
Optimizing Your I/O Workload:
Techniques for Effective HDF5
Usage
March 12, 2024

M. Scot Breitenfeld
Gerd Heber

2

Talk Outline
• Foundations of HDF5

• Brief introduction to
• HDF5 data model, software, and architecture
• HDF5 programming model

• Overview of general best practices

• Overview of parallel HDF5
• Introduction to HDF5 parallel I/O
• New features -- Subfiling, GPU-VFD
• General best practices and methods that affect parallel performance

• Supplemental Tools
• tar2h5
• HSDS
• H5Web

• Deep Learning I/O: Benchmark and Profiling - Hariharan Devarajan, Lawrence
Livermore National Laboratory

3

What is HDF5?

• Hierarchical Data Format version 5 (HDF5)
1. An extensible data model

• Uses structures for data organization and specification
2. Open-source software (I/O library and tools)

• Performs I/O on data organized according to the data model
• Works with POSIX and other types of backend storage: Object Stores

(DAOS, AWS S3, AZURE, Ceph, etc.), memory hierarchies and other
storage devices

3. Open file format (POSIX storage only)

4

HDF5 is like …

5

HDF5 is designed for…

• High-volume and complex data
• HDF5 files of GBs+ sizes are common

• Every size and type of system (portable)
• Works on from embedded systems, desktops and laptops to exascale systems

• Flexible, efficient storage and I/O
• Works for a variety of backing storage

• Enabling applications to evolve in their use of HDF5 and to accommodate new
models
• Data can be added, removed and reorganized in the file

• Supporting long-term data preservation
• Petabytes of remote sensing data including data for long-term climate research in NASA

archives now

6

HDF5 Ecosystem

Fi
le

 F
or

m
at

Li
br

ar
y

D
at

a
M

od
el

D
oc
um

en
ta
ti
on

…

Supports
…

To
ol
s

HDF5 Data model

8

HDF5 File

lat	lon	temp
 12 | 23 | 3.1
 15 | 24 | 4.2
 17 | 21 | 3.6An HDF5 file is a

container that holds
data objects.

Experiment Notes:

Serial Number: 99378920

Date: 3/13/09

Configuration: Standard 3

9

HDF5 Data Model

HDF5 Objects

Group –
Organize data objectsLink –

Organize data objects

Datatype –
Describes individual data elements

Dataspace –
Describes logical layout of the data elements

File

Dataset –
Organize and contain data elements

Attribute –
User-defined metadata

10

HDF5 Dataset

HDF5 Dataset

• HDF5 datasets organize and contain data elements
• HDF5 datatype describes individual data elements
• HDF5 dataspace describes the logical layout of the data elements

Integer: 32-bit, LE

HDF5 Datatype

Multi-dimensional array of
identically typed data elements

Specifications for single data
element and array dimensions

3

Rank

Dim[2] = 5

Dimensions

Dim[0] = 7
Dim[1] = 4

HDF5 Dataspace

11

HDF5 Dataspace

Two roles:
(1) Spatial information for Datasets and Attributes
• Empty sets and scalar values
• Multidimensional arrays
• Rank and dimensions

• A permanent part of object definition

(2) Partial I/O: Dataspace and subset describe the application’s data buffer and data
elements participating in I/O

Rank = 2
Dimensions = 4 x 6

Rank = 1
Dimension = 10

12

How to describe a subset in HDF5?

• Before writing and reading a subset of data, one must describe it
to the HDF5 Library.

• The HDF5 APIs and documentation refer to a subset as a
“selection,” for example “hyperslab selection.”

• If specified, HDF5 performs I/O on a selection only and not on all
dataset elements.

