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In this session. . .

Performance and Python

Profiling tools for Python

Fast arrays for Python: Numpy

Numexpr, Theano, Numba

Threading

Multiprocessing

Mpi4py
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Getting Started
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Packages and code

Requirements for this session
If following along on your own laptop, you need the following packages:

numpy
scipy
numexpr
matplotlib

psutil
line_profiler
memory_profiler
theano

mpi4py
cython
numba

Get the code and setup files on Bridges
Code and installation can be copied from my home on Bridges. It can be
found in the directory /home/rzon/hpcpy.
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Setting up for today’s class (Bridges)
To get set up for today’s session, perform the following steps.

1 Login to Bridges:

$ ssh -Y -p 2222 USERNAME@bridges.psc.edu

2 Install code and software on your own directory (needed only once)

$ cp -r /home/rzon/hpcpy $HOME/
$ cd $HOME/hpcpy
$ source setup

3 Request an interactive session (needed again if you log off)

$ interact -p RM -R ihsswe -n 14 -t 3:00:00
$ source $HOME/hpcpy/activate
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Introduction
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Performance and Python

Python is a high-level, interpreted language.

Those defining features are often at odds with “high performance”.

But development in Python can be substantially easier (and thus faster)
than when using compiled languages.

In this session, we will explore when using Python still makes sense and
how to get the most performance out of it, without loosing the
flexibility and ease of development.
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Why isn’t Python “High Performance”?

It’s a Interpreted language:
Translation to machine code happens line-by-line as the script is read.

Repeated lines are no faster.

Cross-line optimizations are not possible.

Dynamic language:
Types are part of the data: extra overhead

Memory management is automatic. Behind the scene that means
reference counting and garbage collection.

All of this interfers with optimal streaming of data to processor, which
hampers maximum performance.
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Example: 2D diffusion equation

Suppose we are interested in the time evolution of the two-dimension
diffusion equation:

∂p(x, y, t)
∂t

= D

(
∂2p(x, y, t)

∂x2 +
∂2p(x, y, t)

∂y2

)
︸ ︷︷ ︸

Laplacian

,

p: density

x, y: spatial coordinates

t: time

D: diffusion constant

Square domain [x1, x2]⊗ [x1, x2],

with p(x, y, t) = 0 at all times for
all points on the domain boundary,

with some given initial condition
p(x, y, t) = p0(x, y).
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Example: 2D diffusion, result

x1 = −10, x2 = 10, D = 1, four-peak initial condition.

t=0 t=2 t=4

t=9 t=12 t=20
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Example: 2D diffusion, algorithm

Discretize space in both
directions (points dx apart)

Replace derivatives with finite
differences.

Explicit finite time stepping
scheme (time step set by dx)

Discretized Laplacian at grid
point (i, j) equals

p(i + 1, j) + p(i− 1, j) + p(i, j − 1) + p(i, j + 1)− 4p(i, j)
dx2
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Example: 2D diffusion, parameters

The fortran, C++, and Python codes all read the same parameter file file
(using some tricks).

diff2dparams.py
D = 1.0;
x1 = -10.0;
x2 = 10.0;
runtime = 15.0;
dx = 0.1;
outtime = 0.5;
graphics = False;
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Example: 2D diffusion, performance
The files diff2d.cpp, diff2.f90 and diff2d.py contain the same
algorithm, in C++, Fortran, and Python, respectively.

$ time make diff2d_cpp.ex diff2d_f90.ex
g++ -c -std=c++11 -I. -O3 -o diff2d_cpp.o diff2d.cpp
gfortran -c -o pgplot.o pgplot.f90
...
Elapsed: 4.15 seconds

$ time ./diff2d_cpp.ex > output_c.txt
Elapsed: 0.40 seconds
$ time ./diff2d_f90.ex > output_f.txt
Elapsed: 0.37 seconds
$ time python diff2d.py > output_p.txt
Elapsed: 173.89 seconds

This doesn’t look too promising for Python for HPC. . .
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Then why do we bother with Python?
Fast development

Python lends itself easily to writing clear, concise code.

Python is very flexible: large set of very useful packages.

Easy of use→ shorter development time

Performance hit depends on application
Python’s performance hit is most prominent on ‘tightly coupled’
calculation on fundamental data types that are known to the cpu
(integers, doubles), which is exactly the case for the 2d diffusion.

It does much less worse on file I/O, text comparisons, etc.

Hooks to compiled libraries to remove worst performance pitfalls.

Only once the performance isn’t too bad, can we start thinking of
parallelization, i.e., using more cpu cores to work on the same problem.
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Performance Tuning Tools for
Python
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Computational performance

Performance is about maximizing the utility of a resource.

This could be cpu processing power, memory, network, file I/O, etc.

Let’s focus on computational performance first, as measured by the
time the computation requires, in two ways:

Time profiling by function
To consider the computational performance of functions, but not of
individual lines in your code, there is the package called cProfile.

Time profiling by line
To find performance bottlenecks by line of code, there is package called
line_profiler
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cProfile
Use cProfile or profile to know in which functions your script
spends its time.

You usually do this on a smaller but representative case.

The code should be reasonably modular, i.e., with separate functions
for different tasks, for cProfile to be useful.

Example
$ python -m cProfile -s cumulative diff2d.py
...

