A Distributed Shared Memory Library with Global-View Tasks on High-Performance Interconnects
Wataru Endo, Kenjiro Taura (Graduate School of Information Science and Technology, The University of Tokyo)

Introduction

Task-dependency graph

e Goal of our research:

e Improve the productivity & performance of
applications on distributed-memory machines

e Our central idea:
shared memory + task parallelism
e Two general programming models applicable to
arbitrary parallel computation patterns
e Intuitive global-view programming s ——

e Distributed Shared Memory (DSM)

o Physically distributed, virtually shared
e The system automatically synchronizes the caches between cores

0000 O000| (0000
Ry H ¢+ ¢ 2 g 4 4+ 4|
Wy | | NOEENE | e

I

Coherence
Protocol

LA A

+

Interconnect

e History of DSM
e 1990s: Early DSM systems appeared
e e.g. TreadMarks [Keleher et al. ’94], JIAJIA [Hu et al. 98]
e 2000s-: PGAS systems replaced them

e e¢.g. UPC [El-Ghazawi et al. ’02], Global Arrays [Nieplocha et al. *06],
OpenSHMEM [Chapman et al. *10]

e Scalable & global-view programming models

e Explicit communications are still burdensome

e Why DSM again?
© Improvement of network speed [Ramesh *13]

e Inter-node latency / DRAM latency = 1000 (1990s), 10 times (2010s)
e Inter-node bandwidth / DRAM bandwidth =~ 500 (1990s), 2.5 times (2010s)

® Relationship with many-core architectures

e Shared memory is considered as a bottleneck of scalability
e Techniques for software DSMs are revisited

Cache invalidation methods

e Directory-based coherence

e The state-of-the-art method to implement large-scale shared memory
e Tracking sharers in centralized directories

init. x = xo, dir,={}

—> Time
p R(x)xg mnv(x) acq(L) R(x)x; -
0 >
shared \/ A dir, = {} f \/ .
cache dir, = {P} dir, = {Po}
Fi W(x)x; | rel(L) i

e Problems of directories:

© O(P) storage cost to hold sharers (P: # of nodes)
® Communication traflic of small invalidation messages
® Complex state management leads to system bugs

e Logical-timestamp-based coherence [Yu et al. "15]

e Invalidate cache blocks based on logical timestamps (= Lamport clocks)

init. x: (data,wts,rts)=(xp,0,0)

—> Time X’s rts < max_ts

R(x)xg acq(L) ini(x) R(x)x;

Py g
shared \/ X:(x,1111) fmax_ts:ll \/

x:(x,11,21)

cache “y.(y,.0,10) /\ / i
P1 >

W(x)x; rel(L)

/

e Pros of logical-timestamp-based coherence
e Only O(log P) storage 1s required
e No explicit invalidation message 1s needed

e Cons of logical-timestamp-based coherence

o Unnecessary cache invalidations (= cache misses) due to the nature of
logical timestamps

_ _
0000 {OODU} 000 }
¢ IR

o Write notice (WN) (in TreadMarks [Keleher et al. 94])

e Transfer a set of IDs of written cache blocks on each synchronization

nit. x = xp
— Time
R(x)xg acq(L) inv(x) R(x)x;

Py >
WNs=
shared \/ X=X f S=1x) \/ R
cache ,_, . /\ / X=X/
Py

W(x)x; rel(L)

Y

e Pros of write notices

e # of invalidation messages 1s reduced
e Unnecessary cache misses don’t increase

e Cons of write notices

o # of write notices infinitely grow during execution;
TreadMarks used a complex global garbage collection mechanism

Implementation of our DSM library

e Numerous design options for DSM systems
e The 1deas borrowed from ArgoDSM [Kaxiras et al. *13]:

e Relaxed consistency model (assuming data-race-free programs)
e RDMA-based implementation

e Page-based DSM (vs. compiler-based)

e Multiple-writer home-based eager protocol

Additionally, we developed 3 techniques:

© Hybrid cache invalidation method of both
logical-timestamp-based coherence and write notices

e Enables to balance storage costs and # of cache misses

—> Time
acq(L)
Py f s
x’S Wts y’s WN || z’s WN
Timestam -base?i | S\
P Write notices (n=2)

P Wom W wo) we el il

® Migrating home-based protocol

e “Always” migrates the home to the latest writer
e Reduces the write latency when the same process writes again
e The latest home 1s searched via “probable owners” [Li et al. ’89]

® Call stack management over the DSM

o Simplifies global-view task migration (not evaluated in this poster)
o Allows accessing the automatic variables of other threads;
shared-memory programs can transparently work

