or store the output.
- Supported operators:

Supported functions:

where, sin, cos, tan, arcsin, arccos arctan, arctan2, sinh, cosh, tanh, arcsinh, arccosh arctanh, log, log10, log1p, exp, expm1, sqrt, abs, conj, real, imag, complex, contains

Using the numexpr package


```
>>> from time import time
import numpy as np
a = np.random.rand(30000000)
b = np.random.rand(30000000)
c = np.zeros(30000000)
Without numexpr:
>>> t = time()
```

c = a**2 + b**2 + 2*a*b

```
print("Elapsed: %f seconds" % (time()-t))
```

Elapsed: 47.065446 seconds

With numexpr:

```
>>> import numexpr as ne
ne.set_num_threads(1);
t = time()
c = \text{ne.evaluate}('a**2 + b**2 + 2*a*b'): \
print("Elapsed: %f seconds" % (time()-t))
```

Elapsed: 11.294290 seconds >>> ne.set num threads(4):

```
t = time():
c = \text{ne.evaluate('a**2 + b**2 + 2*a*b'):}
print("Elapsed: %f seconds" % (time()-t))
```

Elapsed: 3.749861 seconds

```
>>> ne.set_num_threads(8);
t = time():
c = ne.evaluate('a**2 + b**2 + 2*a*b');
print("Elapsed: %f seconds" % (time()-t))
```

Elapsed: 5.495837 seconds

Numexpr for the diffusion example

- Annoyingly, numexpr has no facilities for slicing or offsets, etc.
- This is troubling for our diffusion code, in which we have to do something like:

- We would need to make a copy of dens[2:nrows+2,1:ncols+1] etc. into a new NumPy array before we can use numexpr, but copies are expensive.
- We want numexpr to use the same data as in dens, but *viewed* differently.

Numexpr for the diffusion example (continued) Sc

- We want numexpr to use the same data as in dens, but *viewed* differently.
- That is tricky, and requires knowledge of the data's memory structure.
- diff2d numexpr.py shows one possible solution.

```
$ time python diff2d_numpy.py > diff2d_numpy.out
```

```
Elapsed: 2.56 seconds
```

```
$ export NUMEXPR NUM THREADS=8
time python diff2d numexpr.py > diff2d numexpr.out
```

Elapsed: 2.21 seconds

• Nice, 3x speed up. (You may get better eve speed-up if you increase the grid, i.e., decrease dx).



To get the diffusion algorithm in a form that has no slices or offsets, we need to linearize the 2d arrays into 1d arrays, but in a way that avoids copying the data.

This is how this is achieved in diff2d numexpr:

The Numba Package

- Numba allows compilation of selected portions of Python code to native code.
- Decorator based: compile a function.
- It can use multi-dimensional arrays and slices, like NumPy.
- Very convenient.
- Numba can use GPUs, but you're programming them like CUDA kernels (i.e., not like OpenMP).
- While it can also vectorize for multi-core and GPUs with, it can only do so for specific, independent, non-sliced data.

Numba for the Diffusion Equation

For the diffusion code, we change the time step to a function with a decorator:

Before:

laplacian[1:nrows+1,1:ncols+1]=dens[2:nrows+2,1:ncols+1]+dens[0:nrows+0,1:ncols+1]+dens[1:nrows+1,2:ncols

densnext[:,:] = dens + (D/dx**2)*dt*laplacian

```
$ time python diff2d_numpy.py >diff2d_numpy.out
```

Elapsed: 2.27 seconds

After:

```
from numba import jit
```

@jit(nopython=True)

def timestep(laplacian,dens,densnext,nrows,ncols,D,dx,dt): laplacian[1:nrows+1.1:ncols+1]=dens[2:nrows+2.1:ncols+1]+dens[0:nrows+0.1:ncols+1]+dens[1:nrows+1.2:ncols+1]

densnext[:.:] = dens + (D/dx**2)*dt*laplacian timestep(laplacian,dens,densnext,nrows,ncols,D,dx,dt)

\$ time python diff2d numba.py >diff2d numba.out

Why the limited performance of Numba here?

- Numba can compile more complicated code than e.g. numexpr, but this compilation takes some time.
- We already optimized the Python code by using vectorized operations.
- So the same numpy routines are called!
- For codes that aren't so easily vectorized, e.g. with complex indexed array operations, Numba can help a lot with very little code changes.

Numba for the Diffusion Equation, 2nd Try


```
@jit(nopython=True)
def timestep(laplacian,dens,densnext,nrows,ncols,D,dx,dt):
    for i in range(1,nrows+1):
        for j in range(1,ncols+1):
            laplacian[i][j] = dens[i+1][j]+dens[i-1][j]+dens[i][j+1]+dens[i][j-1]
    for i in range(1,nrows+1):
        for j in range(1,ncols+1):
            densnext[i][j] = dens[i][j]+(D/dx**2)*dt*laplacian[i][j]

$ time python diff2d_numba_loop.py >diff2d_numba_loop.out

Elapsed: 3.18 seconds
```

That's better!

