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The
Journey
Ahead



Big data is a broad term for data sets so large or complex that traditional 
data processing applications are inadequate.

      —Wikipedia



Once there was only small data...

A classic amount of “small” data

Find a tasty appetizer – Easy!

Find something to use up these
oranges – grumble…

What if….



Less sophisticated is sometimes better…

Get all articles from 2007.

Get all papers on “fault tolerance”
 – grumble and cough

“Chronologically” or “geologically” organized.
Familiar to some of you at tax time.

Indexing will determine your individual performance. 
Teamwork can scale that up.



The culmination of centuries...

Find books on Modern Physics (DD# 539)

Find books by Wheeler

where he isn’t the first author – grumble… Your only hope…



Then data started to grow.

1956 IBM Model 350

5 MB of data!

But still pricey.  $

Better think about what 
you want to save.



And finally got BIG.

8TB for $130

= 10 TB *

*Actually, a silly estimate.  The original reference actually mentions a more accurate 208TB, and in 
2013 the digital collection alone was 3PB.

Whys:
 Storage got cheap
 So why not keep it all?
 Today data is a hot commodity $
 And we got better at generating it
  Facebook
  Deep Learning
  IoT
  Science...
   

Pan-STARRS 

telescope
http://pan-

starrs.ifa.hawaii.edu/publ

ic/

Genome sequencers
(Wikipedia Commons)

Collections
Horniman museum: 

http://www.horniman.ac.uk

/

get_involved/blog/bioblitz-

insects-reviewed

Legacy 

documents
Wikipedia 

Commons

Environmental sensors: 

Water temperature 

profiles from tagged 

hooded seals
http://www.arctic.noaa.gov/report1

1/biodiv_whales_walrus.html



A better sense of biggish
Size
• 1000 Genomes Project

• AWS hosted
• 260TB

• Common Crawl
• Hosted on Bridges
• 300-800TB+

Throughput
• Square Kilometer Array

• Building now
• Exabyte of raw data/day – compressed to 10PB

• Internet of Things (IoT) / motes
• Endless streaming

Records
• GDELT (Global Database of Events, Language, and Tone) (also soon to be hosted on Bridges)

• Only about 2.5TB per year, but...
• 250M rows and 59 fields (BigTable)
• “during periods with relatively little content, maximal translation accuracy can be achieved, with accuracy linearly degraded  as needed to cope with 

increases in volume in order to ensure that translation always finishes within the 15 minute window…. and prioritizes the highest quality material, 
accepting that lower-quality material may have a lower-quality translation to stay within the available time window.”

3 V's of Big Data
• Volume
• Velocity
• Variety



Why it wasn’t fashionable:

• Schemas set in stone:
• Need to define before we can add data
• Not a fit for agile development

"What do you mean we didn't plan to keep logs of 
everyone's heartbeat?"

• Queries often require accessing multiple indexes and joining
and sorting multiple tables

• Sharding isn’t trivial 

• Caching is tough
• ACID (Atomicity,Consistency,Isolation,Durability) in a transaction is costly.

Good Ol’ SQL couldn't keep up.
Oracle

SELECT  NAME, NUMBER, FROM PHONEBOOK Payroll

Name Number Address

Inventory

Product Number Address

Phonebook

Name Number Address



• Certainly agile (no schema)

• Certainly scalable (linear in most ways: hardware, storage, cost)

• Good hash might deliver fast lookup

• Sharding, backup, etc. could be simple

• Often used for “session” information: online games, shopping carts

So we gave up: Key-Value
Redis, Memcached, Amazon DynamoDB, Riak, Ehcache

GET foo foo bar

2 fast

6 0

9 0

0 9

text pic

1055 stuff

bar foo

GET cart:joe:15~4~7~0723



Sure, giving up ACID buys us a lot performance, but doesn't our crude organization 
cost us something? Yes, but remember these guys?

How does a pile of unorganized data solve our 
problems?

This is what they 
look like today.



