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Introduction

• Introduction

➢ Group decision-making has been studied extensively since 

the shaping of democratic society

➢ Many people devoted their efforts to develop a fair and 

consistent system that aggregates the opinion of each 

individual to make better social decisions

➢ Example of group decision-making

: University rankings, Proposal funding decisions, Online 

product review

• Given a set of m rankings                         , the median ranking

is the optimal solution to the following problems:

➢ The distance-based ranking aggregation problem 

o Objective is to minimize the cumulative distance or disagreement

➢ The correlation coefficient-based ranking aggregation problem

o Objective is to maximize the cumulative correlation or agreement

Two frameworks of the consensus ranking problem Computational difficulties

• Obtaining even just one consensus or median ranking via 

correlation-based methods (or the equivalent axiomatic distance-

based methods) is an NP-hard problem. (Bartholdi et al. 1989)

Approach 1 – Integer programming formulation (IP) Approach 1 – Computational experiments

• ↑ (|𝑉|) ⇒ ↑ (Computational time improvement)

• For all ranges of the number of objects, the computational time 

improves by 70%

Consensus ranking

• Limitation of ratings

➢ The rating scales of two individuals are, in general, not 

comparable

• Consensus ranking problem (i.e. ranking aggregation)

➢ The consensus ranking problem is at the center of many 

group decision-making processes

➢ It entails finding an ordinal vector or ranking of a set of 

competing objects that minimizes disagreement with a profile 

of preferences (represented as ranking vectors)

Approach 2 – Condorcet criterion

• Condorcet criterion (Condorcet 1785)

• Extended Condorcet criterion (Truchon 1998)

• Generalized Condorcet criterion

➢ Definition: If a decisive majority ranks every objects 𝑣𝑖 ∈ 𝑉
ahead of every objects 𝑣𝑗 ∈ 𝑉′ (i.e. a less people believes 𝑣𝑗 ∈

𝑉′ ahead of 𝑣𝑖 ∈ 𝑉), then every objects 𝑣𝑖 ∈ 𝑉 must be ahead 

of 𝑣𝑗 ∈ 𝑉′ in the consensus ranking

Approach 2 – HPC techniques applicability 

Approach 2 – Computational experiments

• ↑ (|𝑉|) ⇒ ↑ (Computational time)

• ↑ (𝜙) ⇒ ↑ (Computational time)

• Even for 𝜙 <0.5, the difference in computational 

times increases

Conclusions and future work

• Summary

➢ We derived a property that aligns better with Kemeny-Snell 

distance

➢ We introduced an IP formulation to expedite solution process

• Future work

➢ More computational experiments will be conducted on various 

types of preference data and ranking models

➢ We can apply distributed computing to obtain optimal rankings 

separately and then combine sub-problem solutions
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• Each independent object set can be solved by using 

HPC techniques

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

10 0.003 0.003 0.004 0.003 0.003 0.003 0.003 0.004 0.004

20 0.030 0.029 0.030 0.030 0.028 0.027 0.041 0.066 0.086

30 0.112 0.114 0.115 0.125 0.123 0.137 0.237 0.357 24.121

40 0.212 0.214 0.212 0.224 0.211 0.453 0.714 2.283 784.355

50 0.491 0.485 0.484 0.493 0.513 0.770 1.397 10.240 351.555

60 0.899 1.010 0.915 0.971 1.061 1.225 3.545 62.429 2979.755

70 1.413 1.418 1.446 1.419 1.530 2.113 17.307 175.678 6508.484

80 2.617 2.465 2.527 2.315 2.286 6.246 69.752 1246.854 7199.981

90 3.970 3.598 3.624 3.735 4.564 16.864 65.423 896.681 7199.973

100 5.088 5.055 5.082 5.126 8.022 28.183 837.353 1875.160 7199.965

200 62.384 62.384 62.611 62.576 85.368 1741.126 7199.961 7199.961 7199.935

300 291.330 291.804 291.504 290.909 651.276 7199.886 7199.890 7199.891 7199.685

Unit: sec

AVG net computational time improvement
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

2 10 3.11 3.62 3.79 3.41 3.14 2.87 3.20 4.04 3.19

2 20 11.50 10.73 10.15 11.83 10.04 9.89 14.85 24.15 28.07

2 30 27.87 27.00 29.31 29.69 29.60 32.75 53.67 84.20 1884.34

2 40 38.23 39.05 38.46 41.04 38.07 80.79 126.88 361.94 50734.62

2 50 65.06 72.04 72.65 79.90 79.03 123.36 222.38 1653.26 45071.43

2 60 104.06 113.81 105.98 112.73 121.06 138.49 401.00 7209.70 139751.08

2 70 168.18 159.28 157.57 139.82 170.81 244.28 1936.46 19208.84 469169.28

2 80 228.47 211.96 222.63 211.47 203.76 585.85 6538.07 112919.05 432937.72

2 90 265.23 228.89 255.37 291.58 427.69 1509.25 6180.38 85445.58 296263.26

2 100 295.89 407.12 412.22 403.69 657.20 2413.04 85180.78 161875.84 259982.80

2 200 1162.35 1162.35 1172.96 1178.59 1821.24 42891.95 183841.20 183298.09 120995.41

2 300 2151.66 2257.02 2337.72 2388.17 5534.73 63335.16 65255.11 66417.23 49515.09

* (Computational time w/o subset partitioning / w/ subset partitioning)

AVG computational time speedups