Numba for the Diffusion Equation, Parallel

We can ask numba to use multiple cores too.

It can do work-sharing of loops, much in the same way as OpenMP, if you use prange instead of range.

```
from numba import prange
@jit(nopython=True,parallel=True)
def timestep(laplacian.dens.densnext.nrows.ncols.D.dx.dt):
   for i in prange(1,nrows+1):
      for j in range(1,ncols+1):
         laplacian[i][i] = dens[i+1][i]+dens[i-1][i]+dens[i][i+1]+dens[i][i-1]
   for i in prange(1,nrows+1):
      for j in range(1,ncols+1):
         densnext[i][i] = dens[i][i]+(D/dx**2)*dt*laplacian[i][i]
```

```
time python diff2d_numba_par_loop.py >diff2d_numba_par_loop.out
```

Elapsed: 1.78 seconds

Even (somewhat) better!

Note: You may need to increase the resolution to see some of an effect.

The MPI4PY Package

MPI

- The previous parallel techniques used processors on one node
- Using more than one node requires these nodes to communicate
- MPI is one way of doing that communication
- MPI is a C/Fortran Library API

Mpi4py features

- mpi4py is a Python wrapper around the MPI library
- Point-to-point communication (sends, receives)
- Collective (broadcasts, scatters, gathers) communications of any picklable Python object
- Names of functions much the same as in C/Fortran, but are methods of the communicator

49 / 65

Mpi4py in a nutshell

MPI communication is govered by a communicator:

```
from mpi4py import MPI # does MPI_Init!
comm = MPI.COMM_WORLD
```

- Every process runs the same code, the full Python script, at the same time.
- Every process has a rank, which is the only feature that distinguishes it from its siblings.

```
rank = comm.Get_rank()
```

• Processes can send values to other ranks:

```
comm.send(variable, dest=torank)
```

variable = comm.recv(source=fromrank)

Processes can receive things from other ranks:

```
    Sends and receives must match or your
program will hang. The combined
comm.sendrecv can help avoid this deadlock.
```

 Processes can do collective actions, like summing up values:

Mpi4py

- One of the drudgeries of MPI is to have to express the binary layout of your data.
- This arises because C and Fortran don't have introspection and the MPI libraries cannot look inside your code.
- With Python, this is different: we can investigate, within Python, what the structure is.
- That means we can send a piece of data without having to specify types and amounts.

```
$ mpirun -np 1 python mpi4py_right_rank.py
# mpi4py_right_rank.py
from mpi4pv import MPI
                                                     I am rank 0; my right neighbour is 0
      = MPI.COMM WORLD
comm
                                                     $ mpirun -n 4 python mpi4py right rank.py
rank
     = comm.Get rank()
     = comm.Get size()
                                                     I am rank 0 : mv right neighbour is 1
                                                     I am rank 1; my right neighbour is 2
right = (rank+1)%size
    = (rank+size-1)%size
                                                     I am rank 3; my right neighbour is 0
                                                     I am rank 2: my right neighbour is 3
rankr = comm.sendrecv(rank, left, source=right)
print("I am rank", rank,
      ": mv right neighbour is", rankr)
```

It's still slower than C/Fortran!

But there is hope:

When throughput matters more

- If you have a reasonable efficient serial Python code (using **NumPy vectorization**, etc.), and you have many independent cases to compute.
- Use **multiprocessing**, or **ray**, or do it in *bash* with **GNU Parallel** O. Tange (2018): GNU Parallel 2018, March 2018, https://doi.org/10.5281/zenodo.1146014.

When doing (big) data analysis

• For reading in data, performing some analysis, and writing it out, performance is likely limited by I/O. E.g. **pyspark**.

When using optimized packages

- Many Python packages are written in C or Fortran, and just expose an interface to Python.
- Examples of this include popular *data science* and *machine learning* packages: pandas scipy sklearn tensorflow keras dask ray

The Multiprocessing Package

- Multiprocessing spawns separate processes that run concurrently and have their own memory.
- The Process function launches a separate process.
- The syntax is very similar to spawning threads.
 This is intentional
- The details under the hood depend strongly upon the system involved (Windows, Mac, Linux), but are hidden, so your code can be portable.

```
# multiprocessingexample.pv
import multiprocessing
def f(x):
  return x*x
processes = []
for x in range(1.50):
   p = multiprocessing.Process(target=f,args=(x,))
   processes.append(p)
   p.start()
for p in processes:
   p.join()
```

Work sharing with multiprocessing

The Pool object from multiprocessing offers a convenient means of parallelizing the execution of a function across multiple input values, distributing the input data across processes (data parallelism).

```
from multiprocessing import Pool, cpu_count
def f(x):
    return x*x
numprocs = cpu_count()
```

with Pool(numprocs) as p:

print(p.map(f, range(1,50)))

Shared memory with multiprocessing

- multiprocessing allows one to seamlessly share memory between processes. This is done using 'Value' and 'Array'.
- Value is a wrapper around a strongly typed object called a ctype. When creating a Value, the first argument is the variable type, the second is that value.
- Code on the right has 10 processes add 50 increments of 1 to the Value v.

```
# multiprocessing shared.py
from multiprocessing import Process
from multiprocessing import Value
def myfun(v):
  for i in range(50):
    time.sleep(0.001)
    v.value += 1
v = Value('i', 0);
procs = []
for i in range(10):
  p = Process(target=myfun, args=(v,))
  procs.append(p)
  p.start()
for proc in procs: proc.join()
print(v.value)
```

```
$ time python multiprocessing_shared.py
```

485

Elapsed: 0.20 seconds

Race conditions

What went wrong?