• Value must be an object the DB can understand

• Common are: XML, JSON, Binary JSON and nested thereof

• This allows server side operations on the data

Document

GET foo

GET plant=daisy

• Can be quite complex: Linq query, JavaScript function

• Different DB’s have different update/staleness paradigms

foo

2

6 JSON

9 XML

0 Binary JSON

bar JSON
      XML

12 XML
    XML

<CATALOG>

 <PLANT>

  <COMMON>Bloodroot</COMMON>

  <BOTANICAL>Sanguinaria canadensis</BOTANICAL>

  <ZONE>4</ZONE>

  <LIGHT>Mostly Shady</LIGHT>

  <PRICE>$2.44</PRICE>

  <AVAILABILITY>031599</AVAILABILITY>

 </PLANT>

 <PLANT>

  <COMMON>Columbine</COMMON>

  <BOTANICAL>Aquilegia canadensis</BOTANICAL>

  <ZONE>3</ZONE>

  <LIGHT>Mostly Shady</LIGHT>

  <PRICE>$9.37</PRICE>

  <AVAILABILITY>030699</AVAILABILITY>

 </PLANT>

.

.



• No predefined schema

• Can think of this as a 2-D key-value store: the value may be a key-value 
store itself

• Different databases
 aggregate data differently
 on disk with different
 optimizations

Wide Column Stores
Google BigTable

SELECT Name, Occupation FROM People WHERE key IN (199, 200, 207);

Key

Joe Email: joe@gmail Web: www.joe.com

Fred Phone: 412-555-3412 Email: fred@yahoo.com Address: 200 S. Main 
Street

Julia Email: julia@apple.com

Mac Phone: 214-555-5847



• Great for semantic web

• Great for graphs 

Graph
                  Titan, GEMS

From PDX Graph Meetup

• Can be hard to visualize

• Serialization can be difficult

• Queries more complicated



SPARQL  (W3C Standard)

• Uses Resource Description Framework format
• triple store

• RDF Limitations
• No named graphs
• No quantifiers or general statements

• “Every page was created by some author”
• “Cats meow”

• Requires a schema or ontology (RDFS) to define rules
• "The object of ‘homepage’ must be a 

Document.“
• "Link from an actor to a movie must 

connect an object of type Person to an 
object of type Movie."

SELECT ?name ?email 

WHERE {

 ?person a foaf:Person.

 ?person foaf:name ?name. 

 ?person foaf:mbox ?email. }

Queries
SPARQL, Cypher

Cypher (Neo4J only)

• No longer proprietary
• Stores whole graph, not just triples
• Allows for named graphs
• …and general Property Graphs (edges
 and nodes may have values)

SMATCH (Jack:Person

  { name:‘Jack Nicolson’})-[:ACTED_IN]-(movie:Movie)

RETURN movie



Graph Databases
           

• These are not curiosities, but are behind some of the most high-profile pieces of Web 
infrastructure.

• They are definitely big data.

Microsoft Bing Knowledge Graph Search and conversations. ~2 billion primary entries
~55 billion facts

Facebook ~50 million primary entries
~500 million assertions

Google Knowledge Graph Search and conversations. ~1 billion entries
~55 billion facts

LinkedIn graph 590 million members
30 million companies

Noy, Goa, Jain. Communications of the ACM, August 2019



What kind
of databases

are they?

Hadoop & Spark



These are both frameworks for distributing and retrieving data.  Hadoop is focused on 
disk based data and a basic map-reduce scheme, and Spark evolves that in several 
directions that we will get in to. Both can accommodate multiple types of databases and 
achieve their performance gains by using parallel workers.

Frameworks for Data

The mother of Hadoop was necessity. It is 
trendy to ridicule its primitive design, but 
it was the first step.

We have repurposed many of these 
blocks to build a better framework.

SQL
DataFrame
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Answer

Transponder ID -> Geo Coordinates
00154301 -> 59.33, 177.60
04435354 -> 56.71, 171.73
04539340 -> 25.18, -118.89

Only keep data for Bering Sea
00154301 -> 59.33, 177.60
04435354 -> 56.71, 171.73

Find biggest change 
at each transponder 
in last 24h

00154301 -> 30
04435354 -> 5

Ex: Need to find any recent big 
swings in Bering Sea surface 
temps.

Data is a series of timestamped 
temps for each transponder.

