Jens F. Mahlmann

Power talk Open forum Deep dive

Black holes in computers

Relativistic jets in progenitors of gamma-ray-bursts

Jens F. Mahlmann, Pablo Cerdá-Durán, Miguel A. Aloy

University of Valencia Departament d'Astronomia i Astrofísica (CAMAP) Poster Session / HPC Summer School / July 9 - 13, 2018

-

イロト 不得 トイヨト イヨト

European Research Council Established by the European Commission

Jens F. Mahlmann

Power talk Open forum Deep dive References Force-free magnetospheres in computers Focusing on electrodynamics around compact objects Goal: Scalable code for the simulation of *force-free* magnetospheres on the dynamical metric of *compact objects* (e.g., neutron stars or black holes).

Physics: In the limit of high field energy (low particle inertia), General Relativistic magnetohydrocynamics (GRMHD) reduces to *General Relativistic force-free electrodynamics (GRFFE)*.

[1] Full Maxwell's equations evolution

(Komissarov, 2002, 2004, 2007; Paschalidis and Shapiro, 2013)

[2] Energy flow evolution (McKinney, 2006; Paschalidis and Shapiro, 2013; Etienne et al., 2017)

 $\nabla_{\nu}F^{\mu\nu} = J^{\mu} \qquad \nabla_{\nu}^{*}F^{\mu\nu} = 0$

 $\nabla_{\mu}T^{\mu}_{\nu} = 0 \qquad \nabla_{\nu}{}^{*}F^{\mu\nu} = 0$

- *Explicit* methods on *structured* grids (well suited for hyperbolic, non-stiff equations)
- *Conservative* schemes require computing a unique *flux* per numerical zone (exact and HLL *Riemann solvers*)
- Cover a variety of time and length scales (e.g., at *current sheets*). This requires adaptivity of the *mesh*, highly accurate regions, and parallel scalability.

Jens F. Mahlmann

Power talk Open forum Deep dive References

Simulations of Blandford/Znajek process Setting up a generic GRFFE problem

Figure: Visualization of the mag, field (B) initial data around the BH (mass m = 1, spin a = 0.9). A numerical solution to the Grad-Shafranov equation is obtained via the solver architecture in the *CoCoNut* code (cf. Adsuara et al., 2016) and as initial data for simulations employing the *Einstein Toolkit*. The numerical techniques solving the Grad-Shafranov equation around spinning Kerr BHs may be used with existing infrastructure of numerical PDE solvers, e.g., the *CoCoNut* code.

(Cerdá-Durán et al., 2009; Adsuara et al., 2016)

- Spacetime initial data for rapidly spinning BHs (high Blandford/Znajek luminosities expected) is tested on the *Carpet* grid of the *Einstein Toolkit*. (Liu et al., 2009)
- We have adapted the evolution routines available for the ET to account for a FF magnetized plasma around spinning BHs implemented as *punctures*. Our implementation is inspired by previous work on GRMHD using the ET and GRFFE.

(Faber et al., 2007; Mösta et al., 2014; Etienne et al., 2017)

Jens F. Mahlmann

Power talk Open forum Deep dive

Scaling tests need scalable architectures Parallel tests of GRiFFiN code - way to go!

Tearing mode scaling tests on static (flat) background. *Einstein Toolkit* shows weak scalability (Löffler et al., 2012) on selected large machines.

Jens F. Mahlmann

Power talk

Open forum Deep dive

Open forum: Let's discuss

Questions. Answers. Remarks. Discussion. Thank you.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Established by the European Commission

Jens F. Mahlmann

Power talk

Open forum

Deep dive

CAMAP Jets Project status Force-free

References

How numerical simulations (may) help us Examples from CAMAP/Valencia

Goal: Application of established numerical techniques within other disciplines (e.g., astroeye).

Neutron star mergers

forming a rotating *black hole* with magnetized

environment. (Rezzolla

2014; Ruiz et al., 2016)

et al., 2011; Kiuchi et al.,

Goal: Probing of specific mechanisms (e.g., *dissipation, radiation*) and development of numerical codes/strategies.