2492205 function calls in 521.392 seconds

Ordered by: cumulative time

ncalls tottime percall cumtime percall filename:lineno(function)
1 0.028 0.028 521.392 521.392 diff2d.py:11(<module>)
1 515.923 515.923 521.364 521.364 diff2d.py:14(main)

2411800 5.429 0.000 5.429 0.000 {range}
80400 0.012 0.000 0.012 0.000 {abs}

1 0.000 0.000 0.000 0.000 diff2dplot.py:5(<module>)
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line_profiler

Use line_profiler to know, line-by-line, where your script spends its
time.

You usually do this on a smaller but representative case.

First thing to do is to have your code in a function.

You also need to modify your script slightly:
I Decorate your function with @profile
I Run your script on the command line with

$ kernprof -l -v SCRIPTNAME
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line_profiler script instrumentation

Script before:

x=[1.0]*(2048*2048)
a=str(x[0])
a+="\nis a one\n"
del x
print(a)

Script after:

#file: profileme.py
@profile
def profilewrapper():

x=[1.0]*(2048*2048)
a=str(x[0])
a+="\nis a one\n"
del x
print(a)

profilewrapper()
Run at the command line:

$ kernprof -l -v profileme.py
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Output of line_profiler

$ kernprof -l -v profileme.py
1.0
is a one
Wrote profile results to profileme.py.lprof
Timer unit: 1e-06 s
Total time: 0.032287 s
File: profileme.py
Function: profilewrapper at line 2
Line # Hits Time Per Hit % Time Line Contents
==============================================================

2 @profile
3 def profilewrapper():
4 1 21144.0 21144.0 65.5 x=[1.0]*(2048*2048)
5 1 28.0 28.0 0.1 a=str(x[0])
6 1 4.0 4.0 0.0 a+="\nis a one\n"
7 1 11081.0 11081.0 34.3 del x
8 1 30.0 30.0 0.1 print(a)
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Memory performance
Why worry about this?

Once your script runs out of memory, one of a number of things may
happen:

Computer may start using the harddrive as memory: very slow

Your application crashes

Your (compute) node crashes

How could you run out of memory?

You’re not quite sure how much memory you program takes.

Python objects may take more memory that expected.

Some functions may temporarily use extra memory.

Python relies on a garbage collector to clean up unused variables.
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Garbage collector
Python uses garbage collector to clean up un-needed variables

You can force the garbage collection to run at any time by running:

>>> import gc
>>> collect = gc.collect()

Running gc by hand should only be done in specific circumstances.

You can also remove objects with del (if object larger than 32MB):

>>> x = [0,0,0,0]
>>> del x
>>> print(x)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
NameError: name 'x' is not defined

How would you know that memory usage
is problematic?
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memory_profiler

This module monitors the python memory usage and its changes
throughout the run.

Good for catching memory leaks and unexpectedly large memory usage.

Needs same instrumentation as line profiler.

Requires the psutil module
(at least on windows, but helps on linux/mac too).
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memory_profiler, details
Your decorated script is usable by memory profiler.
You run your script through the profiler with the command

$ python -m memory_profiler profileme.py

$ python -m memory_profiler profileme.py
1.0
is a one
Filename: profileme.py
Line # Mem usage Increment Line Contents
================================================

2 33.188 MiB 33.188 MiB @profile
3 def profilewrapper():
4 65.086 MiB 31.898 MiB x=[1.0]*(2048*2048)
5 65.086 MiB 0.000 MiB a=str(x[0])
6 65.086 MiB 0.000 MiB a+="\nis a one\n"
7 33.223 MiB -31.863 MiB del x
8 33.223 MiB 0.000 MiB print(a)
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Hands-on

Profile the diff2d.py code
Reduce the resolution and runtime in diff2dparams.py, i.e., increase dx
to 0.5, and decrease runtime to 2.0.

In the same file, ensure that graphics=False.

Add @profile to the main function

Run this through both the line and memory profilers.
I What line(s) cause the most memory usage?
I What line(s) cause the most cpu usage?
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Numpy: Faster Arrays for Python
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Lists aren’t the ideal data type

Lists can do funny things that you
don’t expect, if you’re not careful.

Lists are just a collection of
items, of any type.

If you do mathematical
operations on a list, you won’t
get what you expect.

These are not the ideal data
type for scientific computing.

Arrays are a much better choice,
but are not a native Python
data type.

>>> a = [1,2,3,4]
>>> a
[1, 2, 3, 4]
>>> b = [3,5,5,6]
>>> b
[3, 5, 5, 6]
>>> 2*a
[1, 2, 3, 4, 1, 2, 3, 4]
>>> a+b
[1, 2, 3, 4, 3, 5, 5, 6]
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Useful arrays: NumPy

Almost everything that you
want to do starts with NumPy.

Contains arrays of various types
and forms: zeros, ones, linspace,
etc.

>>> from numpy import zeros, ones
>>> zeros(5)
array([ 0., 0., 0., 0., 0.])
>>> ones(5, dtype=int)
array([1, 1, 1, 1, 1])
>>> zeros([2,2])
array([[ 0., 0.],

[ 0., 0.]])

