
Big Data Science

John Urbanic
Parallel Computing Scientist

Pittsburgh Supercomputing Center

Copyright 2023

Who am I?

John Urbanic

Distinguished Service Professor

Carnegie Mellon University

 Undergrad Advanced Computational Physics

 Graduate Large Scale Computing

 Data Science Capstone Projects

Parallel Computing Scientist

Pittsburgh Supercomputing Center

 Code, code, code, on

 Parallel platforms: MPI, OpenMP, OpenACC, ...

 Big Data platforms: Spark, ...

 Machine Learning: Spark, TensorFlow, PyTorch, ...

The
Journey
Ahead

Big data is a broad term for data sets so large or complex that traditional
data processing applications are inadequate.

 —Wikipedia

Once there was only small data...

A classic amount of “small” data

Find a tasty appetizer – Easy!

Find something to use up these
oranges – grumble…

What if….

Less sophisticated is sometimes better…

Get all articles from 2007.

Get all papers on “fault tolerance”
 – grumble and cough

“Chronologically” or “geologically” organized.
Familiar to some of you at tax time.

Indexing will determine your individual performance.
Teamwork can scale that up.

The culmination of centuries...

Find books on Modern Physics (DD# 539)

Find books by Wheeler

where he isn’t the first author – grumble… Your only hope…

Then data started to grow.

1956 IBM Model 350

5 MB of data!

But still pricey. $

Better think about what
you want to save.

And finally got BIG.

8TB for $130

= 10 TB *

*Actually, a silly estimate. The original reference actually mentions a more accurate 208TB, and in
2013 the digital collection alone was 3PB.

Whys:
 Storage got cheap
 So why not keep it all?
 Today data is a hot commodity $
 And we got better at generating it
 Facebook
 Deep Learning
 IoT
 Science...

Pan-STARRS

telescope
http://pan-

starrs.ifa.hawaii.edu/publ

ic/

Genome sequencers
(Wikipedia Commons)

Collections
Horniman museum:

http://www.horniman.ac.uk

/

get_involved/blog/bioblitz-

insects-reviewed

Legacy

documents
Wikipedia

Commons

Environmental sensors:

Water temperature

profiles from tagged

hooded seals
http://www.arctic.noaa.gov/report1

1/biodiv_whales_walrus.html

A better sense of biggish
Size
• 1000 Genomes Project

• AWS hosted
• 260TB

• Common Crawl
• Hosted on Bridges
• 300-800TB+

Throughput
• