
LIFE SCIENCE EXAMPLES:  
HOW DO WE CONCRETELY PARALLELIZE
AND ACCELERATE SCIENTIFIC PROBLEMS?
(AND HOW DO YOU MAKE IT INTO A CAREER?)

Thomas E Cheatham III, University of Utah, Salt Lake City, UT
Erik Lindahl, Stockholm University, Stockholm
tec3@utah.edu
erik.lindahl@scilifelab.se

mailto:tec3@utah.edu
mailto:erik.lindahl@scilifelab.se

MD:
GROMACS

Cryo-EM:
RELION

Two Stories:

Update coordinates &
velocities according to
equations of motion

More steps?

Compute potential V(r) and
forces Fi = iV(r) on atoms

Initial input data:
Interaction function V(r) - "force field"

coordinates r, velocities v

Collect statistics and write
energy/coordinates to

trajectory files

Done!

Yes

No

Re
pe

at
for

 m
illi

on
s o

f s
tep

s

Costly, because these
terms involve all pairs

V (r)= Â
bonds

1
2

kb
i j
�
ri j� r0

i j
�2

+ Â
angles

1
2

kq
i jk

�
qi jk�q0

i jk
�2

+ Â
torsions

(

Â
n

kq [1+ cos(nf�f0)]

)

+ Â
impropers

kx
�
xi jkl�x0

i jkl
�

+Â
i, j

qiq j

4pe0ri j

+Â
i, j

"
C12

r12
i j
�C6

r6
i j

#

mi
∂2ri

∂t2 = Fi i = 1..N

Fi =�
∂V (r)

∂ri

Challenge: MD is intrinsically a sequential problem

With Δt ~ 1fs and μs to s  
timescales of interest, we 

need 109-1015 steps.

The challenge:
• ~100,000 atoms
• Each has ~500 neighbors

• Maintain a list of them, update ea 10 steps
• ~50M interactions/step
• ~2B FLOPS per step
• ~1ms real time per step

1 interaction

Start

Communicate coordinates to

construct virtual sites

Construct virtual sites

Neighborsearch step?

Domain

decomposition

Send charges to peer

PME processor

Send x and box to

peer PME processor

Communicate x with real

space neighbor processors

(local)

neighborsearching

Evaluate potential/forces

Receive forces/energy/virial

from peer PME processor

Spread real space forces on

virtual sites

Integrate coordinates

Constrain bond lengths

(parallel LINCS)

Sum energies of all real

space processors

Neighborsearch step?

Communicate f with real

space neighbor processors

All local coordinates

received?

Receive x and box from

peer real space processors

Neighborsearch step?

Received charges

from peer real space

processors

Communicate some atoms

to neighbor PME proc's

Spread charges on grid

Communicate grid overlap

with PME neighbor proc's

parallel 3D FFT

Solve PME (convolution)

parallel inverse 3D FFT

Communicate grid overlap

with PME neighbor proc's

Interpolate forces from grid

Communicate some forces

to neighbor PME proc's

Send forces/energy/virial to

peer real space processors

More steps? More steps?

Stop

PME nodeReal space (particle) node

Y

N

N N

N

N

N

Y

Y

Y Y

Y

Spread PME forces on

virtual sites

To-Do Thursday 10:15:48.004.100 (simple version)

Find atoms in proximity [communicate]

Adjust domain decomposition [communicate]
Communicate coordinates to/from 26 neighbor nodes

Change charges or parameters for free energy

Update stats. (temperature, energy) [communicate]

Integrate new positions

Calculate torsions

Apply external fields/forces

Write coordinates/forces if necessary

Perform long-range lattice summation [communicate]

Send coordinates to GPU
Calculate short-range electrostatics & VdW

Get forces back from GPU

Create local virtual particles [communicate]

Constrain bonds [communicate]

Send forces to 26 neighbors [communicate]

A fairly typical HPC application - complex & fast

Calculate bonds
Calculate angles

Ev
er

y
ar

ro
w

 is
 c

om
m

un
ica

tio
n

The things we do every ~100 μs

What does a modern CPU core look like?