>>> from numpy import arange
>>> from numpy import linspace
>>> arange(5)
array([0, 1, 2, 3, 4])
>>> linspace(1,5)
array([ 1. , 1.08163265, 1.16326531, 1.24489796, 1.32653061,

1.40816327, 1.48979592, 1.57142857, 1.65306122, 1.73469388,
1.81632653, 1.89795918, 1.97959184, 2.06122449, 2.14285714,
2.2244898 , 2.30612245, 2.3877551 , 2.46938776, 2.55102041,
2.63265306, 2.71428571, 2.79591837, 2.87755102, 2.95918367,
3.04081633, 3.12244898, 3.20408163, 3.28571429, 3.36734694,
3.44897959, 3.53061224, 3.6122449 , 3.69387755, 3.7755102 ,
3.85714286, 3.93877551, 4.02040816, 4.10204082, 4.18367347,
4.26530612, 4.34693878, 4.42857143, 4.51020408, 4.59183673,
4.67346939, 4.75510204, 4.83673469, 4.91836735, 5. ])

>>> linspace(1,5,6)
array([ 1. , 1.8, 2.6, 3.4, 4.2, 5. ])
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Accessing array elements
Elements of arrays are accessed using square brackets.

Python is row-major (like C++, Mathematica), NOT column major
(like Fortran, MATLAB, R)

This means the first index is the row, not the column.

Indexing starts at zero.

>>> from numpy import *
>>> zeros([2,3])
array([[ 0., 0., 0.],

[ 0., 0., 0.]])
>>> a = zeros([2,3])
>>> a[1,2] = 1
>>> a[0,1] = 2
>>> a
array([[ 0., 2., 0.],

[ 0., 0., 1.]])

>>> a[2,1] = 1
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
IndexError: index 2 is out of bounds for axis 0 with size 2
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Copying array variables
Use caution when copying array variables. There’s a ‘feature’ here that is
unexpected.

>>> a = 10; b = a; a = 20
>>> a, b
(20, 10)

>>> import numpy as np
>>> a = np.array([[1,2,3],
... [2,3,4]])
>>> b = a
>>> a[1,0] = -10
>>> a
array([[ 1, 2, 3],

[-10, 3, 4]])
>>> b
array([[ 1, 2, 3],

[-10, 3, 4]])

>>> import numpy as np
>>> a = np.array([[1,2,3],
... [2,3,4]])
>>> b = a.copy()
>>> a[1,0] = 16
>>> a
array([[ 1, 2, 3],

[16, 3, 4]])
>>> b
array([[1, 2, 3],

[2, 3, 4]])
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Matrix arithmetic

vector-vector & vector-scalar multiplication

1-D arrays are often called ‘vectors’.

When vectors are multiplied you
get element-by-element
multiplication.

When vectors are multiplied by
a scalar
(a 0-D array), you also get
element-by-element
multiplication.

>>> import numpy as np
>>> a = np.arange(4)
>>> a
array([0, 1, 2, 3])
>>> b = np.arange(4.) + 3
>>> b
array([ 3., 4., 5., 6.])
>>> c = 2
>>> c
2
>>> a * b
array([ 0., 4., 10., 18.])
>>> a * c
array([0, 2, 4, 6])
>>> b * c
array([ 6., 8., 10., 12.])
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Matrix-vector multiplication

A 2-D array is sometimes called a
‘matrix’.

Matrix-scalar multiplication
gives element-by-element
multiplication.

With numpy, matrix-vector
multiplication DOES NOT give
the standard result!

>>> import numpy as np
>>> a = np.array([[1,2,3],
... [2,3,4]])
>>> a
array([[1, 2, 3],

[2, 3, 4]])
>>> b = np.arange(3) + 1
>>> b
array([1, 2, 3])
>>> a * b
array([[ 1, 4, 9],

[ 2, 6, 12]])

Numpy DOES NOT compute this:

[
a11 a12 a13
a21 a22 a23

]
∗

b1
b2
b3

 =
[
a11 ∗ b1 + a12 ∗ b2 + a13 ∗ b3
a21 ∗ b1 + a22 ∗ b2 + a23 ∗ b3

]
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Matrix-vector multiplication

A 2-D array is sometimes called a
‘matrix’.

Matrix-scalar multiplication
gives element-by-element
multiplication.

With numpy, matrix-vector
multiplication DOES NOT give
the standard result!

>>> import numpy as np
>>> a = np.array([[1,2,3],
... [2,3,4]])
>>> a
array([[1, 2, 3],

[2, 3, 4]])
>>> b = np.arange(3) + 1
>>> b
array([1, 2, 3])
>>> a * b
array([[ 1, 4, 9],

[ 2, 6, 12]])

Numpy DOES compute this:

[
a11 a12 a13
a21 a22 a23

]
∗

b1
b2
b3

 =
[
a11 ∗ b1 a12 ∗ b2 a13 ∗ b3
a21 ∗ b1 a22 ∗ b2 a23 ∗ b3

]
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Matrix-matrix multiplication

Not surprisingly, matrix-matrix
multiplication doesn’t work as
expected either, instead doing the
same thing as vector-vector
multiplication.

>>> import numpy as np
>>> a = np.array([[1,2],
... [4,3]])
>>> b = np.array([[1,2],
... [4,3]])
>>> a
array([[1, 2],

[4, 3]])
>>> a * b
array([[ 1, 4],

[16, 9]])
Numpy DOES NOT do this:[

a11 a12
a21 a22

]
∗
[
b11 b12
b21 b22

]
=

[
a11 ∗ b11 + a12 ∗ b21 a11 ∗ b12 + a12 ∗ b22
a21 ∗ b11 + a22 ∗ b21 a21 ∗ b12 + a22 ∗ b22

]
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Matrix-matrix multiplication

Not surprisingly, matrix-matrix
multiplication doesn’t work as
expected either, instead doing the
same thing as vector-vector
multiplication.

