
Deep Learning I/O:
Benchmark and Profiling

Hariharan Devarajan (hariharandev1@llnl.gov)

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 (LLNL-PRES-861305).

mailto:hariharandev1@llnl.gov

Deep Learning to accelerate science

● Diverse scientific domains utilize
deep learning to solve scientific
problems.
○ accelerate time-to-results.
○ extract patterns of large data.

● Data is the core of all deep
learning methods.

Variety of
applications for

DL

Biology

Particle
Physics

Cosmology

Fluid
Dynamics

Computer
Vision

Material
Science

Understanding the I/O behavior of
scientific DL applications is crucial for

scientific discovery.

2

Popular DL frameworks provide
methods for tuning the input
pipeline.

Major phases for data management
● Data Ingestion

○ different data sources
○ data representations

● Data Processing
○ Parallelism and pipeline

through worker assignment.
● Data Communication

○ RDMA,
○ GPU-Direct, and
○ NVLink

Data Management in DL frameworks

Data
Management

Source: https://towardsdatascience.com/building-efficient-data-pipelines-using-tensorflow-8f647f03b4ce

Input pipeline in TensorFlow with
optimization example.

3

https://towardsdatascience.com/building-efficient-data-pipelines-using-tensorflow-8f647f03b4ce

Traditional Vs Deep Learning Stack

I/O tasks

• Coordinated
Vs
Independent

Data Phase

• Bulk
Synchronous
Vs
Asynchronous
background I/O

Process
Management

• MPI
Vs.
- Fork
- Spawn
- Threading
- DDP
- Horovod

Language

• C/C++/Fortran
Vs.
Python/C/C++

4

I/O research for DL applications
require an understanding of data
access behavior of modern
scientific applications.

There is a need of an I/O
benchmark and profiler

 representing I/O for deep learning workloads

Observation

Hypothesis
5

A Data-Centric Benchmark for
Scientific DL Applications

A Dataflow Tracer for
large-scale Deep Learning workloads

DLIO Benchmark

DLIO Profiler
https://github.com/argonne-
lcf/dlio_benchmark.git

Code

Code

https://github.com/hariharan-
devarajan/dlio-profiler.git

6

https://github.com/argonne-lcf/dlio_benchmark.git
https://github.com/argonne-lcf/dlio_benchmark.git
https://github.com/hariharan-devarajan/dlio-profiler.git
https://github.com/hariharan-devarajan/dlio-profiler.git

DLIO Benchmark

A Data-Centric Benchmark for Scientific DL Applications
7

High-Level Design

• Component Design
• Reader allows different data

formats
• Checkpoint allows different

checkpointing implementations
• Data loaders implement different

input pipeline.

All Components support plugin
design to add custom

implementations.

8

Configurations for DLIO
Benchmark

Top Level

To
p

Le
ve

l

Workflow

Dataset

Reader

Train

Evaluation

Checkpoint

9

Configurations for DLIO
Benchmark

Workflow

W
or
kf
lo
w

Train

Evaluation

Checkpoint

Generate Data

10

Configurations for DLIO
Benchmark

Dataset

D
at
as
et

Record or Sample
Dimensions

Dataset Format

train files

eval files

Samples per file

11

Configurations for DLIO
Benchmark

Reader

Re
ad

er

Data Loader

Batch Size

Read workers

Prefetch Size

Shuffle Files

Shuffle Samples

12

Configurations for DLIO
Benchmark

Train

Tr
ai
n

Epochs

Computation
Time (sec)

Steps

Change seed
per epoch

13

Configurations for DLIO
Benchmark

Checkpoint

Ch
ec

kp
oi
nt

Checkpoint
Frequency

Model Size

Optimization
Groups

Layers

Model
Parallelism

14

Experimental

Supported Workloads

Unet3D

Cosmoflow

Resnet50

BERT

DLRM

Megatron Deepspeed

1

2

3

4

5

6

15

Current known adopters

Lawrence
Livermore
National

Lab

Illinois Tech

University
of Texas

Lawrence
Berkley
National

Lab

MLPerf
Storage

Nutanix

DDN
University
of North
Texas

Heart

16

DLIO Benchmark Scaling

● Splitting data across multiple files achieves better I/O performance than
using one large shared file.

● Additionally, only TFRecord have I/O optimization for input pipeline which is
not present in scientific data formats such as HDF5.

Observation

Multi-file application Shared File applications

17

DLIO Profiler

A Data-Centric Benchmark for Scientific DL Applications

Code

https://github.com/hariharan-
devarajan/dlio-profiler.git

18

https://github.com/hariharan-devarajan/dlio-profiler.git
https://github.com/hariharan-devarajan/dlio-profiler.git

Challenges of Current tools

• Need for handling dynamic
processes
• Multi-level profiling

• Python
• I/O Workers
• C/C++ Code
• System Calls

• Metadata Tagging

5% 2%

11%

82%

I/O calls captured

Score-P Darshan Recorder Other

19

DLIO Profiler (High-Level Design)

Application

HDF5

MPI-IO

STDIO

POSIX

DLIO Profiler Library

GOTCHA

Unified Trace Interface

Trace
Writer

Buffering Compression

DLP Trace Format
JSON: id, event_info, metadata

DLP Analyzer

Indexer Trace Loader
(Dask

Runtime)

Queries

Cluster
Manager

Summary

Visualizations

User Defined

1.2
intercepts

7.
Index
and
Load

Trace

C Code
Interfaces

C CPP Python
1.1Calls

2. Logs Events

3. Writes event
to buffer

5. On
Finalize

4. Write Buffered Events

Dask Dataframe
(Distributed Memory)

9. Query Trace data
with parallelism

8. Create
dataframe

6. Update Trace

20

Unet3D (Perfetto UI by Google) 21

MuMMI (AI-driven MD workflow) 22

DLIO Profiler Performance 23

1

2

3

4

Conclusions

We demonstrated the need for a new benchmark and
tool for AI workloads

Described the modular design of DLIO benchmark and
the supported workloads.

Described the DLIO Profiler design along with analysis
friendly trace format

Demonstrated some visualizations possible using the
DLIO Profiler trace.

A list of all
observations

Q&A

hariharandev1@llnl.gov

Thank youBenchmark Profiler

This material is based upon work supported by the
National Science Foundation under Grant no. OCI-
1835764 and CSR-1814872. Also, this work was
performed under the auspices of the U.S. Department
of Energy by Lawrence Livermore National Laboratory
under Contract DE-AC52-07NA27344. This material is
based upon work supported by the U.S. Department of
Energy, Office of Science, Office of Advanced Scientific
Computing Research under the DOE Early Career
Research Program (LLNL-PRES-861305). Finally, this
research used resources of the Argonne Leadership
Computing Facility, which is a DOE Office of Science
User Facility supported under Contract DE-AC02-
06CH11357.

