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MD: 
GROMACS

Cryo-EM: 
RELION

Two Stories:



Update coordinates & 
velocities according to 
equations of motion

More steps?

Compute potential V(r) and
forces Fi = iV(r) on atoms

Initial input data:
Interaction function V(r) - "force field"

coordinates r, velocities v

Collect statistics and write 
energy/coordinates to 

trajectory files

Done!
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Costly, because these 
terms involve all pairs
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Challenge: MD is intrinsically a sequential problem

With Δt ~ 1fs and μs to s  
timescales of interest, we 

need 109-1015 steps.



The challenge: 
•  ~100,000 atoms 
•  Each has ~500 neighbors 

• Maintain a list of them, update ea 10 steps 
•  ~50M interactions/step 
•  ~2B FLOPS per step 
•  ~1ms real time per step

1 interaction



Start

Communicate coordinates to 

construct virtual sites

Construct virtual sites

Neighborsearch step?

Domain 

decomposition

Send charges to peer 

PME  processor

Send x and box to 

peer PME processor

Communicate x with real 

space neighbor processors

(local) 

neighborsearching

Evaluate potential/forces

Receive forces/energy/virial 

from peer PME processor 

Spread real space forces on 

virtual sites

Integrate coordinates

Constrain bond lengths

(parallel LINCS)

Sum energies of all real 

space processors

Neighborsearch step?

Communicate f with real 

space neighbor processors

All local coordinates 

received?

Receive x and box from

peer real space processors

Neighborsearch step?

Received charges 

from peer real space 

processors

Communicate some atoms 

to neighbor PME proc's

Spread charges on grid

Communicate grid overlap 

with PME neighbor proc's

parallel 3D FFT

Solve PME (convolution)

parallel inverse 3D FFT

Communicate grid overlap 

with PME neighbor proc's

Interpolate forces from grid

Communicate some forces 

to neighbor PME proc's

Send forces/energy/virial to 

peer real space processors 

More steps? More steps?

Stop

PME nodeReal space (particle) node
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Spread PME forces on 

virtual sites

To-Do Thursday 10:15:48.004.100 (simple version)

Find atoms in proximity [communicate]

Adjust domain decomposition [communicate] 
Communicate coordinates to/from 26 neighbor nodes

Change charges or parameters for free energy

Update stats. (temperature, energy) [communicate]

Integrate new positions

Calculate torsions

Apply external fields/forces

Write coordinates/forces if necessary

Perform long-range lattice summation [communicate]

Send coordinates to GPU
Calculate short-range electrostatics & VdW

Get forces back from GPU

Create local virtual particles [communicate]

Constrain bonds [communicate]

Send forces to 26 neighbors [communicate]

A fairly typical HPC application - complex & fast

Calculate bonds
Calculate angles
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The things we do every ~100 μs 



What does a modern CPU core look like?

SIMD: 128, 256, or 512 bit vectors

5 μops/core each cycle

SIMD + FMA: 64 flops @ single prec.


Up to 32 cores per chip
2 sockets per node

Theoretically:

320 instructions or 4096 flops 
per cycle on each node. 

latency is ~4 cycles on Skylake.

You need 256 independent FMA

flops (128 FMA operations) to 
saturate just a single core

Intel Skylake-S/EP



What does a modern CPU die look like?
Intel Haswell-EP (18 cores) AMD Ryzen 1600x

The inside of a modern node looks like a 
cluster with advanced network topology!



Explicit Data Parallelism
Kernel

Kernel

Kernel 

Kernel

Kernel

Kernel

Kernel

Kernel

Kernel

Kernel

Kernel

Kernel

Stream=your data
Kernel=algoritm

Without dependencies, 
all these operations could be 

done in parallel if enough 
hardware was available!

Stream





Acceleration Approaches 
GPU


libraries OpenAcc Pure

CUDA

Heterogeneous 
CPU/GPU

Initial effort /

Expertise req.