13

Describing elements for I/O: HDF5 Hyperslab

• Everything is “measured” in the number of elements; 0-based
• Example 1-dim:

• Start - starting location of a hyperslab (5)
• Block - block size (3)

• Example 2-dim:
• Start - starting location of a hyperslab (1,1)
• Stride - number of elements that separate each block (3,2)
• Block - block size (2,1)
• Count - number of blocks (2,6)

• All other selections are built using set operations

14

HDF5 Datatypes

• Describe individual data elements in an HDF5 dataset
• A wide range of datatypes is supported

• Atomic types: integer, floats
• User-defined (e.g., 12-bit integer, 16-bit float)
• Enum
• References to HDF5 objects and selected elements of datasets
• Variable-length types (e.g., strings, vectors)
• Compound (similar to C’s structures or Fortran’s derived types)
• Array (similar to matrix)

• HDF5 library provides predefined symbols to describe atomic datatypes

Extreme Scale Computing HDF5

15

How are data elements stored? (1/2)

Chunked

Chunked &
Compressed

Better access time
for subsets;
extendible

Improves storage
efficiency,
transmission speed

Contiguous
(default)

Data elements stored
physically adjacent
to each other

Buffer in memory Data in the file

16

Compression and filters in HDF5

• GZIP and SZIP (free version is available from German Climate Computing Center)
• Other compression methods registered with The HDF Group at
• https://portal.hdfgroup.org/documentation/hdf5-docs/registered_filter_plugins.html

• BZIP2, JPEG, LZF, BLOSC, MAFISC, LZ4, Bitshuffle, SZ and ZFP, etc.
• The listed above are available as dynamically loaded plugins

• Filters:
• Fletcher32 (checksum)
• Shuffle
• Scale+offset
• n-bit

https://www.mpg.de/dkrz_en
https://portal.hdfgroup.org/documentation/hdf5-docs/registered_filter_plugins.html

17

How are data elements stored? (2/2)

External

Virtual

Data elements stored
outside the HDF5 file,
possibly in another
file format

Data elements are
stored in “source
datasets,” using
selections to map

Compact
Data elements stored
directly within
object’s metadata

Buffer in memory Data in the file
Dataset
Object Header

Dataset
Object Header

18

HDF5 Attributes

• Attributes “decorate” HDF5 objects
• Contain user-defined metadata
• Similar to Key-Values:

• Have a unique name (for that object) and a value

• Analogous to a dataset
• “Value” is described by a datatype and a dataspace
• Do not support partial I/O operations; nor can they be compressed or extended

19

HDF5 Groups and Links

lat	lon	temp
 12 | 23 | 3.1
 15 | 24 | 4.2
 17 | 21 | 3.6

Experiment Notes:
Serial Number: 99378920
Date: 3/13/09
Configuration: Standard 3

/

SimOutViz

HDF5 groups and links
organize data objects.

Every HDF5 file
 has a root group

Parameters
10;100;1000

Timestep
36,000

HDF5 software and architecture

21

HDF5 Software

HDF5 home page: http://hdfgroup.org/HDF5/
• Latest releases: HDF5 1.14.3

HDF5 source code:
• Available on GitHub: https://github.com/HDFGroup/hdf5
• Written in C and includes optional C++, Fortran, Java APIs, and High-Level APIs
• Contains command-line utilities (h5dump, h5repack, h5diff, ..) and compile scripts

HDF5 pre-built binaries:
• Include C, C++, Fortran, Java, and High-Level libraries when possible. Check

./lib/libhdf5.settings file.
• Built with the SZIP and ZLIB external libraries

3rd party software:
• h5py (Python, pip install h5py)
• HDF5.jl (Julia)
• h5cpp[1], h5cpp[2] (Contemporary C++ including support for MPI I/O)

http://hdfgroup.org/HDF5/
https://github.com/HDFGroup/hdf5
https://www.h5py.org/
https://juliaio.github.io/HDF5.jl/stable/
https://github.com/steven-varga/h5cpp
https://github.com/ess-dmsc/h5cpp

22

Useful Tools For New Users

h5dump
 Tool to “dump” or display contents of HDF5 files

Scripts to compile applications:
 h5cc, h5c++, h5fc (h5pcc, h5pfc – parallel variants)

HDFView:
 Java browser to view HDF5 file
 https://www.hdfgroup.org/downloads/hdfview/

HDF5 Examples (C, Fortran, Java, Python, Matlab, ...)
 https://docs.hdfgroup.org/hdf5/develop/_h_d_f5_examples.html

https://www.hdfgroup.org/downloads/hdfview/
https://docs.hdfgroup.org/hdf5/develop/_h_d_f5_examples.html