Evaluation of NAS Parallel Benchmark on DSM

Intel® Xeon® E5-2695 v4
2.1 GHz (max. 3.3 GHz with Turbo boost)

o Implemented a DSM library v

& an OpenMP Wrapper on 18 cores X 2 sockets / node
Memory 256GB / node
MPI Interconnect | Mellanox® Connect-IB® dual port
. . InfiniBand EDR 4x
¢ CurrentlY’ OIlly static SChedU.hng OS Red Hat® Enterprise Linux® 7.2

& non-neSted IOOPS are Supported Compiler GCC 4.8.5 (with the option “-03”)

. . MPI MVAPICH 2.2
e Some features including
reductions are not supported

e Speed-ups of NAS Parallel Benchmark

e Strictly speaking, we used an unoflicial OpenMP C version [1]
o Parallel reductions are replaced with serial loops

90 \ \ \ \ \ — 20r : : : : ‘ ‘ . 14

- ' — sequential 1
8o} f ; 9 12} .

— sequential
$-4 our DSM
-1 GccC openMP ||

¢-4 our DSM

70t ;
15¢ - -1 GCC OpenMP [] 10!

60
T 50}

@ 40}

up

— sequential | %

p $-4 our DSM 7 § 10+

& 50! /f""/ -1 GccC openmpP 7 h=3 |
20! /l | 5L ////
10| / r

4 #/
% 50 100 150 200 250 300 % 20 40 60 80 100 120 140 0020 40 60 80 100 120 140

Total number of cores Total number of cores Total number of cores

(a) NAS EP (CLASS=C) (b) NAS CG (CLASS=C) (C) NAS BT (CLASS=A)

ed

Speed-up
N B O @

| k-

e Only NAS EP (Embarrassingly-Parallel) on our DSM

becomes faster than in default OpenMP implementation

e Ongoing efforts for performance improvements
e ¢.g. multi-threading communication performance, prefetching

Communication library for DSM

e We also implemented a communication library designed

mainly for DSM (or PGAS) systems

e Such systems tend to require fine-grained communications

e Current CPU & interconnect architectures require multi-threaded
communications to achieve the maximum performance

e Traditional communication libraries are optimized for coarse-grained &

single-threaded communications

We assumed InfiniBand as the underlying interconnect:

e Queue Pair (QP)

e A hardware queue to which new
requests are posted

e Completion Queue (CQ)

e A hardware queue that notifies

the completion of communication

Software ofloading

e We focused on software ofloading
[Vaidyanathan et al. *15]

e Use dedicated threads for communication
e Delegate the communication processing via
lockless queues

e Pros of software offloading:

@ Improves message rates

® Reduces message injection overheads
e Cons of software offloading:

@ Latency 1s increased
@® CPU resources are consumed 1n vain

o Example: PAMI [Kumar et al. *13]

Application threads

@EE
N

Lockless queue

dequeue ¢
Dedicated
thread
post ¢

(Interconnect hardware)

o Can start & stop the offloading threads using a special feature of

POWERS processor

e We provided a method to dynamically start & stop the

offloading threads

e Using a user-level thread library (= a task-parallel library)

Implemention of our offloading method

e 3 types of components (threads):
e Requesters are the application

threads inserting communication l—@ (PO

requests to the command queue

Requester @ <.etification via callback
1. enqueue ¢ tail
P

Command queue i

Executor ead fog queue SPSC) 1 Completer
o Executors monitor the command ‘—@h@ p
queue and post the communication \ Cobock 1ahe / I
requests to the hardware R R e
o Completers poll the completion of (Native Interconnect APl)
communication

e Problem: How to guarantee that the communication threads
are NOT sleeping when there are ongoing requests?

e There may be a race condition 1f

@ The queue’s producer considers the consumer is awake
@ The queue’s consumer starts sleeping

e Solution: Atomic operations + user-level threads
o Embed a bit whether the consumer 1s sleeping or not in the queue’s
counter, and 1f sleeping, awake the consumer using user-level threads
o Faster than the kernel threading primitives (e.g. condition variables)

Evaluation of our communication library

e Microbenchmark on these

) CPU
metrics: Memory
e Latency, overhead & message rate Interconnect
e Runs 2 processes (1 process/node) and | ...,
one of them has benchmark threads S
repeating RDMA READ Compiler

Intel® Xeon® E5-2680 v2

2.80GHz, 2 socketsx 10 cores/node
16GB/node

Mellanox® Connect-IB® dual port
InfiniBand FDR 2-port (only 1 port is used)
Mellanox® OFED 2.4-1.0.4

Red Hat® Enterprise Linux® Server
release 6.5 (Santiago)