Keep any over 20 
degrees

00154301 -> 30



Hadoop  Ecosystem Lives On

And lots
more...



Spark Capabilities
(i.e. Hadoop shortcomings)

• Performance
• First, use RAM
• Also, be smarter

• Ease of Use
• Python, Scala, Java first class citizens

• New Paradigms
• SparkSQL
• Streaming
• MLib
• GraphX
• …more

But using Hadoop as
the backing store is a
common and sensible
option.



Same Idea (improved)

Driver
Python
Scala
Java

RAM

CPU

RAM

CPU

RAM

CPU

RAM

CPU

RAM

CPU

RAM

CPU

RDD
Resilient  Distributed  Dataset



Spark Formula

1. Create/Load RDD
 Webpage visitor IP address log

2. Transform RDD
 ”Filter out all non-U.S. IPs”

3. But don’t do anything yet!
 Wait until data is actually needed
 Maybe apply more transforms (“Distinct IPs")

4. Perform Actions that return data
 Count “How many unique U.S. visitors?”
 



>>> lines_rdd = sc.textFile("nasa_serverlog_20190404.tsv")

Simple Example

Read into RDD

Spark Context

The first thing a Spark program requires is a context, which interfaces with some kind of cluster to use.  Our 
pyspark shell provides us with a convenient  sc, using the local filesystem, to start.  Your standalone programs 
will have to specify one:

from pyspark import SparkConf, SparkContext
conf = SparkConf().setMaster("local").setAppName("Test_App")
sc = SparkContext(conf = conf)

You would typically run these scripts like so:

spark-submit Test_App.py



>>> lines_rdd = sc.textFile("nasa_serverlog_20190404.tsv")

>>> HubbleLines_rdd = lines_rdd.filter(lambda line: "Hubble" in line)

>>> HubbleLines_rdd.count()
47

>>> HubbleLines_rdd.first()
'www.nasa.gov\shuttle/missions/61-c/Hubble.gif‘

Simple Example

Read into RDD

Transform

Actions

Lambdas

We’ll see a lot of these. A lambda is simply a function that is too simple to deserve its own subroutine. 
Anywhere we have a lambda we could also just name a real subroutine that could go off and do anything.

When all you want to do is see if “given an input variable line, is “stanford” in there?”, it isn’t worth the 
digression.

Most modern languages have adopted this nicety.



Common Transformations
Transformation Result

map(func) Return a new RDD by passing each element through func.

filter(func) Return a new RDD by selecting the elements for which func 
returns true.

flatMap(func) func can return multiple items, and generate a sequence, 
allowing us to “flatten” nested entries (JSON) into a list.

distinct() Return an RDD with only distinct entries.

sample(…) Various options to create a subset of the RDD.

union(RDD) Return a union of the RDDs.

intersection(RDD) Return an intersection of the RDDs.

subtract(RDD) Remove argument RDD from other.

cartesian(RDD) Cartesian product of the RDDs.

parallelize(list) Create an RDD from this (Python) list (using a spark context).

Full list at http://spark.apache.org/docs/latest/api/python/reference/api/pyspark.RDD.html#pyspark.RDD

Same Size

Fewer 
Elements

More 
Elements



Common Actions

Action Result

collect() Return all the elements from the RDD.

count() Number of elements in RDD.

countByValue() List of times each value occurs in the RDD.

reduce(func) Aggregate the elements of the RDD by providing a function 
which combines any two into one (sum, min, max, …).

first(), take(n) Return the first, or first n elements.

top(n) Return the n highest valued elements of the RDDs.

takeSample(…) Various options to return a subset of the RDD..

saveAsTextFile(path) Write the elements as a text file.

foreach(func) Run the func on each element.  Used for side-effects (updating 
accumulator variables) or interacting with external systems.

Full list at http://spark.apache.org/docs/latest/api/python/reference/api/pyspark.RDD.html#pyspark.RDD



Transformations vs. Actions

Transformations go from one RDD to another1.

Actions bring some data back from the RDD.

Transformations are where the Spark machinery can do its magic with lazy evaluation and 
clever algorithms to minimize communication and parallelize the processing. You want to 
keep your data in the RDDs as much as possible.