SIMD: 128, 256, or 512 bit vectors

5 μops/core each cycle

SIMD + FMA: 64 flops @ single prec.

Up to 32 cores per chip
2 sockets per node

Theoretically:

320 instructions or 4096 flops
per cycle on each node.

latency is ~4 cycles on Skylake.

You need 256 independent FMA

flops (128 FMA operations) to
saturate just a single core

Intel Skylake-S/EP

What does a modern CPU die look like?
Intel Haswell-EP (18 cores) AMD Ryzen 1600x

The inside of a modern node looks like a
cluster with advanced network topology!

Explicit Data Parallelism
Kernel

Kernel

Kernel

Kernel

Kernel

Kernel

Kernel

Kernel

Kernel

Kernel

Kernel

Kernel

Stream=your data
Kernel=algoritm

Without dependencies,
all these operations could be

done in parallel if enough
hardware was available!

Stream

Acceleration Approaches
GPU

libraries OpenAcc Pure

CUDA

Heterogeneous
CPU/GPU

Initial effort /

Expertise req.

Generality /

Portability

Performance

Code
maintainability

Works if
your code
offloads to

libraries

Always works,
but success
depends on

you & compiler

Lots of work,
assumes impl.
can run entirely

on GPU

Even more work, 
less CUDA,

can use both
CPU & GPU

OpenMP

threads

OpenMP

threads

Multiple

GPU contexts

per process

Load 
balancing

Load 
balancing

Node

1 GPU

context

Load 
balancing

OpenMP

threads

Node

MPI MPI MPI

MPI MPI MPI

MPI MPI MPI

Explicit SIMD instructions on CPUs & Xeon Phi;
each instruction does up to 32 flops

CUDA kernels on NVIDIA GPUs,
OpenCL for AMD/Intel GPUs

{Bonded F PME mesh F
Integration
Constraints

Wait
NLoc F

Loc
PS

D
2

H
 N

lo
c

F,
 E

H
2

D
 L

o
c

x,
q

H
2

D
Lo

c
p

a
ir

 l
is

t

Nloc
PS

H
2

D
 N

Lo
c

p
a

ir
 l

is
t

NLoc non-bonded F
pair list pruning

D
2

H
 L

o
c

F

Wait
Loc F

H
2

D
 N

Lo
c

x,
q

Pair-search &
domain-decomposition:
every 10-50 steps

MD step

Clear F
buffer

Loc non-bonded F
pair list pruning

...
preempted

by NLoc kernel

MPI comm:
receive NLoc x

remote
rank

MPI comm:
send NLoc F

remote
rank

DD

DD
comm

3D FFT
comm

constraint
comm

CPU
OpenMP
threads

Local
stream

Non-local
stream (high priority)

GPU
CUDA

Strategy:
1. Profile
2. Offload largest bottleneck to GPU

From neighborlists to cluster proximity lists: Revisit everything

X X X X
X X X X
X X X X
X X X X

Organize  
as tiles with

all-vs-all
interactions:

x,y,z
gridding

x,y grid
z sort
z bin

Cluster pairlist

5 6 9 12 15 17 18 25 32 …

7 8 9 11 12 15 17 25 32 43 54 …

i=3:
i=4:
… 8 9 10 11 12 13 19 20 …

The Link-cell algorithm: Load 1 atom, calculate 1 interaction
Verlet, Phys Rev 159, 98-103 (1967)]

Tile interaction algorithms:
Load N atoms, compute N^2 forces

This creates a new problem: 
Tiling circles is difficult

• You need a lot of cubes to cover a sphere
• All interactions beyond cutoff need to be zero

Lots of
wasted
FLOPS!

You want
to calculate
interactions

with red
neighbors

A total of ~3000 lines of CUDA, 
compared to 3M lines of C++

The big gain of heterogeneous acceleration: 
Very little CUDA required

… so we wrote OpenCL kernels too!