- Race conditions occur when program instructions are executed in an order not intended by the programmer. The most common cause is when multiple processes are given access to a resource.
- In the example here, we've modified a location in memory that is being accessed by multiple processes.
- Note that it need not only be processes or threads that can modify a resource, anything can modify a resource, hardware or software.
- Bugs caused by race conditions are extremely hard to find.

Be very very careful when sharing resources between multiple processes or threads!

Using shared memory, continued

The solution: be more explicit in your locking.

```
# multiprocessing shared fixed.pv
                                                      # multiprocessing_shared_fixed.py
                                                      # continued
from multiprocessing import Process
from multiprocessing import Value
                                                      v = Value('i', 0)
                                                      lock = Lock()
from multiprocessing import Lock
                                                      procs = []
def myfun(v, lock):
                                                      for i in range(10):
  for i in range(50):
                                                       p = Process(target=mvfun,
    time.sleep(0.001)
                                                                   args=(v,lock))
    with lock:
                                                       procs.append(p)
                                                       p.start()
        v.value += 1
                                                      for proc in procs: proc.join()
                                                      print(v.value)
$ time python multiprocessing shared fixed.py
500
Elapsed: 0.12 seconds
```

Task-based approaches

• We saw with multiprocessing that if the individual tasks are light, it is hard to get good parallel performance.

Those worked well with data-parallel approaches like numpy and numexpr.

- Let's consider the case that the tasks are more compute intensive.
- But let's be a bit more general, and allow dependencies between tasks.
- To do task-based parallelizing, how would we describe these dependencies?

We need a way to declare a dependency graph of tasks, and then a way to execute it with multiple workers.

The Dask Package

- An original algorithm may already show the dependencies.
- If we replaced the variables in all the steps of an algorithm with placeholders, we could figure out what could be done in parallel before compute the final result.
- dask.delayed

```
Example
                                                      Task-graph, executed in parallel:
Immediate, non parallelized:
                                                      import dask
def add(x,v):
  return x+v
                                                      def add(x,y):
x = add(1.2)
                                                         return x+v
y = add(2,3)
                                                      x = dask.delayed(add)(1,2)
                                                          dask.delayed(add)(2.3)
z = add(x,y)
                                                      z = dask.delayed(add)(x,y)
print("z is",z)
                                                      print("z is",z.compute())
```

Dask, continued


```
import dask

def add(x,y):
    return x+y

x = dask.delayed(add)(1,2)
y = dask.delayed(add)(2,3)

z = dask.delayed(add)(x,y)

print("z is",z.compute())

z is 8
```

- x is not a number, but a 'Delayed' object
- This just defines what should be done, with arguments that become dependencies
- dask build the dependency tree.
- It does not execute until you use the compute method.

Main features of dask

- Parallel computing
- Providing data structures that are extensions of familiar object: DataFrames, Array, and Bag
- Task scheduling on-node (e.g. using multiprocessing) or distributed
- Scalable
- Dynamics Task Graphs
- Diagnostic Tools
- Works well with numpy, scipy, scikit-learn, etc.

The Ray Package

- Ray is another 'task graph' approach to parallelism.
- Where dask is aimed at data structures, ray is more general
- It allows e.g. stateful actors and runtime added tasks.
- It is reportedly optimized for low latency.

Ray Example


```
# ray basics example
import ray
ray.init()
@ray.remote
def add(x,y):
  return x+v
x = add.remote(1.2)
v = add.remote(2.3)
z = add.remote(x,y)
print("z is",ray.get(z))
ray.shutdown()
```

- You need to explicitly start and stop the 'ray cluster'.
- Ray works with decorators.
- The 'delayed' actions are done using .remote(...)
- To get the result, you do ray.get(...)

This does not really show a difference with dask.

The level of detailed control you need and the presence of specialized functionality, e.g. machine learning for Ray, data manipulation like with numpy or pandas for Dask.

z is 8

5. Conclusions

Conclusions

Performance

- Getting performance out of Python involves getting out of Python
- Find your performance with scalene or line_profiler before optimizing.
- Numpy, when used with vectorized expressions helps. Then numexpr can help even more.
- Numba, when not used with vectorized expressions helps.

Parallel computing

- Numexpr for the simplest cases
- Numba for more complex cases (incl. GPUs)
- · For non-lightweight tasks, multiprocessing.
- mpi4py is an option, but not easy with task dependencies.
- Dask or Ray for workflows with dependencies (dask for data analysis and ray for machine learning)