
Topologies and Topology Mapping

AdvancedMPI, SC16 (11/14/2016) 163



Topology Mapping and Neighborhood Collectives

§ Topologymappingbasics

– Allocation mapping vs. rank reordering

– Ad-hoc solutions vs. portability

§ MPI topologies

– Cartesian

– Distributed graph

§ Collectives on topologies – neighborhoodcollectives

– Use cases

164AdvancedMPI, SC16 (11/14/2016)



Topology Mapping Basics

§ MPI supports rank reordering

– Change numbering in a given allocation to reduce congestion or

dilation

– Sometimes automatic (early IBM SP machines)

§ Properties

– Always possible, but effect may be limited (e.g., in a bad allocation)

– Portable way: MPI process topologies

• Network topology is not exposed

– Manual data shuffling after remapping step

165AdvancedMPI, SC16 (11/14/2016)



Example: On-Node Reordering

Naïve Mapping Optimized Mapping

Topomap

Gottschling et al.: Productive Parallel Linear Algebra Programmingwith Unstructured TopologyAdaption

166AdvancedMPI, SC16 (11/14/2016)



Off-Node (Network) Reordering

Application Topology Network Topology

Naïve Mapping Optimal Mapping

Topomap

167AdvancedMPI, SC16 (11/14/2016)



MPI Topology Intro

§ Convenience functions (inMPI-1)

– Create a graph and query it, nothing else

– Useful especially for Cartesian topologies

• Query neighbors in n-dimensional space

– Graph topology: each rank specifies full graph L

§ Scalable Graph topology (MPI-2.2)

– Graph topology: each rank specifies its neighbors or an arbitrary

subset of the graph

§ Neighborhood collectives (MPI-3.0)

– Adding communication functions defined on graph topologies

(neighborhood of distance one)

168AdvancedMPI, SC16 (11/14/2016)



MPI_Cart_create

§ Specify ndims-dimensional topology

– Optionally periodic in each dimension (Torus)

§ Someprocesses may returnMPI_COMM_NULL

– Product sum of dims must be <= P

§ Reorder argument allows for topologymapping

– Each calling process may have a new rank in the created communicator

– Data has to be remapped manually

169AdvancedMPI, SC16 (11/14/2016)

MPI_Cart_create(MPI_Comm comm_old, int ndims, const int *dims,

const int *periods, int reorder, MPI_Comm *comm_cart)



MPI_Cart_create Example

§ Creates logical 3D Torus of size 5 x 5 x 5

§ But we’re startingMPI processeswith a one-dimensional

argument (-p X)

– User has to determine size of each dimension

– Often as “square” as possible, MPI can help!

170AdvancedMPI, SC16 (11/14/2016)

int dims[3] = {5,5,5};

int periods[3] = {1,1,1};

MPI_Comm topocomm;

MPI_Cart_create(comm, 3, dims, periods, 0, &topocomm);



MPI_Dims_create

§ Create dims array for Cart_create with nnodes and ndims

– Dimensions are as close as possible (well, in theory)

§ Non-zero entries in dims will not be changed

– nnodes must be multiple of all non-zeroes

171AdvancedMPI, SC16 (11/14/2016)

MPI_Dims_create(int nnodes, int ndims, int *dims)



MPI_Dims_create Example

§ Makes life a little bit easier

– Some problems may be better with a non-square layout though

172AdvancedMPI, SC16 (11/14/2016)

int p;

MPI_Comm_size(MPI_COMM_WORLD, &p);

MPI_Dims_create(p, 3, dims);

int periods[3] = {1,1,1};

MPI_Comm topocomm;

MPI_Cart_create(comm, 3, dims, periods, 0, &topocomm);



Cartesian Query Functions

§ Library support and convenience!

§ MPI_Cartdim_get()

– Gets dimensions of a Cartesian communicator

§ MPI_Cart_get()

– Gets size of dimensions

§ MPI_Cart_rank()

– Translate coordinates to rank

§ MPI_Cart_coords()

– Translate rank to coordinates

173AdvancedMPI, SC16 (11/14/2016)



Cartesian Communication Helpers

§ Shift in one dimension

– Dimensions are numbered from 0 to ndims-1

– Displacement indicates neighbor distance (-1, 1, …)

– May return MPI_PROC_NULL

§ Very convenient, all you need for nearest neighbor

communication

– No “over the edge” though

174AdvancedMPI, SC16 (11/14/2016)

MPI_Cart_shift(MPI_Comm comm, int direction, int disp,

int *rank_source, int *rank_dest)



Code Example

§ stencil-mpi-carttopo.c

§ Adds calculation of neighborswith topology

AdvancedMPI, SC16 (11/14/2016) 175

bx

by



MPI_Graph_create(MPI_Comm comm_old, int nnodes,

const int *index, const int *edges, int reorder,

MPI_Comm *comm_graph)

MPI_Graph_create

§ Don’t use!!!!!