23

HDF5 Library Architecture (1.12.0 +)

M
PI

 I/
O

HDF5 API and language bindings

Virtual Object Layer (VOL) [1]

Pass-through VOL connectors

Native Connector

RE
ST

D
AO

S

AD
IO

S

PO
SI

X

S3

H
D

FS…. ….
Su

bf
ilin

g

VFDs

HDF5 Core
Library

Terminal VOL
connectors

AS
YN

C

C
AC

H
E

LO
G

BA

SE
D

….

[1] https://portal.hdfgroup.org/documentation/hdf5-docs/registered_vol_connectors.html

G
PU

https://portal.hdfgroup.org/documentation/hdf5-docs/registered_vol_connectors.html

HDF5 Programming model and API

25

The General HDF5 API

• C, FORTRAN, Java, and C++
• Routines begin with the prefix: H5

 _ corresponds to the type of object the function acts on

• The language wrappers follow the same trend

• There are more than 300 APIs – but one can start with less than 50

Example Functions:
 H5D : Dataset interface e.g., H5Dread
 H5F : File interface e.g., H5Fopen
 H5S : dataSpace interface e.g., H5Sclose

26

General Programming Paradigm

• Object is opened or
created
• Creation properties

applied
• Access properties

applied
• Supporting objects are

defined (datatype,
dataspace)

• Object is accessed
possibly many times
• Access property can be

changed
• Object is closed
• Properties (H5P) of

an object are
optionally defined

H5Fcreate (H5Fopen) create (open) File

 H5Screate_simple/H5Screate create dataSpace

 H5Dcreate (H5Dopen) create (open) Dataset

 H5Dread, H5Dwrite access Dataset

 H5Dclose close Dataset

 H5Sclose close dataSpace

H5Fclose close File

General best practices

28

HDF5 Dataset I/O

• Issue large I/O requests
• At least as large as the file system block size

• Avoid datatype conversion
• Use the same data type in the file as in memory
• If conversion is necessary, increase datatype conversion buffer size (default 1MB) with
H5Pset_buffer()

• Avoid dataspace conversion
• One dimensional buffer in memory to two-dimensional array in the file

 Can break collective operations; check what mode was used
H5Pget_mpio_actual_io_mode, and why
H5Pget_mpio_no_collective_cause

https://support.hdfgroup.org/HDF5/doc/RM/RM_H5P.html
https://support.hdfgroup.org/HDF5/doc/RM/RM_H5P.html

29

HDF5 Dataset - Storage

• Use contiguous storage if no data will be added and compression is not used
• HDF5 will not cache data

• Use compact storage when working with small data (<64K)
• Data becomes part of HDF5 internal metadata and is cached (metadata cache)

• Avoid data duplication to reduce file sizes
• Use links to point to datasets stored in the same or external HDF5 file
• Use VDS to point to data stored in other HDF5 datasets

30

Terminology

• DATA – “problem-size” data, e.g., large arrays
• METADATA – is an overloaded term
• In HDF5-centric context:

Metadata “=“ HDF5 metadata
• For each piece of application metadata, there are many associated pieces of

HDF5 metadata
• There are also other sources of HDF5 metadata

• Chunk indices, heaps to store group links and indices to look them up, object
headers, etc.

31

General HDF5 Efficiency

• Faster HDF5 Performance: Metadata
• Use the “latest” file format features

• H5Pset_libver_bounds()
• Increase the size of metadata data structures

• H5Pset_istore_k(), H5Pset_sym_k(), etc.
• Aggregate metadata into larger blocks

• H5Pset_meta_block_size()
• Align objects in the file

• H5Pset_alignment()
• Control metadata cache
• Paged allocation and page buffering

• Aggregate and align metadata and small data,
perform I/O in aligned pages

• See File Space Management Documentation
https://portal.hdfgroup.org/display/HDF5/File+Space+Mana
gement