Actions are mostly used either at the end of the analysis when the data has been distilled 
down (collect), or along the way to "peek" at the process (count, take).

1 Yes, some of them also create an RDD (parallelize), but you get the idea.



Pair RDDs

• Key/Value organization is a simple, but often very efficient schema, as we mentioned 
in our NoSQL discussion.

• Spark provides special operations on RDDs that contain key/value pairs.  They are 
similar to the general ones that we have seen.

• On the language (Python, Scala, Java) side key/values are simply tuples. If you have an 
RDD all of whose elements happen to be tuples of two items, it is a Pair RDD and you 
can use the key/value operations that follow.



Pair RDD Transformations

Transformation Result

reduceByKey(func) Reduce values using func, but on a key by key basis.  That is, 
combine values with the same key.

groupByKey() Combine values with same key.  Each key ends up with a list.

sortByKey() Return an RDD sorted by key.

mapValues(func) Use func to change values, but not key.

keys() Return an RDD of only keys.

values() Return an RDD of only values.

Note that all of the regular transformations are available as well.



Pair RDD Actions

Action Result

countByKey() Count the number of elements for each key.

lookup(key) Return all the values for this key.

As with transformations, all of the regular actions are available to Pair RDDs, and there 
are some additional ones that can take advantage of key/value structure.



Two Pair RDD Transformations

Transformation Result

subtractByKey(otherRDD) Remove elements with a key present in other RDD.

join(otherRDD) Inner join: Return an RDD containing all pairs of elements with 
matching keys in self and other.  Each pair of elements will be 
returned as a (k, (v1, v2)) tuple, where (k, v1) is in self and (k, 
v2) is in other.

leftOuterJoin(otherRDD) For each element (k, v) in self, the resulting RDD will either 
contain all pairs (k, (v, w)) for w in other, or the pair (k, (v, 
None)) if no elements in other have key k.

rightOuterJoin(otherRDD) For each element (k, w) in other, the resulting RDD will either 
contain all pairs (k, (v, w)) for v in this, or the pair (k, (None, w)) 
if no elements in self have key k.

cogroup(otherRDD) Group data from both RDDs by key.



>>> best_customers_rdd = sc.parallelize([("Joe", "$103"), ("Alice", "$2000"), ("Bob", "$1200")])

Joins Are Quite Useful

Any database designer can tell you how common joins are. Let's look at a simple 
example. We have (here we create it) an RDD of our top purchasing customers.

And an RDD with all of our customers' addresses.

>>> customer_addresses_rdd = sc.parallelize([("Joe", "23 State St."), ("Frank", "555 Timer Lane"), ("Sally", "44 
Forest Rd."), ("Alice", "3 Elm Road"), ("Bob", "88 West Oak")])

To create a mailing list of special coupons for those favored customers we can use a 
join on the two datasets.

>>> promotion_mail_rdd = best_customers_rdd.join(customer_addresses_rdd)

>>> promotion_mail_rdd.collect()
[('Bob', ('$1200', '88 West Oak')), ('Joe', ('$103', '23 State St.')), ('Alice', ('$2000', '3 Elm Road'))]

If you are coming from a Pandas DataFrame 
background, joins are congruent with the 
Merge functions. If you've used them, you may 
have noticed that they can take some time with 
even small datasets. They do not scale well.



Shakespeare, a Data Analytics Favorite
Applying data analytics to the works of Shakespeare has become all the rage.  Whether determining the  legitimacy of 
his authorship (it wasn’t Marlowe) or if Othello is actually a comedy (perhaps), or which word makes Macbeth so 
creepy ("the", yes) it is amazing how much publishable research has sprung from the recent analysis of 400 year old 
text.

We’re going to do some exercises here using a text file containing all of his works.



This was our exercise.
We have an input file, Complete _Shakespeare.txt, that you can also find at http://www.gutenberg.org/ebooks/100.
You might find it useful to have http://spark.apache.org/docs/latest/api/python/reference/api/pyspark.RDD.html#pyspark.RDD in a browser 
window.