Make good use of both GPU & CPU
Use the CPU to pre-calculate or optimize data structures, so 
there is less work for the GPU to do in your kernels
Easier to implement more complex optimization on CPU
Advanced multi-node domain decomposition easier on CPU
Run some parts of the algorithm on the CPU (avoid wasting flops)

1. It’s important to keep the GPU busy
2. … but it doesn’t have to be busy 100% of the time!
3. A CUDA GPU running at 100% will get hot, and clock down
4. NVML “application clocks” effectively overclock the GPU on-the-fly when 

you have less than 100% utilization

Think of a node as a collection of compute & communication devices - use them all!

Kernel latency is key for heterogeneous acceleration

0.96 1.5 3 6 12 24 48 96 192 384 768 1536 3072
0

10

20

30

40

50

60

70

80

90

K40c – 875 MHz

K80 @875 MHz

GTX 980

TITAN X

Tesla M40

GTX 1080

TITAN X-P

Tesla P100 @1328 MHz

AMD R9 Nano @1GHz

system size x1000 (atoms)

k
e
rn

e
l
ti
m

e
 p

e
r

1
0

0
0

 a
to

m
s
 (

n
s
)

Normalized performance
Think of y-axis as efficiency

• On Titan-XP, our force kernel completes  
 in 22ns for 1000 atoms

• But then the efficiency is less than 50%
• From 24k atoms, we have full efficiency
• If we could reach this for the smallest 

system, that kernel would run 2.5x faster
• This limits parallelization (strong scaling)

{Bonded F PME mesh F
Integration
Constraints

Wait
NLoc F

Loc
PS

D
2

H
 N

lo
c

F,
 E

H
2

D
 L

o
c

x,
q

H
2

D
Lo

c
p

a
ir

 l
is

t

Nloc
PS

H
2

D
 N

Lo
c

p
a

ir
 l

is
t

NLoc non-bonded F
pair list pruning

D
2

H
 L

o
c

F

Wait
Loc F

H
2

D
 N

Lo
c

x,
q

Pair-search &
domain-decomposition:
every 10-50 steps

MD step

Clear F
buffer

Loc non-bonded F
pair list pruning

...
preempted

by NLoc kernel

MPI comm:
receive NLoc x

remote
rank

MPI comm:
send NLoc F

remote
rank

DD

DD
comm

3D FFT
comm

constraint
comm

CPU
OpenMP
threads

Local
stream

Non-local
stream (high priority)

GPU
CUDA

Exploiting multiple & high-priority streams
Stream that only needs local data can start
directly, but can be preempted by the high-
priority nonlocal data kernel

When remote data is delivered, handle it
immediately so it can be returned faster

Revisiting Amdahl’s law - give GPU more work

But… GPU performance grows faster than CPU performance, and
sometimes we want to put a high-end GPU in an old low-end CPU box

Our CPUs used to wait for the GPUs, now it’s often the opposite

The least parallel part of the code (or at least slowest piece of hardware)
will eventually dominate execution completely and limit scaling

Thanks to heterogeneous parallelism and efficient CPU-side algorithms,
GROMACS frequently outperforms GPU-only implementations - and yet
we only need a few thousand lines of CUDA.

{

The new bottleneck (for slow CPUs) is the PME algorithm
3D grid spreading, FFTs, convolution, iFFT, interpolation

Bonded F PME mesh F
Integration
Constraints

Wait
NLoc F

Loc
PS

D
2

H
 N

lo
c

F,
 E

H
2

D
 L

o
c

x,
q

H
2

D
Lo

c
p

a
ir

 l
is

t

Nloc
PS

H
2

D
 N

Lo
c

p
a

ir
 l

is
t

NLoc non-bonded F
pair list pruning

D
2

H
 L

o
c

F

Wait
Loc F

H
2

D
 N

Lo
c

x,
q

Pair-search &
domain-decomposition:
every 10-50 steps

MD step

Clear F
buffer

Loc non-bonded F
pair list pruning

...
preempted

by NLoc kernel

MPI comm:
receive NLoc x

remote
rank

MPI comm:
send NLoc F

remote
rank

DD

DD
comm

3D FFT
comm

constraint
comm

CPU
OpenMP
threads

Local
stream

Non-local
stream (high priority)

GPU
CUDA

GPU Timestep profile before/after PME offload (P100)
Highly challenging small system (25k atoms), very fast iterations. 
Much harder, but important for multi-GPU scaling

Harder to retain full compute throughput than
communication BW when scaling to small sys.
Scheduling limited below - kernels  
should overlap. Lauch operations limiting us.