3/14/24 31

https://portal.hdfgroup.org/display/HDF5/File+Space+Management
https://portal.hdfgroup.org/display/HDF5/File+Space+Management

Parallel I/O with HDF5

33

PHDF5 implementation layers

HDF5 LIBRARY

MPI I/O LIBRARY

HDF5 FILE ON PARALLEL FILE SYSTEM

DISK ARCHITECTURE AND LAYOUT OF DATA ON DISK

COMPUTE NODE COMPUTE NODE COMPUTE NODE

APPLICATION

INTERCONNECT NETWORK + I/O SERVERS

34

Types of Application I/O to Parallel File Systems

35

• Take advantage of high-performance parallel I/O while reducing
complexity
• Use a well-defined high-level I/O layer instead of POSIX or MPI-IO
• Use only a single or a few shared files

• Maintained code base, performance and data portability
• Rely on HDF5 to optimize for the underlying storage system

Why Parallel HDF5?

36

Parallel HDF5 (PHDF5) vs. Serial HDF5

• PHDF5 allows multiple MPI processes in an MPI application
to perform I/O to a single HDF5 file

• PHDF5 uses a standard parallel I/O interface (MPI-IO)
• Portable to different platforms
• PHDF5 files ARE HDF5 files conforming to the HDF5 file

format specification
• The PHDF5 API consists of:

• The standard HDF5 API
• A few extra knobs and calls
• A parallel “schema”

https://www.hdfgroup.org/HDF5/doc/H5.format.html
https://www.hdfgroup.org/HDF5/doc/H5.format.html

37

• PHDF5 opens a shared file with an MPI communicator
• Returns a file ID (as usual)
• All future access to the file via that file ID

• Different files can be opened via different communicators
• All processes must participate in collective PHDF5 APIs
• All HDF5 APIs that modify the HDF5 namespace and structural metadata are

collective!
• File ops., group structure, dataset dimensions, object life-cycle, etc.
• Raw data operations can either be collective or independent

• For collective, all processes must participate, but they don’t need to read/write data.

Parallel HDF5 Schema

https://support.hdfgroup.org/HDF5/doc/RM/CollectiveCalls.html

https://support.hdfgroup.org/HDF5/doc/RM/CollectiveCalls.html

38

Object Creation (Collective vs. Single Process)

39

Collective vs. Independent Operations
• MPI Collective Operations:

• All processes of the communicator must participate, in the right order.
E.g.,

 Process1 Process2
 call A(); call B(); call A(); call B(); …CORRECT

 call A(); call B(); call B(); call A(); …WRONG

• Collective I/O attempts to combine multiple smaller independent I/O
ops into fewer larger ops; neither mode is preferable a priori

40

General HDF5 Programming Parallel Model for raw data I/O

• Distributed memory model: data is split among processes
• Each process defines selections in memory and in file (aka HDF5 hyperslabs) using
H5Sselect_hyperslab

• The hyperslab parameters define the portion of the dataset to write to
- Contiguous hyperslab, Regularly spaced data (column or row), Pattern, or Blocks

• Each process executes a write/read call using selections, which can be either
collective or independent

General HDF5 Best Practices and Case Studies for
Parallel Performance

42

PHDF5 Fundamentals – A Simple Problem

• Writing multiple 2D array variables over time:

ACROSS P processes arranged in a R x C process grid
 FOREACH step 1 .. S
 FOREACH count 1 .. A
 CREATE a double ARRAY of size [X,Y] | [R*X,C*Y] (Strong | Weak)
 (WRITE | READ) the ARRAY (to | from) an HDF5 file

43

Fundamentals – Missing Information

• How are the array variables represented in HDF5?
• 2D, 3D, 4D datasets
• Are the extents known a priori?
• How are the dimensions ordered?
• Groups?

• What order is the data written, and is the data read the same way?
• What’s the storage layout?

• How many physical files?
• Contiguous or chunked, etc.
• Is the data compressible?

• What’s the file system or data store?
• Collective vs. independent MPI-IO

44

One Kind of Performance Hurdle

• HDF5 has a complex-looking interface
• Complexity does not necessarily mean difficult to use
• Users may require such complexity to achieve their goals

• Goal: Self-describing share-friendly data layout
• Tuning performance and efficiency with the

constraint of using a standardized file format
(netCDF, CGNS, etc.)

