
SLOPE: Towards Accurate and Reliable Energy Predictive Modelling using Performance Events on Modern Computing Platforms

Heterogeneous Computing Laboratory UCD School of Computer Science

Arsalan Shahid (*www.arsalanshahid.info*) Supervisor: Dr Alexey Lastovetsky

Energy Consumption Measurements in HPC

HPC Platforms and Key Challenges

Energy Measurement / Estimation

Accurately measuring the dynamic energy consumption of an application during its execution is a key to application-level energy optimization techniques

Dominant Approaches

Physical measurements using external Software Models power-meters

*www.sciencemag.org/news/2018/02/racing-match-chinas-growing-computer-power-us-outlines-design-exascale-computer *science.energy.gov/ ~ /media/ascr//pdf/reports/Exascale_subcommittee_report.pdf *Project GreenLight: Optimizing Cyber-infrastructure for a Carbon-Constrained World, 2010

Additivity of PMCs

* Emerged as the pre-eminent alternative

* Accurate at system-level

- * Do not provide fine-grained componentlevel decomposition of the energy
- at finer granularity * Optimization of application for energy * Pre-dominantly use performance monbecomes difficult itoring counters (PMCs) or performance
 - events
 - * Majority of PMC-based models are linear

* Ability to provide energy decomposition

Performance Monitoring Counters (PMCs) and PMC-based linear models

A Simple Linear PMC-based Energy Model

PMC Features

- * Specific-purpose registers
- * Aid low-level performance analysis/tuning
- * Large in number
- * Can not be collected all together
- * Architecture specific

Dominant PMC groups

- * Cache misses
- * Floating point operations
- * Page faults
- * Memory Accesses
- * Branch Instructions

 $E = \sum_{j=0}^{M} \beta_j X_j + \epsilon$ where, $j = \{1, 2, ..., M\}$ are PMCs

and, ϵ is the error term

Existing issues for PMC-based Models

- * Large number to consider
- * Tremendous programming effort/time
- * Pure PMC-based model lacks portability **Existing techniques to select PMCs subset**
- * Consider all PMCs
- * Based on a statistical methodology

Accuracy of PMC-based Energy Models

• PMC-based linear energy predictive models are inaccurate -K. O'Brien et al, ACM Computing Surveys 50(3), Article No. 37, 2017 **Research Question:** What are the underlying causes of their inaccuracy? - Can we make them reliable and accurate?

Energy Additivity: An Experimental Observation

Let A and B be two applications with energy consumptions E_A and E_B respectively, and E_{AB} be their energy consumption when they are run one after the other serially, then

 $E_{AB} = E_A + E_B$

Experimental Configurations, Results and Analysis

Additivity – A Selection Criterion

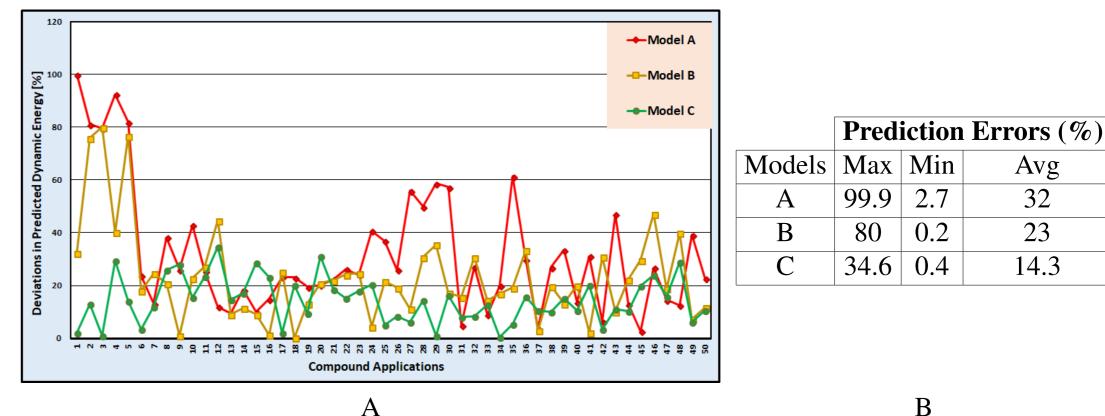
A selection criterion for Performance Events for reliable energy predictive linear modeling

Additivity Test

Step 1: A PMC must be deterministic and reproducible Step 2: If an application C with PMCs \vec{e}_C composed of serial execution of two applications A and B with PMCs \vec{e}_A and \vec{e}_B respectively, then

> $\vec{e}_C = \vec{e}_A + \vec{e}_B \quad \pm \epsilon$ Where, ϵ is user-specified tolerance

SLOPE Tools


SLOPE-PMC: Towards the automation of PMC collection for modern computing platforms AdditivityChecker: Check PMCs for Additivity

* A Shahid and M Fahad, et al. in Supercomputing Frontiers and Innovations, Volume 4, Issue 4, 2017, DOI: 10.14529/jsfi170404 * https://git.ucd.ie/hcl/SLOPE/tree/master/SLOPE-PMC * https://git.ucd.ie/hcl/SLOPE/tree/master/AdditivityChecker

Additivity Test Results

	Likwid PMCs		PAPI PMCs	
Tolerance (%)	Additive	Non-additive	Additive	Non-additive
5	108	43	36	17
20	116	35	38	15
30	119	32	43	10

Effect of tolerance on *additivity* of PMCs. These results have been obtained from experiments carried out at Intel Haswell Server. The test-suite contains applications from Intel MKL routines, NAS Parallel benchmarks and Stress. Further details can be found in [1].

(A) Non-additivity of PMCs effecting the prediction accuracy of models. Model A uses 6 well-known PMCs, Model B using highly correlated PMCs and Model C using one highly additive PMC. (B) Models' prediction errors. Model training data set = 277 points. Model testing data set = 50 points

Summary of Results and Recommendations

- * Many PMCs on modern multicore machines are not *additive* [1]
- * For a linear energy predictive model, all predictor variables must be *additive*.
- * A PMC can be *non-additive* with error as high as 3075%
- * Using *additivity* test on PMC-based models can significantly increase their prediction accuracy

On-going work and Future Research

* Study the presented linear energy predictive models in terms of *additivity* of PMCs * Study the impact of multicores on the *additivity* of PMCs * Generalize the assumptions behind existing linear energy predictive models * Explore the suitability of PMCs for non-linear energy predictive modelling

References

[1] A Shahid, M Fahad, R Reddy, and A Lastovetsky, "Additivity: A Selection Criterion for Performance Events for Reliable Energy Predictive Modeling" in Supercomputing Frontiers and Innovations, Volume 4, Issue 4, 2017, DOI: 10.14529/jsfi170404