GCC 4.4.7 (with the option “-O3”)

e Used MassiveThreads 0.97 for user-level threading

o Change to use parent-first scheduling (child-first i1s the default)
e Run only 10 worker threads/node to avoild NUMA effects

e Compare 3 different methods:
e Direct injection
e The post function is directly called in application threads

e The polling thread (= completer) is executed in a different thread
e Shared resources are guarded by spinlocks

o Static offloading

e There 1s an executor thread that is spinning on a commmand queue
e Typical software offloading approaches

e Dynamic ofloading
e An executor thread i1s dynamically spawned from application threads

Microbenchmark results of our communication
library

e Latency with 1 QP & CQ

e Reference: 2.01 usec in perftest benchmark
e Offloading generally increases the latency

20 20 20

11 E S S S s s [s MR o o e e L B s s B st £ B e o e] S s S o B e o o B S S B e o £ B s S S S S 1
I i I Ly | I

o [B | [
[L N [
| j iy I N 1 j lA’
15+ e] 1 15} i] 15} L

) I) O

[4o
0
2 .
> 10+ Ala *
9 .
c i i
2

read

reads ||

reads | 5F
reads

I 2t
14
8t threads
113 2 i , s 11 12

0 0

an ™
° *
\'.\¢\ *
K
<f~_\ o
\%w

1t
t

e

®

®

®

®

L3

o

\

\\:\\
5555
oo aa

5555
o oo
]

»

)

]

i

% 10 “
L

k) *
| to) #
N

AN
1O P
@

>0 3 3 T

-t 2 threads
-+ 4 threads
8

i

12 threads 12 threads
* % 16 threads |! * —+* 16 threads

0
0 1 10° 0
Message Size [bytes] Message Size [bytes] Message Size [bytes]

Direct injection Static offloading Dynamic offloading

e Overhead with 1 QP & CQ

e Direct injection increases the overhead with > 8 threads
e Due to spinlock contentions

e Both static offloading & dynamic offloading can lower the overhead
e Lockless queues reduce contentions

>3 5 5|
=333
® O O

S35
=30

1)

o, ot oot
~t3J 33>
553 5 5
55 O 0O o0
e

ottt
~ 3 3 3 3
33 3 3H
™ ® O

55
I 30

/[Z*

A +
(R Spe—
04 i

o9 Y 9 Q
Q0 O 0 Q9 o
[T

[0]
Q
Q Q
[T

[
@
099 9 O
0 O 9 Q9 Q
oo n

> o

o

Q

Q O

[T
1

FO
1O e
o 9 90 9 9
L O QO Q9 Qo
)

nI
*
»I
%
[0}
[
Q o wn
n n

/
L
T

= = =
B o [e:] o N S
I A R S R R R

Overhead [usec]

I + +;+ +1:'1—‘2';L * R 1 - [1 =
ol : ‘ o3t e ol D ‘ ! ¢ 1 0 e oyl
10° 10! 102 10° 10* 10° 10° 107 10° 10! 102 103 10* 10° 10° 10’ 10° 10! 10? 103 10* 10° 10° 10’
Message Size [bytes] Message Size [bytes] Message Size [bytes]

Direct injection Static offloading Dynamic offloading

o Message rates with multiple QPs & CQs
e The aggregated message rate increased to about 20 million/sec
e With more QPs & CQsup to 6
e Highly degraded with a few QPs & requester threads

e The difference of 2 methods is how to wake up the consumer thread
e Workers are out of resources in “Fork™
e Additional synchronizations in “Condition variables”

25, . T T T T T T S ————mmmm

i
L

0o WwWNHR
o000 0L0
T T VDU TDO
n un nu n u

*
PSS S
,/

4 9000
0 o9 ;
e
o
1 ﬁ"* S s it SR S S
(] -

.
,v je)} I
‘ & L4
fom D N | 4 | *f*H—‘H—“\c\,H—Ap—Hv—H.—o—A
3 }] = o0]
* L L L L L

|

6 8 10 1
Number of Requester Threads

Fork (parent-first)

04 b HH
o HH

o

y .%
4 b HH
O HH

0o WwNR
jofoNoN ool o]
U U U U U O
[T T S

L

[10% msgs/sec]

i)

o |
‘ra‘ I
< 10+
o |
(o))
2 1
w0 o—4
o |
= 5

I

|

i
1
!
I
T
.
*

oL i+
0 2

Condition variables

Conclusions

e Runtime systems for global-view programming models
o A Distributed Shared Memory (DSM) library

e Transparent execution of shared-memory programs
e A communication library for implementing the DSM

e Software offloading for efficient fine-grained communications on multi-core
architectures

e Future work

o Analyze the bottlenecks of the DSM
e Reduce the latency of software offloading

References

[1] http://benchmark-subsetting.github.10/cNPB/

http://benchmark-subsetting.github.io/cNPB/

