

HYBRID PROBABILISTIC-POSSIBILISTIC APPROACH FOR

ADDRESSING UNCERTAINTY IN

ELECTROMAGNETIC COMPATIBILITY MODELS

Duygu Kan

RESEARCH TOPIC

Hybrid Probabilistic – Possibilistic Problems

Given the deterministic model

$$z = f\left(\underbrace{r_{1}, r_{2}, \dots, r_{T}, F_{T+1}, F_{T+2}, \dots, r_{T}}_{random}, \underbrace{F_{T+1}, F_{T+2}, \dots, r_{T}}_{fuzzy}\right)$$

with M parameters

- T random variables with known probability distribution ●
- (M-T) fuzzy variables with known possibility distribution ullet
- Goal: estimate the variations of z in terms of cumulative distribution function (CDF) confidence bounds

- Field coupling to a Twisted-Wire Pair (TWP)
 - TWP running above a ground plane
 - Balanced terminations to prevent CM-to-DM conversion
 - Uniform plane-wave illumination

DLab

Goal: Evaluate DM currents induced in terminal loads

h	5 cm
r _w	0.5 mm
S	4 mm
$L_{ m z}$	2 m
E	1 V/m

- Polynomial Chaos (PC) Expansion

$$Y(t,\vec{\xi}) \cong \sum_{i=0}^{M} \alpha_i(t) \varphi_i$$

 $Y(t, \vec{\xi})$: stochastic process

- ξ : vector of normalized random variables
- φ : polynomial basis functions
- α : PC coefficients

Idea: PC for Probabilistic – Possibilistic Problems

$$Y(t,\vec{\xi}) \cong \sum_{i=0}^{M} \alpha_i(t) \varphi_i(\vec{\xi})$$

• Y is the min / max of the quantity of interest

• Frequency-dependent DM mode current

$$\min\left(I_{DM}\left(\omega, n, \theta, \eta, \psi\right)\right) \cong \sum_{i=0}^{Q} \alpha_{i}\left(\omega\right)$$
Angular frequency

 $\varphi_i(\eta,\psi)$ n, θ Random variables

Possibilistic variables

- Field coupling to a Twisted-Wire Pair (TWP): Results

Polynomial Chaos – based

PC Model Output: 4x4RVs samples 0.9 0.8 0.7 Possibility 0.6 0.3 0.2 0.1 0 -140

-60

-40

-20

-120

-100

-80

Current dBµA

0.9

0.8

0.7

0.3

0.2

0.1

Monte Carlo – based

Reference DM Current freg=3.76MHz