• Goal: Fastest I/O possible
• Tuning for check-points by minimizing metadata,

large write blocks.
• The complexity of the HDF5 workflow and underlying

hardware may make the HDF5 tasks unavoidably
complex.

45

Other Sources of Performance Variability

Hardware
System configuration and activity of other users

HDF5 property (H5P) lists
Nearly 180 APIs
Controls storage properties for HDF5 objects
Controls in-flight HDF5 behavior
About 100 H5Pset_* functions

≤ p1 * … * p100 combinations!
How many are tested?

What does H5P_DEFAULT mean?
What is the effect of using H5P_DEFAULT?

HDF5 User's Guide: File Property Lists

https://docs.hdfgroup.org/hdf5/develop/_h5_f__u_g.html

46

Back to earlier example – Application Model

Good or bad news:
There are several different ways to handle the data in HDF5, for
example:

Many 2D datasets or attributes
A few 3D datasets
A 4D dataset

There are many ways to use HDF5 properties
Chunking
Data alignment
Metadata block size
Collective/Independent I/O

Ideally, performance would be more or less the same
HDF5 I/O1 test explores the HDF5 parameter space

1 https://github.com/HDFGroup/hdf5-iotest

https://github.com/HDFGroup/hdf5-iotest

47

HDF5 Parameter Space

48

IO Pattern Model

Step based IO Pattern

49

IO Pattern Model

Array based IO Pattern

50

Performance as a function of HDF5 parameter space

 0.1

 1

 10

 100

 1000Rank 2
Rank 3
Rank 4

time
step

chunked
contiguous

fill-false
fill-true

def. align
align

def. metadata
metadata

latest
earliest

collective
independent

more scalable less scalable

Av
er

ag
e T

ot
al

 T
im

e (
s)

• Summit, weak
scaling (42 to 2688)

• Best had:
• four rank array

(layout)
• chunked
• no fill values
• default alignment
• independent I/O

51

Strongly Recommended Options

• Hint that metadata access is done collectively
• H5Pset_coll_metadata_write, H5Pset_all_coll_metadata_ops

• A property on an access property list
• If set on the file access property list, then all metadata read operations will be required to be

collective
• Can be set on individual object property list
• When set, MPI rank 0 will issue the read for a metadata entry to the file system and broadcast

to all other ranks

• Set HDF5 to never fill chunks (H5Pset_fill_time with H5D_FILL_TIME_NEVER)

52

Features: Asynchronous I/O

○ Allows asynchronous operations for HDF5 applications:
○ Applications use the _async versions for the H5 APIs

○ Return “request tokens” to applications to track I/O tasks.

○ Requires a VOL (async or DAOS) which supports

asynchronous I/O; otherwise, defaults to synchronous I/O.

Sync

Async

https://github.com/hpc-io/vol-async

53

Subfiling
• Subfiling is a compromise between file-per-process (fpp) and a single shared file

(ssf)
• Use the Subfiling VFD, H5Pset_fapl_subfiling(…),

• use environment variables to control parameters

• Multiple files organized as a Software RAID-0 Implementation
i. Configurable “stripe-depth” and “stripe-set size”
ii. A default “stripe-set” is created by using 1 file per node
iii. A default “stripe-depth” is 32MB

i. export H5FD_SUBFILING_STRIPE_SIZE=$((16*1024*1024))
iv. Using Node-local storage

i. export H5FD_SUBFILING_CONFIG_FILE_PREFIX=<Global File System Location>
ii. export H5FD_SUBFILING_SUBFILE_PREFIX="/tmp"

v. The resulting collection can be read using Subfiling, or fused together using h5fuse into a single HDF5
file.