>>> import numpy as np
>>> a = np.array([[1,2],
... [4,3]])
>>> b = np.array([[1,2],
... [4,3]])
>>> a
array([[1, 2],

[4, 3]])
>>> a * b
array([[ 1, 4],

[16, 9]])
Numpy DOES do this: [

a11 a12
a21 a22

]
∗
[
b11 b12
b21 b22

]
=

[
a11 ∗ b11 a12 ∗ b12
a21 ∗ b21 a22 ∗ b22

]
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How to fix the matrix algebra?
Use the special built-in
matrix-multiplication operator of
Python 3.5+.

In combination with numpy
arrays.

Alternatively, use the ‘dot’
method (in Python < 3.5)

>>> import numpy as np
>>> a = np.array([[1,2],
... [4,3]])
>>> b = np.array([[1,2],
... [4,3]])
>>> c = np.arange(2) + 1
>>> a
array([[1, 2],

[4, 3]])

>>> a.transpose()
array([[1, 4],

[2, 3]])
>>> np.dot(a, b)
array([[9, 8],

[16, 17]])
>>> np.dot(b, a.transpose())
array([[ 5, 10],

[10, 25]])
>>> np.dot(a,c)
array([5, 10])

>>> a.transpose()
array([[1, 4],

[2, 3]])
>>> a @ b
array([[9, 8],

[16, 17]])
>>> b @ a.transpose()
array([[ 5, 10],

[10, 25]])
>>> a @ c
array([5, 10])
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Does changing to numpy really help?

Let’s return to our 2D diffusion example.
Pure python implementation:

$ time python diff2d.py > output_p.txt
Elapsed: 175.54 seconds

Numpy implementation:

$ time python diff2d_slow_numpy.py > output_n.txt
Elapsed: 399.43 seconds

Hmm, not really (really not!), what gives?
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Python overhead
Python’s overhead comes mainly from it’s interpreted nature.

The diff2d_slow_numpy.py code uses numpy arrays, but still has a
loop over indices.

Numpy will not give much speedup until you use its ‘vector’ operations.

E.g., instead of
a = np.linspace(0.0,1.0,101)
b = np.linspace(1.0,2.0,101)
c = np.ndarray(100)
for i in range(100):

c[i] = a[i] + b[i]

You would write:
a = np.linspace(0.0,1.0,100)
b = np.linspace(1.0,2.0,100)
c = a + b

And to deal with shifts, instead of
a = np.linspace(0.0,1.0,101)
b = np.linspace(1.0,2.0,101)
c = np.ndarray(100)
for i in range(100):

c[i] = a[i] + b[i+1]

You would write:
a = np.linspace(0.0,1.0,101)
b = np.linspace(1.0,2.0,101)
c = a[0:100] + b[1:101]
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Hands-on

“Vectorize” the slow numpy code
Copy the file diff2d_slow_numpy.py to diff2d_numpy.py.

Try to replace the indexed loops with whole-array vector operations
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Does changing to numpy really help?

Let’s return to our 2D diffusion example.
Pure python implementation:

$ time python diff2d.py > output_p.txt
Elapsed: 175.54 seconds

Numpy implementation:

$ time python diff2d_numpy.py > output_n.txt
Elapsed: ??? seconds

Note: We can call this “vectorization” because the code works on whole
vectors. But this is different from vectorization which uses the small vector
units on the cpu. Here, we’re just minimizing the number of lines python
needs to interpret.
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Numpy vs. compiled

Numpy implementation:

$ time python diff2d_numpy.py > output_n.txt
Elapsed: 2.42 seconds

However, this is what the compiled versions do:

$ time ./diff2d_cpp.ex > output_c.txt
Elapsed: 0.59 seconds
$ time ./diff2d_f90.ex > output_f.txt
Elapsed: 0.47 seconds

So python+numpy is still 5× slower than compiled versions.
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What about Cython?
Cython is a compiler for python code.

Almost all python is valid cython.

Typically used for packages, to be used in regular python scripts.

$ make -f Makefile_cython diff2dnumpylib.so
...
$ time python diff2d_numpy.py > output_n.txt
Elapsed: 2.50 seconds
$ time python diff2d_numpy_cython.py > output_nc.txt
Elapsed: 2.63 seconds

The compilation preserves the pythonic nature of the language, i.e,
garbage collection, range checking, reference counting, etc, are still
done: no performance enhancement.

If you want to get around that, you need to use Cython specific
extentions that use c types.
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Parallel Python
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Parallel Python

We will look at a number of approaches to parallel programming with
Python:

Package Functionality

numexpr threaded parallelization of certain numpy expressions
theano turns symbolic expressions into compiled code
numba turns python functions into compiled code
threads create threads sharing memory
multiprocessing create processes that behave more like threads
mpi4py message passing between processes
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Numexpr
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The numexpr package

The numexpr package is useful if you’re doing matrix algebra:

It is essentially a just-in-time compiler for NumPy.

It takes matrix expressions, breaks things up into threads, and does the
calculation in parallel.

Somewhat awkwardly, it takes it’s input in as a string.

