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Introduction

•Goal of our research:
• Improve the productivity & performance of

applications on distributed-memory machines

•Our central idea:
shared memory + task parallelism
• Two general programming models applicable to

arbitrary parallel computation patterns
• Intuitive global-view programming
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•Distributed Shared Memory (DSM)
• Physically distributed, virtually shared
• The system automatically synchronizes the caches between cores
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•History of DSM
• 1990s: Early DSM systems appeared
• e.g. TreadMarks [Keleher et al. ’94], JIAJIA [Hu et al. ’98]

• 2000s-: PGAS systems replaced them
• e.g. UPC [El-Ghazawi et al. ’02], Global Arrays [Nieplocha et al. ’06],

OpenSHMEM [Chapman et al. ’10]
• Scalable & global-view programming models
• Explicit communications are still burdensome

•Why DSM again?
1 Improvement of network speed [Ramesh ’13]
• Inter-node latency / DRAM latency ≈ 1000 (1990s), 10 times (2010s)
• Inter-node bandwidth / DRAM bandwidth ≈ 500 (1990s), 2.5 times (2010s)

2 Relationship with many-core architectures
• Shared memory is considered as a bottleneck of scalability
• Techniques for software DSMs are revisited

Cache invalidation methods

•Directory-based coherence
• The state-of-the-art method to implement large-scale shared memory
• Tracking sharers in centralized directories
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• Problems of directories:
1 O(P) storage cost to hold sharers (P: # of nodes)
2 Communication traffic of small invalidation messages
3 Complex state management leads to system bugs

•Logical-timestamp-based coherence [Yu et al. ’15]
• Invalidate cache blocks based on logical timestamps (= Lamport clocks)
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• Pros of logical-timestamp-based coherence
• Only O(log P) storage is required
• No explicit invalidation message is needed

•Cons of logical-timestamp-based coherence
• Unnecessary cache invalidations (= cache misses) due to the nature of

logical timestamps

•Write notice (WN) (in TreadMarks [Keleher et al. ’94])
• Transfer a set of IDs of written cache blocks on each synchronization
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• Pros of write notices
• # of invalidation messages is reduced
• Unnecessary cache misses don’t increase

•Cons of write notices
• # of write notices infinitely grow during execution;

TreadMarks used a complex global garbage collection mechanism

Implementation of our DSM library

•Numerous design options for DSM systems
• The ideas borrowed from ArgoDSM [Kaxiras et al. ’15]:
• Relaxed consistency model (assuming data-race-free programs)
• RDMA-based implementation
• Page-based DSM (vs. compiler-based)
•Multiple-writer home-based eager protocol

Additionally, we developed 3 techniques:
1 Hybrid cache invalidation method of both

logical-timestamp-based coherence and write notices
• Enables to balance storage costs and # of cache misses

P0

P1 W(z) rel(L)

acq(L)
Time

W(y)W(x)W(w)

x’s wts y’s WN z’s WN

Timestamp-basedTimestamp-based Write notices (n=2)

2 Migrating home-based protocol
• “Always” migrates the home to the latest writer
• Reduces the write latency when the same process writes again
• The latest home is searched via “probable owners” [Li et al. ’89]

3 Call stack management over the DSM
• Simplifies global-view task migration (not evaluated in this poster)
• Allows accessing the automatic variables of other threads;

shared-memory programs can transparently work

Evaluation of NAS Parallel Benchmark on DSM

• Implemented a DSM library
& an OpenMP wrapper on
MPI
• Currently, only static scheduling

& non-nested loops are supported
• Some features including

reductions are not supported

CPU Intel® Xeon® E5-2695 v4
2.1 GHz (max. 3.3 GHz with Turbo boost)
18 cores × 2 sockets / node

Memory 256GB / node
Interconnect Mellanox® Connect-IB® dual port

InfiniBand EDR 4x
OS Red Hat® Enterprise Linux® 7.2
Compiler GCC 4.8.5 (with the option “-O3”)
MPI MVAPICH 2.2

• Speed-ups of NAS Parallel Benchmark
• Strictly speaking, we used an unofficial OpenMP C version [1]
• Parallel reductions are replaced with serial loops
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(a) NAS EP (CLASS=C)

0 20 40 60 80 100 120 140
Total number of cores

0

5

10

15

20

S
p
e
e
d
-u

p

sequential

our DSM

GCC OpenMP

(b) NAS CG (CLASS=C)
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(c) NAS BT (CLASS=A)