Interdisciplinary work, e.g., a joined project of mathematicians, theoretical physicists and optometrists at the *University of Valencia*.

Goal: Access to astrophysical scenarios (e.g., *binary mergers*, gravitational waves, *jets*). Numerical simulation of *jet* propagation (Mimica et al., 2013).

Jens F. Mahlmann

Power talk

Open forum

- Deep dive
- CAMAP Jets Project status Force-free
- References

Relativitic jets are very strong accelerators Observation of cosmic high energy phenomena

- Jets are highly collimated outflows from compact objects.
- Very high *Lorentz factors* are possible.
- Both internal and external *shocks* are subject of current studies and simulations.
- *Dissipative* mechanisms occur in interaction with the *interstellar medium*.

Open questions remain mainly in jet launching and collimation.

Figure: *Top:* Pulsar IGR J11014-6103 (Chandra X-ray observatory). *Bottom:* M87 radio galaxy (National Radio Astranomy Observatory).

Jens F. Mahlmann

Power talk

Open forum

Deep dive CAMAP Jets Project status Force-free

References

- Implementation and testing of a numerical procedure for magnetosphere data.
- Expand solving schemes towards more complicated field topologies.

Stage I published in MNRAS (JM, P. Cerdá-Durán, M. A. Aloy, 2018)

Research stages and methods

Numerical simulations as astrophysical experiments

Stage II: Simulations

- Preparation of initial data for time evolution setups.
- Adaptation of suitable evolution schemes (employing the *Einstein Toolkit*).

Stage III: Evaluation/Feedback

Fortran code segment

call Compute Function Value(PsiGrid(1,1,k), ITmp
Linear operator coefficients >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
! Linear terms from BZ77 - Simplified in Mathematic
c1(1,1,i,j,k) = (1.0d0/SigmaBL**2.0d0)* &
(2.0d0*bhspin sq*cBL sq*(bhmass+OmegaTmp*sB
<pre>bhspin_sq*(bhmass-rBL)*OmegaTmp*sBL_sq))+ &</pre>
2.0d0*rBL*((-bhmass)*rBL+OmegaTmp*sBL sq*(2
c11(1,1,i,j,k) = ((2.0d0*bhmass-rBL)*rBL-bhspin_
bhspin sq*(bhspin sq-2.0d0*bhmass*rBL+rBL s
c2(1,1,i,j,k) = (32.0d0*(bhspin_sq+rBL_sq)*Delta
(-8.0d0*bhspin_sq*(3.0d0*bhspin_sq+4.0d0*rB
(5.0d0*bhspin**6.0d0+16.0d0*r8L**6.0d0+16.0
4.0d0*bhspin_sq*(-bhspin_sq+4.0d0*bhspin*bh
<pre>sin(4.0d0*theta(j))+bhspin**4.0d0*DeltaBL*0</pre>
(32.0d0*DeltaBL*SigmaBL**2.0d0)
<pre>c22(1,1,i,j,k) = ((2.0d0*bhmass-rBL)*rBL-bhspin_</pre>
bhspin_sq*(bhspin_sq-2.0d0*bhmass*rBL+rBL_s
! Non-linear operator coefficients >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
! Non-linear terms from BZ// - Simplified in Mat
<pre>if ((1.lt.1).or.(1.gt.m).or.(].lt.1).or.(].gt.n)</pre>
Source(1, j, k)=0.0d0
else
Source(1,j,k)= (-((sBL_sq)*(-2.0d0*bhspin*bhm
Stomald #OmenallerivativeTop \%///rR - r/i+1

- Classify initial data in terms of *stability* and the observation of *jet launching*.
- Understand the role of force-free evolution vs. ideal MHD implementations.

Jens F. Mahlmann

Power talk

Open forum

Deep dive CAMAP Jets Project status Force-free

References

Post-merger data

How to contribute to the community? Key drivers: Complexity and cost reduction

Despite *parallelized codes*, large computational power is required for simulation projects and everyday work:

- Rezzolla et al. (2011) project required ~ 200.000 *core hours*.
- CAMAP used ~ 250.000 core hours in wide-area computer centers the last 4 month (more that 5 million the last 5 years).