§ nnodes is the total number of nodes

§ index i stores the total number of neighbors for the first i

nodes (sum)

– Acts as offset into edges array

§ edges stores the edge list for all processes

– Edge list for process j starts at index[j] in edges

– Process j has index[j+1]-index[j] edges

176AdvancedMPI, SC16 (11/14/2016)



Distributed graph constructor

§ MPI_Graph_create is discouraged

– Not scalable

– Not deprecated yet but hopefully soon

§ Newdistributed interface:

– Scalable, allows distributed graph specification

• Either local neighbors or any edge in the graph

– Specify edge weights

• Meaning undefined but optimization opportunity for vendors!

– Info arguments

• Communicate assertions of semantics to the MPI library

• E.g., semantics of edge weights

Hoefler et al.: The Scalable Process Topology Interface ofMPI 2.2

177AdvancedMPI, SC16 (11/14/2016)



MPI_Dist_graph_create_adjacent

§ indegree, sources, ~weights – source proc. Spec.

§ outdegree, destinations, ~weights – dest. proc. spec.

§ info, reorder, comm_dist_graph – as usual

§ directed graph

§ Each edge is specified twice, once as out-edge (at the source)

and once as in-edge (at the dest)

Hoefler et al.: The Scalable Process Topology Interface ofMPI 2.2

178AdvancedMPI, SC16 (11/14/2016)

MPI_Dist_graph_create_adjacent(MPI_Comm comm_old,

int indegree, const int sources[], const int sourceweights[],

int outdegree, const int destinations[],

const int destweights[], MPI_Info info, int reorder,

MPI_Comm *comm_dist_graph)



MPI_Dist_graph_create_adjacent

§ Process 0:

– Indegree: 0

– Outdegree: 2

– Dests: {3,1}

§ Process 1:

– Indegree: 3

– Outdegree: 2

– Sources: {4,0,2}

– Dests: {3,4}

§ …

Hoefler et al.: The Scalable Process Topology Interface ofMPI 2.2

179AdvancedMPI, SC16 (11/14/2016)



MPI_Dist_graph_create

§ n – number of source nodes

§ sources – n source nodes

§ degrees – number of edges for each source

§ destinations,weights – dest. processor specification

§ info, reorder – as usual

§ More flexible and convenient

– Requires global communication

– Slightly more expensive than adjacent specification

180AdvancedMPI, SC16 (11/14/2016)

MPI_Dist_graph_create(MPI_Comm comm_old, int n,

const int sources[], const int degrees[],

const int destinations[], const int weights[], MPI_Info info,

int reorder, MPI_Comm *comm_dist_graph)



MPI_Dist_graph_create

§ Process 0:

– N: 2

– Sources: {0,1}

– Degrees: {2,1} *

– Dests: {3,1,4}

§ Process 1:

– N: 2

– Sources: {2,3}

– Degrees: {1,1}

– Dests: {1,2}

§ …

Hoefler et al.: The Scalable Process Topology Interface ofMPI 2.2

181

* Note that in this example, process 0 specifies only one of the two outgoing edges

of process 1; the second outgoing edge needs to be specified by another process

AdvancedMPI, SC16 (11/14/2016)



Distributed Graph Neighbor Queries

§ Query the number of neighbors of calling process

§ Returns indegree and outdegree!

§ Also info if weighted

Hoefler et al.: The Scalable Process Topology Interface ofMPI 2.2

182AdvancedMPI, SC16 (11/14/2016)

§ Query the neighbor list of calling process

§ Optionally returnweights

MPI_Dist_graph_neighbors_count(MPI_Comm comm,

int *indegree,int *outdegree, int *weighted)

MPI_Dist_graph_neighbors(MPI_Comm comm, int maxindegree,

int sources[], int sourceweights[], int maxoutdegree,

int destinations[],int destweights[])



Further Graph Queries

§ Status is either:

– MPI_GRAPH (ugs)

– MPI_CART

– MPI_DIST_GRAPH

– MPI_UNDEFINED (no topology)

§ Enables us towrite libraries on top of MPI topologies!

183AdvancedMPI, SC16 (11/14/2016)

MPI_Topo_test(MPI_Comm comm, int *status)



Neighborhood Collectives

§ Topologies implement no communication!