In some situations using numexpr can significantly speed up your
calculations.

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, July 11, 2018 46 / 89



Numexpr in a nutshell

Give it an array arithmetic expression, and it will compile and run it,
and return or store the output.

Supported operators:
+, -, *, /, **, %, <<, >>, <, <=, ==, !=, >=, >, &, |, ~

Supported functions:
where, sin, cos, tan, arcsin, arccos arctan, arctan2, sinh,
cosh, tanh, arcsinh, arccosh arctanh, log, log10, log1p, exp,
expm1, sqrt, abs, conj, real, imag, complex, contains.

Supported reductions:
sum, product
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Using the numexpr package
Without numexpr:

>>> from etime import etime
>>> import numpy as np
>>> import numexpr as ne
>>> a = np.random.rand(1000000)
>>> b = np.random.rand(1000000)
>>> c = np.zeros(1000000)
>>> etime("c = a**2 + b**2 + 2*a*b", "a,b,c")
Elapsed: 0.008287844643928111 seconds

Note: The python function etime measures the elapsed time. It is defined
in the file etime.py that is part of the code of this session. The second
argument should list the variables used (though some will be picked up
automatically).
Ipython has its own version of this, invoked (without quotes) as

In [10]: %time c = a**2 + b**2 +2*a*b
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Using the numexpr package
With numexpr:

>>> from etime import etime
>>> import numpy as np
>>> import numexpr as ne
>>> a = np.random.rand(1000000)
>>> b = np.random.rand(1000000)
>>> c = np.zeros(1000000)
>>> etime("c = a**2 + b**2 + 2*a*b")
Elapsed: 0.015387782349716873 seconds
>>> old = ne.set_num_threads(1)
>>> etime("ne.evaluate('a**2 + b**2 + 2*a*b',out=c)", "a,b,c")
Elapsed: 0.00392718049697578 seconds
>>> old = ne.set_num_threads(2)
>>> etime("ne.evaluate('a**2 + b**2 + 2*a*b',out=c)", "a,b,c")
Elapsed: 0.0025745375896804035 seconds
>>> old = ne.set_num_threads(14)
>>> etime("ne.evaluate('a**2 + b**2 + 2*a*b',out=c)", "a,b,c")
Elapsed: 0.0006712840055115521 seconds
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Numexpr for the diffusion example
Annoyingly, numexpr has no facilities for slicing or offsets, etc.

This is troubling for our diffusion code, in which we have to do
something like

laplacian[1:nrows+1,1:ncols+1] = (dens[2:nrows+2,1:ncols+1] +
dens[0:nrows+0,1:ncols+1] +
dens[1:nrows+1,2:ncols+2] +
dens[1:nrows+1,0:ncols+0] -
4*dens[1:nrows+1,1:ncols+1])

We would need to make a copy of dens[2:nrows+2,1:ncols+1] etc.
into a new numpy array before we can use numexpr, but copies are
expensive.

We want numexpr to use the same data as in dens, but viewed
differently.
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Numexpr for the diffusion example (cont.)

We want numexpr to use the same data as in dens, but viewed
differently.

That is tricky, and requires knowledge of the data’s memory structure.

diff2d_numexpr.py shows one possible solution.

$ time python diff2d_numpy.py >diff2d_numpy.out
Elapsed: 2.40 seconds
$ export NUMEXPR_NUM_THREADS=14
$ time python diff2d_numexpr.py >diff2d_numexpr.out
Elapsed: 1.61 seconds
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Hands-on: Area under the curve

Let’s consider a code that
numerically computes the
following integral:

b =
∫ 3

x=0

( 7
10

x3 − 2x2 + 4
)

dx

Exact answer b = 8.175

It’s the area under the curve on
the right.

Method: sample y = 7
10x3 − 2x2 + 4 at a uniform grid of x values (using

ntot number of points), and add the y values.
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Hands-on: Area under the curve

Serial code is in auc_serial.py.

Your test case will be python
auc_serial.py 30000000

Reexpress the computation in
numpy vectors.

Measure the speedup.

Use numexpr to parallelize the
auc.py code.

Measure the speed-up using 2,
7, 14 threads.

import sys
ntot = int(sys.argv[1])
dx = 3.0/ntot
width = 3.0
x = 0
a = 0.0
for i in range(ntot):

y = 0.7*x**3 - 2*x**2 + 4
a += y*dx
x += dx

print("The area is",a)
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Numexpr trick for diffusion unraveled

To get the diffusion algorithm in a form that has no slices or offsets, we
need to linearize the 2d arrays into 1d arrays, but in a way that avoids
copying the data.
This is how this is achieved in diff2d_numexpr:

dens = dens.ravel()
densnext = densnext.ravel()
densL = dens[npnts-1:-npnts-1] # same data one cell left
densR = dens[npnts+1:-npnts+1] # same data one cell right
densU = dens[0:-2*npnts] # same data one cell up
densD = dens[2*npnts:] # same data one cell down
densC = dens[npnts:-npnts]
ne.evaluate('densC + (D/dx**2)*dt*(densL+densR+densU+densD-4*densC)',

out=densnext[npnts:-npnts])
dens = dens.reshape((npnts,npnts))
densnext = densnext.reshape((npnts,npnts))
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Theano

Theano is a numerical computation library.

Much like numexpr, it takes an (array) expression and compiles it.