If you are starting from scratch on the login node:
0) Copy all of the hands-on exercises and datasets into your home directory: cp ~training/BigData .
1) interact  2) cd BigData/Shakespeare  3) module load spark  4) pyspark
...

>>> rdd = sc.textFile("Complete_Shakespeare.txt")

Let’s try a few simple exercises.

1) Count the number of lines

2) Count the number of words (hint: Python "split" is a workhorse)

3) Count unique words

4) Count the occurrence of each word

5) Show the top 5 most frequent words

These last two are a bit more challenging. One approach is 
to think “key/value”. If you go that way, think about which 
data should be the key and don’t be afraid to swap it 
about with value. This is a very common manipulation 
when dealing with key/value organized data.

http://www.gutenberg.org/ebooks/100


>>> lines_rdd = sc.textFile("Complete_Shakespeare.txt")
>>>
>>> lines_rdd.count()
124787 
>>>
>>> words_rdd = lines_rdd.flatMap(lambda x: x.split())
>>> words_rdd.count()
904061
>>>
>>> words_rdd.distinct().count()
67779 
>>>

Some Simple Answers

Next, I know I'd like to end up with a pair RDD of sorted word/count pairs:

(23407, 'the'), (19540,'I'), (15682, 'to'), (15649, 'of') ...

Why not just words_rdd.countByValue()? It is an action that gives us a massive Python 
unsorted dictionary of results:

... 1, 'precious-princely': 1, 'christenings?': 1, 'empire': 11, 'vaunts': 2, 'Lubber's': 1, 
'poet.': 2, 'Toad!': 1, 'leaden': 15, 'captains': 1, 'leaf': 9, 'Barnes,': 1, 'lead': 101, 'Hell': 
1, 'wheat,': 3, 'lean': 28, 'Toad,': 1, 'trencher!': 2, '1.F.2.': 1, 'leas': 2, 'leap': 17, ...

Where to go next? Sort this in Python or try to get back into an RDD? If this is truly BIG 

data, we want to remain as an RDD until we reach our final results. So, no.



>>> lines_rdd = sc.textFile("Complete_Shakespeare.txt")
>>>
>>> lines_rdd.count()
124787 
>>>
>>> words_rdd = lines_rdd.flatMap(lambda x: x.split())
>>> words_rdd.count()
904061
>>>
>>> words_rdd.distinct().count()
67779 
>>>
>>> key_value_rdd = words_rdd.map(lambda x: (x,1))
>>>
>>> key_value_rdd.take(5)
[('The', 1), ('Project', 1), ('Gutenberg', 1), ('EBook', 1), ('of', 1)]
>>>
>>> word_counts_rdd = key_value_rdd.reduceByKey(lambda x,y: x+y)
>>> word_counts_rdd.take(5)
[('fawn', 11), ('considered-', 1), ('Fame,', 3), ('mustachio', 1), ('protested,', 1)]
>>> 
>>> flipped_rdd = word_counts_rdd.map(lambda x: (x[1],x[0]))
>>> flipped_rdd.take(5)
[(11, 'fawn'), (1, 'considered-'), (3, 'Fame,'), (1, 'mustachio'), (1, 'protested,')]
>>> 
>>> results_rdd = flipped_rdd.sortByKey(False)
>>> results_rdd.take(5)
[(23407, 'the'), (19540, 'I'), (18358, 'and'), (15682, 'to'), (15649, 'of')]
>>> 

Some Harder Answers

Turn these into k/v pairs

Reduce to get words counts

Flip keys and values

so we can sort on

wordcount instead of

words.

results_rdd = lines_rdd.flatMap(lambda x: x.split()).map(lambda x: (x,1)).reduceByKey(lambda x,y: x+y).map(lambda x: (x[1],x[0])).sortByKey(False)

Things data
scientists do.



for loops, collect in middle of analysis, large data structures

...

intermediate_results = data_rdd.collect()

python_data = []

for datapoint in intermediate_results:
    python_data.append(modify_datapoint(datapoint))

next_rdd = sc.parallelize(python_data)

...

Spark Anti-Patterns

Here are a couple code clues that you are not working with Spark, but probably against it.

