Effects of Polydispersity on the Stability of Complex Spherical Packing Phases in Diblock Copolymers

Decreasing average A-monomer concentration, f_A

0.5

Chi To (Tom) Lai¹, Weihua Li², An-Chang Shi¹ ¹Dept. of Physics & Astronomy, McMaster University ²Dept. of Macromolecular Science, Fudan University

Classical & Nonclassical Spherical Phases

Methodology

We use self-consistent field theory (SCFT) to study the phase behavior of block copolymers.

Input: Initial guess for $\phi_A^{(in)}(r) \& \phi_B^{(in)}(r)$

 $\omega_{A,B}(\mathbf{r}) = \chi N \phi_{B,A}(\mathbf{r}) + \xi(\mathbf{r}),$ and other SCFT equations

Output: $\phi_{A}^{(out)}(r) \& \phi_{B}^{(out)}(r)$

Anderson Mixing [4]

New intput: $\phi_A^{(in)}(r) \& \phi_B^{(in)}(r) \checkmark$

 Physical Review E 2002 65, 041806
Journal of Polymer Science Part B: Polymer Physics 2002 40, 1777 (2002).
Macromolecules 2006 39 (19), 6661-6671
The Journal of Chemical Physics 2004 120:1, 31-34

Chain Length Distributions Studied

Polydispersity-induced Sigma Phase

Measuring Packing Frustration