Theano is frequently used in machine learning applications.
(But Tensorflow is quickly gaining ground in this arena.)

Unlike numexpr, it can use multi-dimensional arrays and slices, like
NumPy.

Unlike numexpr, it does not natively use threads itself, though it may
link to multithreaded blas libraries such as MKL.

Theano can use GPUs, but you’re programming them like CUDA, not
like OpenACC.
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Theano in the diffusion equation

For the diffusion code, only the computation of the laplacian changes

t_dens = theano.tensor.dmatrix('dens')
t_laplacian = (t_dens[2:nrows+2,1:ncols+1] +

t_dens[0:nrows+0,1:ncols+1] +
t_dens[1:nrows+1,2:ncols+2] +
t_dens[1:nrows+1,0:ncols+0] -
4*t_dens[1:nrows+1,1:ncols+1])

t_laplacian_fun = theano.function([t_dens], t_laplacian)
laplacian[1:nrows+1,1:ncols+1] = t_laplacian_fun(dens)
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Worth it, using 14 cores?

$ export NUMEXPR_NUM_THREADS=14
$ time python diff2d_numpy.py >diff2d_numpy.out
Elapsed: 2.45 seconds
$ time python diff2d_numexpr.py >diff2d_numexpr.out
Elapsed: 1.59 seconds
$ time python diff2d_theano.py >diff2d_theano.out
Elapsed: 3.82 seconds

Numexpr wins.
How about serially?

$ export NUMEXPR_NUM_THREADS=1
$ time python diff2d_numexpr.py >diff2d_numexpr_s.out
Elapsed: 2.74 seconds
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Another compiler-within: Numba

Numba allows compilation of selected portions of Python code to
native code.

Decorator based: compile a function.

It can use multi-dimensional arrays and slices, like NumPy.

Very convenient.

Numba can use GPUs, but you’re programming them like CUDA
kernels, not like OpenACC.

While it can also vectorize for multi-core and gpus, it can only do so for
specific, independent, non-sliced data.
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Numba in the diffusion equation
Before:

# Take one step to produce new density.
laplacian[1:nrows+1,1:ncols+1] = dens[2:nrows+2,1:ncols+1] + dens[0:nrows+0,1:ncols+1] + dens[1:nrows+1,2:ncols+2] + dens[1:nrows+1,0:ncols+0] - 4*dens[1:nrows+1,1:ncols+1]
densnext[:,:] = dens + (D/dx**2)*dt*laplacian

$ time python diff2d_numpy.py >diff2d_numpy.out
Elapsed: 2.40 seconds

After:
from numba import autojit
@jit
def timestep(laplacian,dens,densnext,nrows,ncols,D,dx,dt):

laplacian[1:nrows+1,1:ncols+1] = dens[2:nrows+2,1:ncols+1] + dens[0:nrows+0,1:ncols+1] + dens[1:nrows+1,2:ncols+2] + dens[1:nrows+1,0:ncols+0] - 4*dens[1:nrows+1,1:ncols+1]
densnext[:,:] = dens + (D/dx**2)*dt*laplacian

...
timestep(laplacian,dens,densnext,nrows,ncols,D,dx,dt)

$ time python diff2d_numba.py >diff2d_numba.out
Elapsed: 4.32 seconds
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Processes and Threads in Python
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Processes and threads in python
If you’ve followed the ‘mpi/openmp’ sessions, you have heard that

A process provides the resources needed to execute a program. A
thread is a path of execution within a process. As such, a process
contains at least one thread, possibly many.

A process contains a considerable amount of state information (handles
to system objects, PID, address space, . . . ). As such they are more
resource-intensive to create. Threads are very light-weight in
comparison.

Threads within the same process share the same address space. This
means they can share the same memory and can easily communicate
with each other.

Different processes do not share the same address space. Different
processes can only communicate with each other through OS-supplied
mechanisms.

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, July 11, 2018 61 / 89



Threads in Python
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Threads in Python

The good news is: Python has threads.

The not-so-good news is: No convenient OpenMP launching of threads.

The worse news: you’ll see . . .
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How much faster is it using threads?
# summer.py - used in all summer*py
def my_summer(start, stop):

tot = 0
for i in range(start,stop):

tot += i

# summer_serial.py
import time
from summer import my_summer
begin = time.time()
threads = []
for i in range(10):

my_summer(0, 5000000)
print("Elapsed:", time.time() - begin,"seconds")

# summer_threaded.py
import time, threading
from summer import my_summer

begin = time.time()
threads = []

for i in range(10):
t = threading.Thread(

target = my_summer,
args = (0, 5000000))

threads.append(t)
t.start()

# Wait for all threads to finish.
for t in threads: t.join()
print ("Elapsed: %f"%
time.time() - begin,"seconds")

Timings
$ python summer_serial.py
Elapsed: 2.85 seconds
$ python summer_threaded.py
Elapsed: 4.64 seconds
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Not faster at all, slower!
The threading code is no faster than the serial code. Why?

The Python Interpreter uses the Global Interpreter Lock (GIL).

To prevent race conditions, the GIL prevents threads from the same
Python program from running simultaneously. As such, only one core is
used at any given time.

Consequently the threaded code is no faster than the serial code, and is
generally slower due to thread-creation overhead.

As a general rule, threads are not used for most Python applications
(GUIs being one important exception). This example is for
demonstration purposes only.

