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Deep Learning to accelerate science

● Diverse scientific domains utilize 
deep learning to solve scientific 
problems.
○ accelerate time-to-results.
○ extract patterns of large data.

● Data is the core of all deep 
learning methods.

Variety of 
applications for 

DL

Biology

Particle 
Physics

Cosmology

Fluid 
Dynamics

Computer 
Vision

Material 
Science

Understanding the I/O behavior of 
scientific DL applications is crucial for 

scientific discovery.
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Popular DL frameworks provide 
methods for tuning the input 
pipeline.

Major phases for data management
● Data Ingestion

○ different data sources
○ data representations

● Data Processing
○ Parallelism and pipeline 

through worker assignment.
● Data Communication

○ RDMA, 
○ GPU-Direct, and
○ NVLink

Data Management in DL frameworks

Data 
Management

Source: https://towardsdatascience.com/building-efficient-data-pipelines-using-tensorflow-8f647f03b4ce 

Input pipeline in TensorFlow with 
optimization example.

3

https://towardsdatascience.com/building-efficient-data-pipelines-using-tensorflow-8f647f03b4ce


Traditional Vs Deep Learning Stack

I/O tasks

• Coordinated 
Vs 
Independent

Data Phase

• Bulk 
Synchronous 
Vs 
Asynchronous 
background I/O

Process 
Management

• MPI 
Vs. 
- Fork
- Spawn
- Threading
- DDP
- Horovod

Language

• C/C++/Fortran
Vs.
Python/C/C++
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I/O research for DL applications 
require an understanding of data 
access behavior of modern 
scientific applications.

There is a need of an I/O 
benchmark and profiler

 representing I/O for deep learning workloads

Observation

Hypothesis
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A Data-Centric Benchmark for 
Scientific DL Applications

A Dataflow Tracer for 
large-scale Deep Learning workloads 

DLIO Benchmark

DLIO Profiler
https://github.com/argonne-
lcf/dlio_benchmark.git

Code 

Code 

https://github.com/hariharan-
devarajan/dlio-profiler.git 
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DLIO Benchmark

A Data-Centric Benchmark for Scientific DL Applications
7



High-Level Design

• Component Design
• Reader allows different data 

formats
• Checkpoint allows different 

checkpointing implementations
• Data loaders implement different 

input pipeline.

All Components support plugin 
design to add custom 

implementations.
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Configurations for DLIO 
Benchmark

Top Level

To
p 

Le
ve

l

Workflow

Dataset

Reader

Train

Evaluation

Checkpoint
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Configurations for DLIO 
Benchmark

Workflow

W
or
kf
lo
w

Train

Evaluation

Checkpoint

Generate Data
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Configurations for DLIO 
Benchmark

Dataset

D
at
as
et

Record or Sample 
Dimensions

Dataset Format

# train files

# eval files

Samples per file
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Configurations for DLIO 
Benchmark

Reader

Re
ad

er

Data Loader

Batch Size

Read workers

Prefetch Size

Shuffle Files

Shuffle Samples
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Configurations for DLIO 
Benchmark

Train

Tr
ai
n

Epochs

Computation 
Time (sec)

Steps

Change seed 
per epoch
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Configurations for DLIO 
Benchmark

Checkpoint

Ch
ec

kp
oi
nt

Checkpoint 
Frequency

Model Size

Optimization 
Groups

# Layers

Model 
Parallelism
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Experimental

Supported Workloads

Unet3D

Cosmoflow

Resnet50

BERT

DLRM

Megatron Deepspeed

1

2

3

4

5
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Current known adopters 

Lawrence 
Livermore 
National 

Lab

Illinois Tech

University 
of Texas

Lawrence 
Berkley 
National 

Lab

MLPerf 
Storage

Nutanix

DDN
University 
of North 
Texas

Heart
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DLIO Benchmark Scaling

● Splitting data across multiple files achieves better I/O performance than 
using one large shared file.

● Additionally, only TFRecord have I/O optimization for input pipeline which is 
not present in scientific data formats such as HDF5.

Observation

Multi-file application Shared File applications
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DLIO Profiler

A Data-Centric Benchmark for Scientific DL Applications

Code 

https://github.com/hariharan-
devarajan/dlio-profiler.git 
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Challenges of Current tools

• Need for handling dynamic 
processes
• Multi-level profiling 

• Python
• I/O Workers
• C/C++ Code
• System Calls

• Metadata Tagging

5% 2%

11%

82%

I/O calls captured

Score-P Darshan Recorder Other
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DLIO Profiler (High-Level Design)

Application

HDF5

MPI-IO

STDIO

POSIX

DLIO Profiler  Library

GOTCHA 

Unified Trace Interface

Trace
Writer

Buffering Compression

DLP Trace Format
JSON: id, event_info, metadata

DLP Analyzer

Indexer Trace Loader
(Dask 

Runtime)

Queries

Cluster 
Manager

Summary

Visualizations

User Defined

1.2 
intercepts

7. 
Index 
and 
Load 

Trace 

C Code
Interfaces

C CPP Python
1.1Calls

2. Logs Events

3. Writes event 
to buffer

5. On 
Finalize

4. Write Buffered Events

Dask Dataframe
(Distributed Memory)

9. Query Trace data 
with parallelism

8. Create
dataframe

6. Update Trace
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Unet3D (Perfetto UI by Google) 21



MuMMI (AI-driven MD workflow) 22



DLIO Profiler Performance 23



1

2

3

4

Conclusions

We demonstrated the need for a new benchmark and 
tool for AI workloads

Described the modular design of DLIO benchmark and 
the supported workloads.

Described the DLIO Profiler design along with analysis 
friendly trace format

Demonstrated some visualizations possible using the 
DLIO Profiler trace.

A list of all 
observations



Q&A

hariharandev1@llnl.gov

Thank youBenchmark Profiler
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