Relativistic jets are a post-merger phenomenon, hence, the (violent) merger simulation is not required **if** physical initial data could be used instead:

- Reduction of numerical complexity of the employed code.
- Faster access to relevant simulation episodes (in order to do theoretical astrophysics).

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Jens F. Mahlmann

Power tall

Open forum

Deep dive

CAMAP Jets Project status Force-free evolution

References

Time evolution of FF electrodynamics I Comparison of evolution schemes

[1] Full Maxwell's equations evolution

(Komissarov, 2002, 2004, 2007; Paschalidis and Shapiro, 2013)

$$\nabla_{\nu}F^{\mu\nu} = J^{\mu} \qquad \nabla_{\nu}F^{\mu\nu} = 0$$

[2] Energy flow evolution

(McKinney, 2006; Paschalidis and Shapiro, 2013; Etienne et al., 2017)

$$\nabla_{\mu}T^{\mu}_{\nu} = 0 \qquad \nabla_{\nu}{}^{*}F^{\mu\nu} = 0$$

Augmented system

(Dedner et al., 2002; Palenzuela et al., 2009; Mignone and Tzeferacos, 2010)

and Tzeferac

$$\nabla_{\nu} \left({}^{*} F^{\mu\nu} + \left(c_{\mathbf{h}}^{2} \gamma^{\mu\nu} - \mathbf{n}^{\mu} \mathbf{n}^{\nu} \right) \psi \right) = -\kappa_{\psi} k^{\mu} \psi$$
$$\nabla_{\nu} \left(F^{\mu\nu} + g^{\mu\nu} \phi \right) = J^{\mu} - \kappa_{\phi} k^{\mu} \phi$$

Augmented system

(Dedner et al., 2002; Palenzuela et al., 2009; Mignone and Tzeferacos, 2010)

$$\nabla_{\nu} \Big({}^{*}\! \mathbf{F}^{\mu\nu} + \left({}^{\mathbf{c}_{\mathbf{h}}}^{2} \gamma^{\mu\nu} - \mathbf{n}^{\mu} \mathbf{n}^{\nu} \right) \psi \Big) = -\kappa_{\psi} \mathbf{k}^{\mu} \psi$$

The div**B** = 0 and div**D** = ρ constraints are ensured by a mixed *hyperbolic/parabolic* correction with the additional scalar potentials ψ and ϕ . In its analogy to the *telegraph equation*, the factor c_h is the finite propagation speed of divergence errors, the constants κ_{ψ} and κ_{ϕ} are their damping rate. The above equations are formulated in a *conserved flux formulation*:

$$\partial_t \mathcal{C} + \partial_j \mathcal{F}^j = \mathcal{S}_n + \mathcal{S}_s$$

・ロト ・ 日下 ・ 日下 ・ 日下 ・ 今日 ト

lens F Mahlmann

Project status Force-free evolution

Time evolution of FF electrodynamics II Conserved flux formulation (dynamic spacetimes)

$\mathcal{C} \equiv \gamma \begin{pmatrix} \frac{\psi}{\alpha} \\ \frac{\phi}{\alpha} \\ B^{i} + \frac{\psi}{\alpha} \beta^{i} \\ D^{i} - \frac{\phi}{\beta} \beta^{i} \end{pmatrix} \qquad \mathcal{F}^{j} \equiv \gamma \begin{pmatrix} B^{j} - \frac{\psi}{\alpha} \beta^{i} \\ - \left(D^{j} + \frac{\phi}{\alpha} \beta^{i}\right) \\ e^{ijk}E_{k} + \alpha \left(\frac{c_{h}^{2} \gamma^{ij} - n^{i}n^{j}}{\rho}\right) \\ - \left(e^{ijk}H_{k} + \alpha g^{ij}\phi\right) \end{pmatrix}$