Instead, we will use one of several other modules, depending on the
application in question. These modules will launch subprocesses, rather
than threads.
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Processes in Python
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Processes in Linux: Forking

For python, the ancient way of parallel programming is a funny
intermediate called “Forking”, that can create processes on the same
node.

Only worked on linux.

We will skip forking, as it is tedious.

The point of it was to create separate processes, each with its own
python interpreter and its own interpreter lock.

Such processes can run in parallel.
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Multiprocessing
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Multiprocessing

The multiprocessing module tries to strike a balance between forking
processes and threads:

Unlike fork, multiprocessing works on Windows (better portability).

Slightly longer start-up time than threads.

Multiprocessing spawns separate processes that run concurrently (like
fork), and have their own memory.
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The multiprocessing module, continued

A few notes about the
multiprocessing module:

The Process function launches a
separate process.

The syntax is very similar to the
threading module. This is
intentional.

The details under the hood
depend strongly upon the
system involved (Windows, Mac,
Linux), thus the portability of
code written with this module.

# summer_multiprocessing.py
import time, multiprocessing
from summer import my_summer
begin = time.time()
processes = []
for i in range(10):

p = multiprocessing.Process(
target = my_summer,
args = (0, 5000000))

processes.append(p)
p.start()

# Wait for all processes to finish.
for p in processes: p.join()
print ("Elapsed:%f"%

time.time() - begin)

$ python summer_multiprocessing.py
Elapsed: 0.706869
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Shared memory with multiprocessing
multiprocess allows one to
seamlessly share memory
between processes. This is done
using ‘Value’ and ‘Array’.

Value is a wrapper around a
strongly typed object called a
ctype. When creating a Value,
the first argument is the variable
type, the second is that value.

Code on the right has 10
processes add 50 increments of
1 to the Value v.

# multiprocessing_shared.py
from multiprocessing import Process
from multiprocessing import Value
def myfun(v):

for i in range(50):
time.sleep(0.001)
v.value += 1

v = Value('i', 0);
procs = []
for i in range(10):

p=Process(target=myfun,args=(v,))
procs.append(p)
p.start()

for proc in procs: proc.join()
print(v.value)

$ time python multiprocessing_shared.py
442
Elapsed: 0.23 seconds

Did the code behave as expect?
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Race conditions

What went wrong?

Race conditions occur when program instructions are executed in an
order not intended by the programmer. The most common cause is
when multiple processes are given access to a resource.

In the example here, we’ve modified a location in memory that is being
accessed by multiple processes.

Bugs caused by race conditions are extremely hard to find.

Disasters can occur.

Be very very careful when sharing resources between multiple processes or
threads!
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Using shared memory, continued
The solution, of course, is to be more explicit in your locking.

If you use shared memory, be sure to test everything thoroughly.

# multiprocessing_shared_fixed.py
from multiprocessing import Process
from multiprocessing import Value
from multiprocessing import Lock

def myfun(v, lock):
for i in range(50):

time.sleep(0.001)
with lock:

v.value += 1

# multiprocessing_shared_fixed.py
# continued
v = Value('i', 0)
lock = Lock()
procs = []
for i in range(10):
p=Process(target=myfun,

args=(v,lock))
procs.append(p)
p.start()

for proc in procs: proc.join()
print(v.value)

$ time python multiprocessing_shared_fixed.py
500
Elapsed: 0.16 seconds
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Using shared memory, arrays
Multiprocessing also allows
you to share a block of memory
through the Array ctypes
wrapper.

Only 1-D arrays are permitted.

Note that
multiprocessing.Process must be
used; shared memory does not
work with
multiprocessing.Pool.map.

Note that, since arr is actually
a ctypes object, you must print
the contents of arr to see the
result.

# multiprocessing_shared_array.py
from numpy import arange
from multiprocessing import Process
from multiprocessing import Array
def myfun(a, i):

a[i] = -a[i]
arr = Array('d', arange(10.))
procs = []
for i in range(10):

p = Process(target=myfun,
args=(arr, i))

procs.append(p)
p.start()

for proc in procs:
proc.join()

print(arr[:])

[-0.0, -1.0, -2.0, -3.0, -4.0, -5.0, -6.0, -7.0, -8.0, -9.0]
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But there’s more!

The multiprocessing module is loaded with functionality. Other features
include:

Inter-process communciation, using Pipes and Queues.

multiprocessing.manager, which allows jobs to be spread over multiple
‘machines’ (nodes).

subclassing of the Process object, to allow further customization of the
child process.

multiprocessing.Event, which allows event-driven programming options.

multiprocess.condition, which is used to synchronize processes.

We’re not going to cover these features today.
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MPI4PY
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Message Passing Interface

The previous parallel techniques used processors on one node.
Using more than one node requires these nodes to communicate.
MPI is one way of doing that communication.

MPI = Message Passing Interface.

MPI is a C/Fortran Library API.

Sending data = sending a message.

Requires setup of processes through mpirun/mpiexec.

Requires MPI_Init(...) in code to collect processes into a
‘communicator’.

Rather low level.
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Mpi4py features

mpi4py is a wrapper around the mpi library

Point-to-point communication (sends, receives)

Collective (broadcasts, scatters, gathers) communications of any
picklable Python object,

Optimized communications of Python object exposing the
single-segment buffer interface
(NumPy arrays, builtin bytes/string/array objects).