Ask yourself, "would this work with billions of elements?". And likely anything you are doing with a for is something 
that Spark will gladly parallelize for you, if you let it. 



Some Homework Problems for the ambitious.

To do research-level text analysis, we generally want to clean up our input. Here are some of the kinds of things you 
could do to get a more meaningful distinct word count.

1) Remove punctuation. Often punctuation is just noise, and it is here. Do a Map and/or Filter (some punctuation is 
attached to words, and some is not) to eliminate all punctuation from our Shakespeare data. Note that if you are 
familiar with regular expressions, Python has a ready method to use those.

2) Remove stop words. Stop words are common words that are also often uninteresting ("I", "the",  "a"). You can 
remove many obvious stop words with a list of your own, and the MLlib that we are about to investigate has a 
convenient StopWordsRemover() method with default lists for various languages.

3) Stemming. Recognizing that various different words share the same root ("run", "running") is important, but not so 
easy to do simply. Once again, Spark brings powerful libraries into the mix to help. A popular one is the Natural 
Language Tool Kit. You should look at the docs, but you can give it a quick test quite easily:

import nltk
from nltk.stem.porter import  *
stemmer = PorterStemmer()
stems_rdd = words_rdd.map( lambda x: stemmer.stem(x) )



Who needs this Spark stuff?
As we do our first Spark exercises, you might think of several ways to accomplish these tasks that you already know. For example, Python 
Pandas is a fine way to do our following problem, and it will probably work on your laptop reasonably well. But they do not scale well*.

However we are learning how to leverage scalable techniques that work on very big data. Shortly, we will encounter problems that are 
considerable in size, and you will leave this workshop knowing how to harness very large resources.

Searching the Complete Works of William Shakespeare for patterns is a lot different from searching the entire Web (perhaps as the 800TB 
Common Crawl dataset).

So everywhere you see an RDD, realize that it is a actually a parallel databank that could scale to PBs.

* See Panda's creator Wes McKinney's "10 Things I Hate About Pandas" at
 https://wesmckinney.com/blog/apache-arrow-pandas-internals/



Optimizations
We said one of the advantages of Spark is that we can control things for better 
performance. There are a multitude of optimization, performance, tuning and 
programmatic features to enable better control. We quickly look at a few of the most 
important.

• Persistence

• Partitioning

• Parallel Programming Capabilities

• Performance and Debugging Tools



Performance & Debugging

We will give unfortunately short shrift to performance and debugging, which are both 
important.  Mostly, this is because they are very configuration and application 
dependent.

Here are a few things to at least be aware of:

• SparkConf() class.  A lot of options can be tweaked here.

• Spark Web UI.  A very friendly way to explore all of these issues.



IO Formats
Spark has an impressive, and growing, list of input/output formats it supports.  Some important 
ones:

• Text
• CSV
• SQL type Query/Load

• JSON (can infer schema)
• Parquet
• Hive
• XML
• Sequence (Hadoopy key/value)
• Databases: JDBC, Cassandra, HBase, MongoDB, etc.

• Compression (gzip…)

And it can interface directly with a variety of filesystems: local, HDFS, Lustre, Amazon S3,...



Spark Streaming

Spark addresses the need for streaming processing of data with a API that divides the 
data into batches, which are then processed as RDDs.

There are features to enable:

• Fast recovery from failures or timeouts
• Load balancing
• Integration with static data and interactive queries
• Integration with other components (SQL, Machine Learning)

15% of the "global datasphere"  
(quantification of the amount of data 
created, captured, and replicated across 
the world) is currently real-time. That 
number is growing quickly both in 
absolute terms and as a percentage.



A Few Words About DataFrames

As mentioned earlier, an appreciation for having some defined structure to your data has come back 
into vogue. For one, because it simply makes sense and naturally emerges in many applications. Often 
even more importantly, it can greatly aid optimization, especially with the Java VM that Spark uses.

For both of these reasons, you will see that the newest set of APIs to Spark are DataFrame based. This is 
simply SQL type columns. Very similar to Python pandas DataFrames (but based on RDDs, so not 
exactly).

We haven't prioritized them here because they aren't necessary, and require a little more code to line 
up the types properly. But some of the latest features use them.