Generality /

Portability

Performance

Code 
maintainability

Works if 
your code 
offloads to 

libraries

Always works, 
but success 
depends on 

you & compiler

Lots of work, 
assumes impl. 
can run entirely 

on GPU

Even more work, 
less CUDA, 

can use both 
CPU & GPU



OpenMP

threads

OpenMP

threads

Multiple

GPU contexts

per process

Load 
balancing

Load 
balancing

Node

1 GPU

context

Load 
balancing

OpenMP

threads

Node

MPI MPI MPI

MPI MPI MPI

MPI MPI MPI

Explicit SIMD instructions on CPUs & Xeon Phi; 
each instruction does up to 32 flops

CUDA kernels on NVIDIA GPUs, 
OpenCL for AMD/Intel GPUs



{Bonded F PME mesh F
Integration
Constraints
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NLoc non-bonded F
pair list pruning
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Pair-search &
domain-decomposition:
every 10-50 steps

MD step

Clear F
buffer

Loc non-bonded F
pair list pruning

...
preempted

by NLoc kernel

MPI comm:
receive NLoc x

remote
rank

MPI comm:
send NLoc F

remote
rank

DD

DD
comm

3D FFT
comm

constraint
comm

CPU 
OpenMP 
threads

Local
stream

Non-local
stream (high priority)

GPU
CUDA

Strategy: 
1. Profile 
2. Offload largest bottleneck to GPU 



From neighborlists to cluster proximity lists: Revisit everything

X X X X
X X X X
X X X X
X X X X

Organize  
as tiles with

all-vs-all
interactions:

x,y,z
gridding

x,y grid
z sort
z bin

Cluster pairlist

5 6 9 12 15 17 18 25 32 …

7 8 9 11 12 15 17 25 32 43 54 …

i=3:
i=4:
… 8 9 10 11 12 13 19 20 …

The Link-cell algorithm: Load 1 atom, calculate 1 interaction  
Verlet, Phys Rev 159, 98-103 (1967)]

Tile interaction algorithms: 
Load N atoms, compute N^2 forces



This creates a new problem: 
Tiling circles is difficult

• You need a lot of cubes to cover a sphere 
• All interactions beyond cutoff need to be zero

Lots of 
wasted 
FLOPS!

You want 
to calculate 
interactions 

with red 
neighbors



A total of ~3000 lines of CUDA, 
compared to 3M lines of C++

The big gain of heterogeneous acceleration: 
Very little CUDA required

… so we wrote OpenCL kernels too!



Make good use of both GPU & CPU
Use the CPU to pre-calculate or optimize data structures, so 
there is less work for the GPU to do in your kernels 
Easier to implement more complex optimization on CPU 
Advanced multi-node domain decomposition easier on CPU 
Run some parts of the algorithm on the CPU (avoid wasting flops)

1. It’s important to keep the GPU busy 
2. … but it doesn’t have to be busy 100% of the time! 
3. A CUDA GPU running at 100% will get hot, and clock down 
4. NVML “application clocks” effectively overclock the GPU on-the-fly when 

you have less than 100% utilization 

Think of a node as a collection of compute & communication devices - use them all!



Kernel latency is key for heterogeneous acceleration
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Normalized performance 
Think of y-axis as efficiency

• On Titan-XP, our force kernel completes  
 in 22ns for 1000 atoms 

• But then the efficiency is less than 50% 
• From 24k atoms, we have full efficiency 
• If we could reach this for the smallest 

system, that kernel would run 2.5x faster 
• This limits parallelization (strong scaling)
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Pair-search &
domain-decomposition:
every 10-50 steps

MD step

Clear F
buffer

Loc non-bonded F
pair list pruning

...
preempted

by NLoc kernel

MPI comm:
receive NLoc x

remote
rank

MPI comm:
send NLoc F

remote
rank

DD

DD
comm

3D FFT
comm

constraint
comm

CPU 
OpenMP 
threads

Local
stream

Non-local
stream (high priority)