Names of functions much the same as in C/Fortran, but are methods of
the communicator (object-oriented).
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MPI C/C++ recap
The following C++ code determines each process’ rank and sends that rank
to its left neighbor.

#include <mpi.h>
#include <iostream>
int main(int argc, char** argv) {
int rank, size, rankr, right, left;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
right = (rank+1)%size;
left = (rank+size-1)%size;
MPI_Sendrecv(&rank, 1, MPI_INT, left, 13,

&rankr, 1, MPI_INT, right, 13,
MPI_COMM_WORLD, MPI_STATUS_IGNORE);

std::cout<<"I am rank "<<rank<<"; my right neighbour is "<<rankr<<"\n";
MPI_Finalize();

}
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MPI Fortran recap
The following Fortran code determines each process’ rank and sends that
rank to its left neighbor.

program rightrank
use mpi
implicit none
integer rank, size, rankr, right, left, e
call MPI_Init(e)
call MPI_Comm_rank(MPI_COMM_WORLD, rank, e)
call MPI_Comm_size(MPI_COMM_WORLD, size, e)
right = mod(rank+1, size)
left = mod(rank+size-1, size)
call MPI_Sendrecv(rank, 1, MPI_INTEGER, left, 13, &

rankr, 1, MPI_INTEGER, right, 13, &
MPI_COMM_WORLD, MPI_STATUS_IGNORE, e)

print *, "I am rank ", rank, "; my right neighbour is ", rankr
call MPI_Finalize(e)

end program rightrank
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Mpi4py
One of the drudgeries of MPI is to have to express the binary layout of
your data.

The drudgery arises because C and Fortran do not have introspection
and the MPI libraries cannot look inside your code.

With Python, this is potentially different: we can investigate, within
python, what the structure is.

That means we should be able to express sending a piece of data
without having to specify types and amounts.

# mpi4py_right_rank.py
from mpi4py import MPI
rank = MPI.COMM_WORLD.Get_rank()
size = MPI.COMM_WORLD.Get_size()
right = (rank+1)%size
left = (rank+size-1)%size
rankr = MPI.COMM_WORLD.sendrecv(rank, left, source=right)
print("I am rank", rank, "; my right neighbour is", rankr)
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Mpi4py + numpy

It turns out that mpi4py’s communication is pickle-based.

Pickle is a serialization format which can convert any python object
into a bytestream.

Convenient as any python object can be sent, but conversion takes
time.

For numpy arrays, one can skip the pickling using Uppercase variants of
the same communicator methods.

However, this requires us to preallocate buffers to hold messages to be
received.
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Mpi4py+numpy: Area-under-the-curve
# auc.py
import sys
from mpi4py import MPI

rank = MPI.COMM_WORLD.Get_rank()
size = MPI.COMM_WORLD.Get_size()
ntot = int(sys.argv[1])
npnts = ntot//size
dx = 3.0/ntot
width = 3.0/size
x = rank*width
a = 0.0
for i in range(npnts):

y = 0.7*x**3 - 2*x**2 + 4
a += y*dx
x += dx

b = MPI.COMM_WORLD.reduce(a)
if rank == 0:

print("The area is", b)

# auc_numpy.py
import sys
from mpi4py import MPI
from numpy import zeros, asarray
rank = MPI.COMM_WORLD.Get_rank()
size = MPI.COMM_WORLD.Get_size()
ntot = int(sys.argv[1])
npnts = ntot//size
dx = 3.0/ntot
width = 3.0/size
x = rank*width
a = 0.0
for i in range(npnts):

y = 0.7*x**3 - 2*x**2 + 4
a += y*dx
x += dx

b = np.zeros(1)
MPI.COMM_WORLD.Reduce(asarray(a),b)
if rank == 0:

print("The area is", b[0])
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Mpi4py Speedup?

$ time mpirun -n 1 python auc.py 30000000
The area is 8.175000
Elapsed: 18.16 seconds

$ time mpirun -n 14 python auc.py 30000000
The area is 8.175000
Elapsed: 7.39 seconds

$ time mpirun -n 14 python auc_numpy.py 30000000
The area is 8.175000
Elapsed: 8.05 seconds

There simply isn’t enough communication to see the difference between the
pickled and non-pickled interface.
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Hands-on

The code for the programming challenge has a serial python version:
laplace_serial.py

Use mpi to parallelize this code.

or:

Reflect hard on whether you should use Python for HPC.
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Is there no hope, then, Ramses?
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Sure there is. . .
When doing data analysis

If you’re reading in data, perform some analysis, and write it out, your
performance is likely limited by disk I/O.

In that case, the cpu penalty of Python may be insignificant.

If this data is big, consider MPI-IO, NetCDF4, or hdf5 (remember from
Parallel I/O session).

When using optimized packages
Many python modules are actually written in C and just expose an
interface to Python; these are as fast as C would be.

Examples of this include popular machine learning packages:
I sklearn
I Tensorflow

More machine learning on Friday.
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Conclusion
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Summary

Before thinking about parallelizing your code, ensure the serial version
is efficient:

I profile your script
I use numpy with “vectorized” programming.
I Further performance improvements require some sort of compilation

(theano, numba, . . . )

Threading in pure python does not improve performance (unless it’s a
python module that uses a compiled, threaded, c code).

OpenMP is not possible in python

MPI is still possible.

Keep an eye on newer versions of numba and numexpr.
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