450μs for a complete step - note x scale!

Multiple streams, neighbor list pruning, PME offload: 2.7X better!

Alcohol dehydrogenase
95.6k atoms in dodecahedron box

0

30

60

90

120

150

GMX 5.
1

GMX 20
16

GMX 5.
1,

vs
ite

s

GMX 20
16

, v
sit

es

Radeon Nano GTX TITAN X

ns
/d

ay

0

30

60

90

120

150

1 2 3 4 6 8

PME CPU PME GPU

ns
/d

ay
CPU cores used

GROMACS 2018 on TITAN X (no vsites)

8-10X faster than hand tuned SIMD assembly running on CPU

Bringing the Performace back to the CPU

12 13 14 15111098

1111

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0000

8653 9 10 11 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0000

7654 12 13 14 15

222

3333

2

0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

11110000

222 33332

0
1
2
3

4
5
6
7

8
9

10
11

Classical 1x1 neighborlist on 4-way SIMD

4x4 setup on 4-way SIMD

4x4 setup on 8-way SIMD

4x4 setup on SIMT-16

141312 1515141312654 77654

Unified GPU/CPU architecture - completely portable

CUDA
OpenCL
Intel MIC
x86 SSE2
x86 SSE4.1
x86 AVX
x86 AVX-128-FMA
x86 AVX2
x86 AVX2_128
x86 AVX-512F
x86 AVX-512ER
Arm Neon
Arm64 Asimd
IBM QPX
IBM VMX
IBM VSX
Fujitsu HPC-ACE

We can
Adjust the
size of this buffer

Larger buffer  
means more 
calculations, but 
we can update 
the neighbor list 
less frequently

8 10 15 20 25 40 50 75 100 150 200

50

55

60

65

70

75

80

85

90

56 ranks

56 ranks with
dynamic pruning

pair search frequency (MD steps)

p
e
rf

o
rm

a
n
c
e
 (

n
s
/d

a
y
)

New in GROMACS-2018:  
dual-pair list buffer:
• Use very large buffers, and 

prune it every few steps
• reduces overhead
• less sensitive to parameters

Atom clustering and pair list buffering

Large performance loss due to imbalance and
network speed variation on Cray XC (interference
from other jobs on the “smart” network)

Strong caling issues - challenges at 100μs per iteration

<1 millisecond

It would help a lot to have more control over node placement

• The 3D-FFT in PME
• MPI overhead - we need MPI_Put_notify()
• OpenMP barriers take significant time

• Load imbalance
• CUDA API overhead can be 50% of CPU time
• Too many GROMACS options to tweak manually

Unconstrained
Constrained to groups

Intra-rank parallelisation: OpenMP today, future ?

OpenMP is (performance) portable, but limited:
• No way to run parallel tasks next to each other
• No binding of threads to cores (cache locality)

Efficient current parallelization of all algorithms using MPI + OpenMP

Need for a better threading model, requirements:
• Extremely low overhead barriers (all-all, all-1, 1-all)
• Binding of threads to cores
• Portable

Urgent need for better, standardized and portable HPC-focused task parallelism
frameworks. We are looking into both ArgoBots and home-grown solutions.

We are convinced we are moving to a world where latency- and throughput-  
optimized units converge into the same chip - the future is heterogeneous!

Computing is the new experiment: 

Cracking the
Cryo-EM Image Reconstruction

Computational Bottleneck

Cryo-EM Image Reconstruction
Structural biology: Determine the structure
of biomolecules from electron microscopy.