And while they would just complicate our basic examples, they are often simpler for real research 
problems. So don't shy away from using them.



Creating DataFrames

It is very pretty intuitive to utilize DataFrames. Your elements just have labeled columns.

A row RDD is the basic way to go from RDD to DataFrame, and back, if necessary. A "row" is just a tuple.

>>> row_rdd = sc.parallelize([ ("Joe","Pine St.","PA",12543), ("Sally","Fir Dr.","WA",78456),
                               ("Jose","Elm Pl.","ND",45698) ])
>>>
>>> aDataFrameFromRDD = spark.createDataFrame( row_rdd, ["name", "street", "state", "zip"] )
>>> aDataFrameFromRDD.show()
+-----+--------+-----+-----+
| name|  street|state|  zip|
+-----+--------+-----+-----+
|  Joe|Pine St.|   PA|12543|
|Sally| Fir Dr.|   WA|78456|
| Jose| Elm Pl.|   ND|45698|
+-----+--------+-----+-----+



Just Spark DataFrames making life easier...

Data from https://github.com/spark-examples/pyspark-examples/raw/master/resources/zipcodes.json

{"RecordNumber":1,"Zipcode":704,"ZipCodeType":"STANDARD","City":"PARC PARQUE","State":"PR","LocationType":"NOT ACCEPTABLE","Lat":17.96,"Long":-66.22,"Xaxis":0.38,"Yaxis":-0.87,"Zaxis":0.3,"WorldRegion":"NA","Country":"US",
{"RecordNumber":2,"Zipcode":704,"ZipCodeType":"STANDARD","City":"PASEO COSTA DEL SUR","State":"PR","LocationType":"NOT ACCEPTABLE","Lat":17.96,"Long":-66.22,"Xaxis":0.38,"Yaxis":-0.87,"Zaxis":0.3,"WorldRegion":"NA","Country":"US","LocationT
{"RecordNumber":10,"Zipcode":709,"ZipCodeType":"STANDARD","City":"BDA SAN LUIS","State":"PR","LocationType":"NOT ACCEPTABLE","Lat":18.14,"Long":-66.26,"Xaxis":0.38,"Yaxis":-0.86,"Zaxis":0.31,"WorldRegion":"NA","Country":"US","Location

>>> df = spark.read.json("zipcodes.json")
>>> df.printSchema()
root
 |-- City: string (nullable = true)
 |-- Country: string (nullable = true)
 |-- Decommisioned: boolean (nullable = true)
 |-- EstimatedPopulation: long (nullable = true)
 |-- Lat: double (nullable = true)
 |-- Location: string (nullable = true)
 |-- LocationText: string (nullable = true)
 |-- LocationType: string (nullable = true)
 |-- Long: double (nullable = true)
 |-- Notes: string (nullable = true)
 |-- RecordNumber: long (nullable = true)
 |-- State: string (nullable = true)
 |-- TaxReturnsFiled: long (nullable = true)
 |-- TotalWages: long (nullable = true)
 |-- WorldRegion: string (nullable = true)
 |-- Xaxis: double (nullable = true)
 |-- Yaxis: double (nullable = true)
 |-- Zaxis: double (nullable = true)
 |-- ZipCodeType: string (nullable = true)
 |-- Zipcode: long (nullable = true)