– Just helper functions

§ Collective communications only cover somepatterns

– E.g., no stencil pattern

§ Several requests for “build your own collective” functionality in

MPI

– Neighborhood collectives are a simplified version

– Cf. Datatypes for communication patterns!

184AdvancedMPI, SC16 (11/14/2016)



Cartesian Neighborhood Collectives

§ Communicatewith direct neighbors in Cartesian topology

– Corresponds to cart_shift with disp=1

– Collective (all processes in comm must call it, including processes

without neighbors)

– Buffers are laid out as neighbor sequence:

• Defined by order of dimensions, first negative, then positive

• 2*ndims sources and destinations

• Processes at borders (MPI_PROC_NULL) leave holes in buffers (will not be

updated or communicated)!

T. Hoefler and J. L. Traeff: Sparse Collective Operations for MPI

185AdvancedMPI, SC16 (11/14/2016)



Cartesian Neighborhood Collectives

§ Buffer ordering example:

T. Hoefler and J. L. Traeff: Sparse Collective Operations for MPI

186AdvancedMPI, SC16 (11/14/2016)



Graph Neighborhood Collectives

§ Collective Communication along arbitrary neighborhoods

– Order is determined by order of neighbors as returned by

(dist_)graph_neighbors.

– Distributed graph is directed, may have different numbers of

send/recv neighbors

– Can express dense collective operations J

– Any persistent communication pattern!

T. Hoefler and J. L. Traeff: Sparse Collective Operations for MPI

187AdvancedMPI, SC16 (11/14/2016)



MPI_Neighbor_allgather

§ Sends the samemessage to all neighbors

§ Receives indegree distinctmessages

§ Similar to MPI_Gather

– The all prefix expresses that each process is a “root” of his

neighborhood

§ Vector version for full flexibility

188AdvancedMPI, SC16 (11/14/2016)

MPI_Neighbor_allgather(const void* sendbuf, int sendcount,

MPI_Datatype sendtype, void* recvbuf, int recvcount,

MPI_Datatype recvtype, MPI_Comm comm)



MPI_Neighbor_alltoall

§ Sends outdegree distinctmessages

§ Received indegree distinctmessages

§ Similar to MPI_Alltoall

– Neighborhood specifies full communication relationship

§ Vector and w versions for full flexibility

189AdvancedMPI, SC16 (11/14/2016)

MPI_Neighbor_alltoall(const void* sendbuf, int sendcount,

MPI_Datatype sendtype, void* recvbuf, int recvcount,

MPI_Datatype recvtype, MPI_Comm comm)



Nonblocking Neighborhood Collectives

§ Very similar to nonblocking collectives

§ Collective invocation

§ Matching in-order (no tags)

– No wild tricks with neighborhoods! In order matching per

communicator!

190AdvancedMPI, SC16 (11/14/2016)

MPI_Ineighbor_allgather(…, MPI_Request *req);

MPI_Ineighbor_alltoall(…, MPI_Request *req);



Code Example

§ stencil_mpi_carttopo_neighcolls.c

§ Adds neighborhoodcollectives to the topology

AdvancedMPI, SC16 (11/14/2016) 191



Why is Neighborhood Reduce Missing?

§ Was originally proposed (see original paper)

§ High optimization opportunities

– Interesting tradeoffs!

– Research topic

§ Not standardized due to missinguse cases

– My team is working on an implementation

– Offering the obvious interface

MPI_Ineighbor_allreducev(…);

T. Hoefler and J. L. Traeff: Sparse Collective Operations for MPI

192AdvancedMPI, SC16 (11/14/2016)



Topology Summary

§ Topology functions allow users to specify application

communication patterns/topology

– Convenience functions (e.g., Cartesian)

– Storing neighborhood relations (Graph)

§ Enables topologymapping (reorder=1)

– Not widely implemented yet

– May requires manual data re-distribution (according to new rank

order)

§ MPI does not expose information about the network topology

(would be very complex)

193AdvancedMPI, SC16 (11/14/2016)



Neighborhood Collectives Summary

§ Neighborhood collectives add communication functions to

process topologies

– Collective optimization potential!

§ Allgather

– One item to all neighbors

§ Alltoall

– Personalized item to each neighbor

§ High optimization potential (similar to collective operations)

– Interface encourages use of topology mapping!

194AdvancedMPI, SC16 (11/14/2016)



Section Summary

§ Process topologies enable:

– High-abstraction to specify communication pattern

– Has to be relatively static (temporal locality)

• Creation is expensive (collective)

– Offers basic communication functions

§ Library can optimize:

– Communication schedule for neighborhood colls

– Topology mapping

195AdvancedMPI, SC16 (11/14/2016)