Take thousands of images each containing
100-1000 particles and use computers to
reconstruct 3D electron density

RELION
A Bayesian approach

p(A|B)p(B) = p(B|A)p(B)

p(A|B) =
p(B|A)p(B)

p(B)

Model Image data

This way, we can include all
microscope CTF, noise
estimates and possible 
orientational bias in the statistics,
as well as the assumption
of smoothly varying density

Particle picking

2D classification

3D classification

3D refinement
(“autorefine”)

Alignment & Classification

Parallelization
We scan many independent

● Views (100,000s)
● Objects (10)
● Pixels (0.25 Mpix)

Focus on algorithms, not micro-tuning

It is critical that you understand and re-implement the original physical model algorithm,
rather than just move around or tune code. Being able to stream through data is critical!

Plain implementation Kernels Tuned kernels

GROMACS, year 2001

Good Kernels Express Parallelism, not Architecture

“Ninja Coding”: GROMACS vs. RELION

Lines of raw SIMD code
GROMACS

RELION

~600,000

0

Used to be raw assembly, but now intrinsics

• It is extremely likely that we could get even better speed-ups in RELION with manual
tweaking, but if the compiler performs this well with only hints, why bother?

• There is a huge advantage in only having a single code path. All modifications introduced by
anybody will now be x86-accelerated, even if they do not understand SIMD

Use GPU-specific features when you can
When we have switched to single precision, we realized we can 
use GPU textures to handle interpolation during image rotation.

This is an example of something that cannot be done with OpenACC!

Handling limited GPU memory
If we try to put all data on the GPU, we run out of memory (fast)
When handling things dynamically, cudaMalloc() became bottleneck

We (Dari Kimanius) had to write a custom memory allocator for CUDA

Allocate a large chunk of
memory and handle it ourselves

Unified memory could
theoretically be an alternative,
but presently it is just as slow
as CUDA handling memory

Single precision
• Most modern CPUs provide twice the throughput in single compared to double
• This also saves cache, memory bandwidth – and RELION is quite memory-hungry

• Do you need more than 7 valid digits in the output?

• Converting scientific code to single-precision is not trivial: Most codes fail if you
just do search & replace, but it can be made to work:

• Identify sensitive parts (maximization step), and leave those in double

• Only perform a few operations (exponentials) in double

• Sum small numbers first, or use tree summation instead of linear order

• Use strength-reduction algorithms (check open source math libraries)

• Beware of double-single-double conversions inside critical code paths

Quality: Single precision RELION is just as accurate

DoubleDoubleSingle

So, how did we do performance-wise?
A single quad-GPU workstation was on par with 10 nodes with dual  
14-core Xeon E5-2960v4 CPUs (est. cost $85,000)
… and we were still often limited by our CPU code (a bit embarrassing…)
RELION-3: New x86 acceleration makes CPU competitive again!

Preprocessing steps are even more impressive - 600x
To find particles in the images, we rely on FFTs where we can use cuFFT

Spend time with your algorithms, not just code tuning.

A single Skylake-EP node has 4096-fold parallelism.  
Your code likely doesn’t.

Think accelerators - because a modern CPU looks like an accelerator, 
and they will likely converge to multiple units on one die in the future.

Heterogeneous parallelism uses all resources and provides architecture portability.

Fast-iteration codes are very sensitive to node placement,  
and they need task parallelism sooner rather than later.

Fast-iteration codes CUDA/AVX512/OpenCL isn’t hard - but new algorithms are.

You can accomplish miracles with more codes than you think, 
but it takes 6-12 months - not an afternoon.

Theory & Computation is the new experiment!

GROMACS: Berk Hess, Szilard Pall, Mark Abraham, Aleksei Iiupinov, 
John Eblen, Roland Shultz, Christian Wennberg, Viveca Lindahl
RELION: Dari Kimanius, Björn Forsberg, Sjors Scheres, 
Alexey Amunts, Marta Carroni, Shintaro Aibara 
NVIDIA: Mark Berger, Duncan Poole, Julia Levites, Jiri Kraus, Nikolay Markovskiy
INTEL: Charles Congdon, Sheng Fu, Kristina Kermanshahche, Yuping Zhao
CSCS: Thomas Schulthess, Victor Holanda, Prashant Kanduri PDC: Erwin Laure

Acknowledgments