$$S_{n} \equiv \begin{pmatrix} -\gamma \alpha \psi \, \Gamma_{\alpha\beta}^{t} \left(c_{h}^{2} \gamma^{\alpha\beta} - n^{\alpha} n^{\beta} \right) \\ -\gamma \alpha \phi \Gamma_{\alpha\beta}^{t} g^{\alpha\beta} - \gamma \rho \\ -\psi \left[\alpha \gamma \Gamma_{\alpha\beta}^{i} \left(c_{h}^{2} \gamma^{\alpha\beta} - n^{\alpha} n^{\beta} \right) \right] \\ -\gamma \alpha \phi \Gamma_{\alpha\beta}^{i} g^{\alpha\beta} - \gamma J^{i} \end{pmatrix} \qquad S_{s} \equiv \begin{pmatrix} -\alpha \gamma \kappa_{\psi} \psi \\ -\alpha \gamma \kappa_{\phi} \phi \\ 0 \\ 0 \end{pmatrix}$$

$$\mathcal{C} \equiv = \gamma \begin{pmatrix} \frac{\psi}{\alpha} \\ B^{i} + \frac{\psi}{\alpha} \beta^{i} \\ \alpha T^{t}_{i} \end{pmatrix} \qquad \mathcal{F}^{j} \equiv \gamma \begin{pmatrix} B^{j} - \frac{\psi}{\alpha} \beta^{i} \\ e^{ijk} E_{k} + \alpha \begin{pmatrix} c_{h}^{2} \gamma^{ij} - n^{i} n^{j} \end{pmatrix} \\ \alpha T^{i}_{j} \end{pmatrix}$$

$$S_{n} \equiv \begin{pmatrix} --\gamma \alpha \psi \Gamma_{\alpha\beta}^{t} \left(c_{h}^{2} \gamma^{\alpha\beta} - n^{\alpha} n^{\beta} \right) \\ -\psi \left[\alpha \gamma \Gamma_{\alpha\beta}^{i} \left(c_{h}^{2} \gamma^{\alpha\beta} - n^{\alpha} n^{\beta} \right) \right] \\ \frac{1}{2} \alpha g_{\mu\nu,i} T^{\mu\nu} \end{pmatrix} \qquad S_{s} \equiv \begin{pmatrix} -\alpha \gamma \kappa_{\psi} \psi \\ 0 \\ 0 \end{pmatrix}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

[1] Full Maxwell's

 Requires (force-free)

2011) Fluxes derived from conserved *quantities*

[2] Energy flow evolution D is reconstructed $(\mathbf{D} \cdot \mathbf{B} = 0)$ Fluxes derived from *primitive* quantities

equations evolution

currents (cf.

Komissarov.

Jens F. Mahlmann

- Open forun
- Deep dive
- References

J. E. Adsuara, I. Cordero-Carrión, P. Cerdá-Durán, and M. A. Aloy. Scheduled Relaxation Jacobi method: Improvements and applications. *Journal of Computational Physics*, 321:369–413, Sept. 2016. doi:10.1016/j.jcp.2016.05.053.

- P. Cerdá-Durán, N. Stergioulas, and J. A. Font. Alfvén QPOs in magnetars in the anelastic approximation. MNRAS, 397(3):1607–1620, 2009. doi:10.1111/j.1365-2966.2009.15056.x.
- A. Dedner, F. Kemm, D. Kröner, C.-D. Munz, T. Schnitzer, and M. Wesenberg. Hyperbolic Divergence Cleaning for the MHD Equations. *Journal of Computational Physics*, 175:645–673, Jan. 2002. doi:10.1006/jcph.2001.6961.
- Z. B. Etienne, M.-B. Wan, M. C. Babiuc, S. T. McWilliams, and A. Choudhary. Giraffe: An open-source general relativistic force-free electrodynamics code. 2017.
- J. A. Faber, T. W. Baumgarte, Z. B. Etienne, S. L. Shapiro, and K. Taniguchi. Relativistic hydrodynamics in the presence of puncture black holes. *Phys. Rev. D*, 76(10), 2007. doi:10.1103/physrevd.76.104021.
- K. Kiuchi, K. Kyutoku, Y. Sekiguchi, M. Shibata, and T. Wada. High resolution numerical relativity simulations for the merger of binary magnetized neutron stars. *Phys. Rev. D*, 90(4), 2014. doi:10.1103/physrevd.90.041502.
- S. S. Komissarov. Time-dependent, force-free, degenerate electrodynamics. MNRAS, 336(3):759–766, 2002. doi:10.1046/j.1365-8711.2002.05313.x.
- S. S. Komissarov. Electrodynamics of black hole magnetospheres. MNRAS, 350(2):427–448, 2004. doi:10.1111/j.1365-2966.2004.07598.x.
- S. S. Komissarov. Multidimensional numerical scheme for resistive relativistic magnetohydrodynamics. MNRAS, 382:995–1004, Dec. 2007. doi:10.1111/j.1365-2966.2007.12448.x.
- S. S. Komissarov. 3+1 magnetodynamics. MNRAS, 418:L94–L98, Nov. 2011. doi:10.1111/j.1745-3933.2011.01150.x.
- Y. T. Liu, Z. B. Etienne, and S. L. Shapiro. Evolution of near-extremal-spin black holes using the moving puncture technique. *Phys. Rev. D*, 80(12), 2009. doi:10.1103/physrevd.80.121503.