GPU
CUDA

Exploiting multiple & high-priority streams
Stream that only needs local data can start 
directly, but can be preempted by the high-
priority nonlocal data kernel

When remote data is delivered, handle it 
immediately so it can be returned faster



Revisiting Amdahl’s law - give GPU more work

But… GPU performance grows faster than CPU performance, and 
sometimes we want to put a high-end GPU in an old low-end CPU box

Our CPUs used to wait for the GPUs, now it’s often the opposite

The least parallel part of the code (or at least slowest piece of hardware) 
will eventually dominate execution completely and limit scaling

Thanks to heterogeneous parallelism and efficient CPU-side algorithms, 
GROMACS frequently outperforms GPU-only implementations - and yet 
we only need a few thousand lines of CUDA.



{

The new bottleneck (for slow CPUs) is the PME algorithm 
3D grid spreading, FFTs, convolution, iFFT, interpolation
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Pair-search &
domain-decomposition:
every 10-50 steps

MD step

Clear F
buffer

Loc non-bonded F
pair list pruning

...
preempted

by NLoc kernel

MPI comm:
receive NLoc x

remote
rank
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send NLoc F
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DD
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3D FFT
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constraint
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CPU 
OpenMP 
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Local
stream
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GPU Timestep profile before/after PME offload (P100)
Highly challenging small system (25k atoms), very fast iterations. 
Much harder, but important for multi-GPU scaling

Harder to retain full compute throughput than 
communication BW when scaling to small sys. 
Scheduling limited below - kernels  
should overlap. Lauch operations limiting us.

450μs for a complete step - note x scale! 



Multiple streams, neighbor list pruning, PME offload: 2.7X better!

Alcohol dehydrogenase 
95.6k atoms in dodecahedron box
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GROMACS 2018 on TITAN X (no vsites)

8-10X faster than hand tuned SIMD assembly running on CPU



Bringing the Performace back to the CPU
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Unified GPU/CPU architecture - completely portable

CUDA
OpenCL
Intel MIC
x86 SSE2
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x86 AVX-128-FMA
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Arm Neon
Arm64 Asimd
IBM QPX
IBM VMX
IBM VSX
Fujitsu HPC-ACE



We can  
Adjust the 
size of this buffer

Larger buffer  
means more 
calculations, but 
we can update 
the neighbor list 
less frequently 
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New in GROMACS-2018:  
dual-pair list buffer: 
• Use very large buffers, and 

prune it every few steps 
• reduces overhead 
• less sensitive to parameters

Atom clustering and pair list buffering



Large performance loss due to imbalance and 
network speed variation on Cray XC (interference 
from other jobs on the “smart” network)

Strong caling issues - challenges at 100μs per iteration

<1 millisecond

It would help a lot to have more control over node placement

• The 3D-FFT in PME 
• MPI overhead - we need MPI_Put_notify() 
• OpenMP barriers take significant time 

• Load imbalance 
• CUDA API overhead can be 50% of CPU time 
• Too many GROMACS options to tweak manually



Unconstrained
Constrained to groups



Intra-rank parallelisation: OpenMP today, future ?

OpenMP is (performance) portable, but limited: 
• No way to run parallel tasks next to each other 
• No binding of threads to cores (cache locality)

Efficient current parallelization of all algorithms using MPI + OpenMP 

Need for a better threading model, requirements: 
• Extremely low overhead barriers (all-all, all-1, 1-all) 
• Binding of threads to cores 
• Portable

Urgent need for better, standardized and portable HPC-focused task parallelism 
frameworks. We are looking into both ArgoBots and home-grown solutions. 

We are convinced we are moving to a world where latency- and throughput-  
optimized units converge into the same chip - the future is heterogeneous! 