•Only NAS EP (Embarrassingly-Parallel) on our DSM
becomes faster than in default OpenMP implementation
•Ongoing efforts for performance improvements
• e.g. multi-threading communication performance, prefetching

Communication library for DSM

•We also implemented a communication library designed
mainly for DSM (or PGAS) systems
• Such systems tend to require fine-grained communications
• Current CPU & interconnect architectures require multi-threaded

communications to achieve the maximum performance
• Traditional communication libraries are optimized for coarse-grained &

single-threaded communications

We assumed InfiniBand as the underlying interconnect:

•Queue Pair (QP)
• A hardware queue to which new

requests are posted
•Completion Queue (CQ)
• A hardware queue that notifies

the completion of communication
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Software offloading

•We focused on software offloading
[Vaidyanathan et al. ’15]
• Use dedicated threads for communication
• Delegate the communication processing via

lockless queues
• Pros of software offloading:

1 Improves message rates
2 Reduces message injection overheads
•Cons of software offloading:

1 Latency is increased
2 CPU resources are consumed in vain
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• Example: PAMI [Kumar et al. ’13]
• Can start & stop the offloading threads using a special feature of

POWER8 processor
•We provided a method to dynamically start & stop the

offloading threads
• Using a user-level thread library (≈ a task-parallel library)

Implemention of our offloading method

• 3 types of components (threads):
• Requesters are the application

threads inserting communication
requests to the command queue
• Executors monitor the command

queue and post the communication
requests to the hardware
• Completers poll the completion of

communication
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• Problem: How to guarantee that the communication threads
are NOT sleeping when there are ongoing requests?
• There may be a race condition if

1 The queue’s producer considers the consumer is awake
2 The queue’s consumer starts sleeping

• Solution: Atomic operations + user-level threads
• Embed a bit whether the consumer is sleeping or not in the queue’s

counter, and if sleeping, awake the consumer using user-level threads
• Faster than the kernel threading primitives (e.g. condition variables)

Evaluation of our communication library

•Microbenchmark on these
metrics:
• Latency, overhead & message rate
• Runs 2 processes (1 process/node) and

one of them has benchmark threads
repeating RDMA READ

CPU Intel® Xeon® E5-2680 v2
2.80GHz, 2 sockets× 10 cores/node

Memory 16GB/node
Interconnect Mellanox® Connect-IB® dual port

InfiniBand FDR 2-port (only 1 port is used)
Driver Mellanox® OFED 2.4-1.0.4
OS Red Hat® Enterprise Linux® Server

release 6.5 (Santiago)
Compiler GCC 4.4.7 (with the option “-O3”)

•Used MassiveThreads 0.97 for user-level threading
• Change to use parent-first scheduling (child-first is the default)
• Run only 10 worker threads/node to avoid NUMA effects

•Compare 3 different methods:
• Direct injection
• The post function is directly called in application threads
• The polling thread (= completer) is executed in a different thread
• Shared resources are guarded by spinlocks

• Static offloading
• There is an executor thread that is spinning on a commmand queue
• Typical software offloading approaches

• Dynamic offloading
• An executor thread is dynamically spawned from application threads

Microbenchmark results of our communication
library

•Latency with 1 QP & CQ
• Reference: 2.01 µsec in perftest benchmark
• Offloading generally increases the latency
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Dynamic offloading

•Overhead with 1 QP & CQ
• Direct injection increases the overhead with ≥ 8 threads
• Due to spinlock contentions

• Both static offloading & dynamic offloading can lower the overhead
• Lockless queues reduce contentions
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Dynamic offloading

•Message rates with multiple QPs & CQs
• The aggregated message rate increased to about 20 million/sec
•With more QPs & CQs up to 6

• Highly degraded with a few QPs & requester threads
• The difference of 2 methods is how to wake up the consumer thread
•Workers are out of resources in “Fork”
• Additional synchronizations in “Condition variables”
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Conclusions

•Runtime systems for global-view programming models
• A Distributed Shared Memory (DSM) library
• Transparent execution of shared-memory programs

• A communication library for implementing the DSM
• Software offloading for efficient fine-grained communications on multi-core

architectures

• Future work
• Analyze the bottlenecks of the DSM
• Reduce the latency of software offloading
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