References I

Jens F. Mahlmann

- Power talk
- Open forum
- Deep dive
- References

F. Löffler, J. Faber, E. Bentivegna, T. Bode, P. Diener, R. Haas, I. Hinder, B. C. Mundim, C. D. Ott, E. Schnetter, G. Allen, M. Campanelli, and P. Laguna. The Einstein Toolkit: a community computational infrastructure for relativistic astrophysics. *Classical and Quantum Gravity*, 29(11):115001, June 2012. doi:10.1088/0264-9381/29/11/115001.

- J. C. McKinney. General relativistic force-free electrodynamics: a new code and applications to black hole magnetospheres. MNRAS, 367:1797–1807, Apr. 2006. doi:10.1111/j.1365-2966.2006.10087.x.
- A. Mignone and P. Tzeferacos. A second-order unsplit Godunov scheme for cell-centered MHD: The CTU-GLM scheme. J. Comput. Phys., 229:2117–2138, 2010. doi:10.1016/j.jcp.2009.11.026.
- P. Mimica, M. A. Aloy, J. M. Rueda-Becerril, S. Tabik, and C. Aloy. Numerical simulations of dynamics and emission from relativistic astrophysical jets. *Journal of Physics Conference Series*, 454(1):012001, 2013. doi:10.1088/1742-6596/454/1/012001.
- P. Mösta, B. C. Mundim, J. A. Faber, R. Haas, S. C. Noble, T. Bode, F. Löffler, C. D. Ott, C. Reisswig, and E. Schnetter. GRHydro: a new open-source general-relativistic magnetohydrodynamics code for the Einstein toolkit. *Classical and Quantum Gravity*, 31(1):015005, Jan. 2014. doi:10.1088/0264-9381/31/1/015005.
- C. Palenzuela, L. Lehner, O. Reula, and L. Rezzolla. Beyond ideal MHD: towards a more realistic modelling of relativistic astrophysical plasmas. MNRAS, 394:1727–1740, 2009. doi:10.1111/j.1365-2966.2009.14454.x.
- V. Paschalidis and S. L. Shapiro. A new scheme for matching general relativistic ideal magnetohydrodynamics to its force-free limit. *Phys. Rev. D*, 88(10):104031, Nov. 2013. doi:10.1103/PhysRevD.88.104031.
- L. Rezzolla, B. Giacomazzo, L. Baiotti, J. Granot, C. Kouveliotou, and M. A. Aloy. The missing link: Merging neutron stars naturally produce jet-like structures and can power short gamma-ray bursts. *ApJ*, 732(1): L6, 2011. doi:10.1088/2041-8205/732/1/16.
- M. Ruiz, R. N. Lang, V. Paschalidis, and S. L. Shapiro. Binary Neutron Star Mergers: A Jet Engine for Short Gamma-Ray Bursts. ApJL, 824:L6, June 2016. doi:10.3847/2041-8205/824/1/L6.

References II