Computing is the new experiment: 

Cracking the  
Cryo-EM Image Reconstruction 

Computational Bottleneck 



Cryo-EM Image Reconstruction 
Structural biology: Determine the structure 
of biomolecules from electron microscopy. 

Take thousands of images each containing 
100-1000 particles and use computers to  
reconstruct 3D electron density



RELION 
A Bayesian approach

p(A|B)p(B) = p(B|A)p(B)

p(A|B) =
p(B|A)p(B)

p(B)

Model Image data

This way, we can include all 
microscope CTF, noise  
estimates and possible 
orientational bias in the statistics, 
as well as the assumption 
of smoothly varying density

Particle picking

2D classification

3D classification

3D refinement 
(“autorefine”)



Alignment & Classification



Parallelization
We scan many independent 

● Views (100,000s)
●  Objects (10)
● Pixels (0.25 Mpix)

 



Focus on algorithms, not micro-tuning

It is critical that you understand and re-implement the original physical model algorithm, 
rather than just move around or tune code. Being able to stream through data is critical!

Plain implementation Kernels Tuned kernels



GROMACS, year 2001



Good Kernels Express Parallelism, not Architecture



“Ninja Coding”:  GROMACS vs. RELION

Lines of raw SIMD code
GROMACS

RELION

~600,000

0

Used to be raw assembly, but now intrinsics

• It is extremely likely that we could get even better speed-ups in RELION with manual 
tweaking, but if the compiler performs this well with only hints, why bother? 

• There is a huge advantage in only having a single code path. All modifications introduced by 
anybody will now be x86-accelerated, even if they do not understand SIMD



Use GPU-specific features when you can
When we have switched to single precision, we realized we can 
use GPU textures to handle interpolation during image rotation.

This is an example of something that cannot be done with OpenACC!



Handling limited GPU memory
If we try to put all data on the GPU, we run out of memory (fast)
When handling things dynamically, cudaMalloc() became bottleneck

We (Dari Kimanius) had to write a custom memory allocator for CUDA

Allocate a large chunk of 
memory and handle it ourselves 

Unified memory could 
theoretically be an alternative, 
but presently it is just as slow 
as CUDA handling memory



Single precision
• Most modern CPUs provide twice the throughput in single compared to double
• This also saves cache, memory bandwidth – and RELION is quite memory-hungry

• Do you need more than 7 valid digits in the output?

• Converting scientific code to single-precision is not trivial: Most codes fail if you 
just do search & replace, but it can be made to work:

• Identify sensitive parts (maximization step), and leave those in double

• Only perform a few operations (exponentials) in double

• Sum small numbers first, or use tree summation instead of linear order

• Use strength-reduction algorithms (check open source math libraries)

• Beware of double-single-double conversions inside critical code paths



Quality: Single precision RELION is just as accurate

DoubleDoubleSingle



So, how did we do performance-wise?
A single quad-GPU workstation was on par with 10 nodes with dual  
14-core Xeon E5-2960v4 CPUs (est. cost $85,000)
… and we were still often limited by our CPU code (a bit embarrassing…) 
RELION-3: New x86 acceleration makes CPU competitive again!



Preprocessing steps are even more impressive - 600x
To find particles in the images, we rely on FFTs where we can use cuFFT



Spend time with your algorithms, not just code tuning. 

A single Skylake-EP node has 4096-fold parallelism.  
Your code likely doesn’t. 

Think accelerators - because a modern CPU looks like an accelerator, 
and they will likely converge to multiple units on one die in the future. 

Heterogeneous parallelism uses all resources and provides architecture portability. 

Fast-iteration codes are very sensitive to node placement,  
and they need task parallelism sooner rather than later. 

Fast-iteration codes CUDA/AVX512/OpenCL isn’t hard - but new algorithms are. 

You can accomplish miracles with more codes than you think, 
but it takes 6-12 months - not an afternoon. 

Theory & Computation is the new experiment!
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