• Benefits
• Better use of parallel I/O subsystem (node-local storage)
• Reduces the complexity of fpp
• Reduced locking and contention issues to improve performance at larger processor counts over ssf
• Available in HDF5 1.14.0

54

Subfiling

a. I/O Concentrators are implemented as independent threads attached to a normal HDF5 process.
b. MPI is utilized for communicating between HDF5 processes and the set of I/O Concentrators.
c. Because of (b), applications need to use MPI_Init_thread to initialize the MPI library.
d. Currently does not support collective I/O

55

Subfiling
•(CGNS[1] benchmark_hdf5)
⏤ One subfile per node, 16MiB striping, to node-local storage.
⏤ Fixed-size problem, 108 GiB file.

[1] CGNS = Computational Fluid Dynamics (CFD) General Notation System, cgns.org

 0

 10

 20

 30

 40

 50

 60

 2 4 8 16 32 64

W
rit

e T
im

e (
s)

Number of Nodes
 0

 2

 4

 6

 8

 10

 12

 2 4 8 16 32 64

W
rit

e B
an

dw
id

th
 (G

iB
/s)

Number of Nodes

56

GPU VFD

• The HDF5 GPUDirect Storage VFD is used to interface with Nvidia's
GPUDirect Storage (GDS) API.
• Available at https://github.com/hpc-io/vfd-gds
• Your application should make use of CUDA memory management API routines (e.g.,

cudaMalloc) to allocate memory on the device.
• The device-allocated memory buffer should be passed to H5Dread/H5Dwrite

Limitations
• The VFD should still be considered a prototype with new features under development.
• Contact us if you wish to be informed of new features that may fit your use case.
• The VFD does not support MPI parallel-based applications.
• Delta: Tested with openmpi/5.0.1+cuda and gcc/11.4.0 modules

• Testing with the Nvidia module is being done.

https://github.com/hpc-io/vfd-gds

57

Viewing HDF5 Data in a Web Browser

• Point your browser at https://myhdf5.hdfgroup.org/
• Open from URL: ou_process.h5 from the HDF5 tutorial
• Kudos

§ H5Web team (ESRF)
§ h5wasm (NIST)

• Your data never leaves your machine!
§ Depends on browser file system
§ Keep that in mind (size)

• Demo time!

https://myhdf5.hdfgroup.org/
https://github.com/HDFGroup/hdf5-tutorial/blob/main/ou_process.h5
https://h5web.panosc.eu/
https://github.com/usnistgov/h5wasm

58

A Tool for Dealing with Many Small Objects - tar2h5

• Original presentation by Dawei Mu and Volodymyr Kindratenko
• Large collections of small objects (images, a/v clips, etc.)
• Tremendous pressure on the parallel file system's MD server
• Not a bad idea: Collect them in a TAR archive

§ Zillions of files -> one file
• But: No random or parallel access
• A better idea: Store them in a single HDF5 file

§ Compression
§ Deduplication

• GitHub
• Demo time!

https://www.hdfgroup.org/wp-content/uploads/2020/10/tar2h5_V1.pdf
https://github.com/HDFGroup/tar2h5

59

HDF5 as a Highly Scalable Data Service (HSDS)

• HDF5 is about data sharing
• Yes, you can share files, but …

§ File size could be unwieldy
§ You need just a small part of a file
§ Share w/ multiple people
• Access control

• Certain use cases don't fit well w/ the HDF5 library
• Can't call a native binary
• Cloud-based infrastructure
• Multiple writers and readers

• No problem: The HDF5 data model can be
implemented in other ways

• Demo time!

60

HDF Resources

• Google Scholar - about 26,500 citations since 1998
• YouTube channel
• HDF clinic - Tuesday's 12:20 PM Central Time
• HDF Forum
• HDF Users Group (HUG)
• Help desk
• HDF5 tutorial

Contact: help@hdfgroup.org

https://scholar.google.com/scholar?hl=en&as_sdt=0%2C14&q=hdf5&btnG=
https://www.youtube.com/@hdf5
https://us06web.zoom.us/s/98286880081
https://forum.hdfgroup.org/
https://www.hdfgroup.org/hug/
https://help.hdfgroup.org/
https://github.com/gheber/hdf5-tutorial/
mailto:gheber@hdfgroup.org

THANK YOU!
Questions & Comments?