>>> df.show()
+-------------------+-------+-------------+-------------------+-----+--------------------
|               City|Country|Decommisioned|EstimatedPopulation|  Lat|            Location
+-------------------+-------+-------------+-------------------+-----+--------------------
|        PARC PARQUE|     US|        false|               null|17.96|NA-US-PR-PARC PARQUE
|PASEO COSTA DEL SUR|     US|        false|               null|17.96|NA-US-PR-PASEO CO...
|       BDA SAN LUIS|     US|        false|               null|18.14|NA-US-PR-BDA SAN ...
|  CINGULAR WIRELESS|     US|        false|               null|32.72|NA-US-TX-CINGULAR...
|         FORT WORTH|     US|        false|               4053|32.75| NA-US-TX-FORT WORTH
|           FT WORTH|     US|        false|               4053|32.75|   NA-US-TX-FT WORTH
|    URB EUGENE RICE|     US|        false|               null|17.96|NA-US-PR-URB EUGE...
|               MESA|     US|        false|              26883|33.37|       NA-US-AZ-MESA
|               MESA|     US|        false|              25446|33.38|       NA-US-AZ-MESA
|           HILLIARD|     US|        false|               7443|30.69|   NA-US-FL-HILLIARD
|             HOLDER|     US|        false|               null|28.96|     NA-US-FL-HOLDER
|               HOLT|     US|        false|               2190|30.72|       NA-US-FL-HOLT
|          HOMOSASSA|     US|        false|               null|28.78|  NA-US-FL-HOMOSASSA
|       BDA SAN LUIS|     US|        false|               null|18.14|NA-US-PR-BDA SAN ...
|      SECT LANAUSSE|     US|        false|               null|17.96|NA-US-PR-SECT LAN...
|      SPRING GARDEN|     US|        false|               null|33.97|NA-US-AL-SPRING G...
|        SPRINGVILLE|     US|        false|               7845|33.77|NA-US-AL-SPRINGVILLE
|        SPRUCE PINE|     US|        false|               1209|34.37|NA-US-AL-SPRUCE PINE
|           ASH HILL|     US|        false|               1666| 36.4|   NA-US-NC-ASH HILL
|           ASHEBORO|     US|        false|              15228|35.71|   NA-US-NC-ASHEBORO
+-------------------+-------+-------------+-------------------+-----+--------------------



And Sometime DataFrames Are Limiting

DataFrames are not as flexible as plain RDDs, and it isn't uncommon to find yourself fighting to do something that 
would be simple with a map, for example. In that case, don't hesitate to flip back into a plain RDD.

>>> row_rdd = sc.parallelize([ ("Joe","Pine St.","PA",12543), ("Sally","Fir Dr.","WA",78456),
                               ("Jose","Elm Pl.","ND",45698) ])

>>> aDataFrameFromRDD = spark.createDataFrame( row_rdd, ["name", "street", "state", "zip"] )

>>> another_row_rdd = aDataFrameFromRDD.rdd

Notice that this is not even a method, it is just a property. This is a clue that behind the scenes we are always working 
with RDDs.

A minor technicality here is that the returned object is actually a "Row" type. You may not care. If you want it be the 
original tuple type then

>>> tuple_rdd = aDataFrameFromRDD.rdd.map(tuple)

Note that when our map function is a function that already exists, there is no need for a lambda.



Speaking of pandas, or SciPy, or...

Some of you may have experience with the many Python libraries that accomplish some of 
these tasks. Immediately relevant to today, pandas allows us to sort and query data, and SciPy 
provides some nice clustering algorithms. So why not just use them?

The answer is that Spark does these things in the context of having potentially huge, parallel 
resources at hand. We don't notice it as Spark is also convenient, but behind every Spark call:

• every RDD could be many TB in size

• every transform could use many thousands of cores and TB of memory

• every algorithm could also use those thousands of cores

So don't think of Spark as just a data analytics library because our exercises are modest. You 
are learning how to cope with Big Data.



Other Scalable Alternatives:   Dask

Of the many alternatives to play with data on 
your laptop, there are only a few that aspire to 
scale up to big data. The only one, besides Spark, 
that seems to have any traction is Dask.

Numpy like operations

import dask.array as da
a = da.random.random(size=(10000, 10000),
                     chunks=(1000, 1000))
a + a.T - a.mean(axis=0)

Dataframes implement Pandas

import dask.dataframe as dd
df = dd.read_csv('/.../2020-*-*.csv')
df.groupby(df.account_id).balance.sum()

Pieces of Scikit-Learn

from dask_ml.linear_model import \ 
LogisticRegression
lr = LogisticRegression()
lr.fit(train, test)

It attempts to retain more of the "laptop feel" of 
your toy codes, making for an easier port. The 
tradeoff is that the scalability is a lot more 
mysterious. If it doesn't work - or someone hasn't 
scaled the piece you need - your options are 
limited.

At this time, I'd say it is riskier, but academic 
projects can often entertain more risk than industry.

Drill Down?
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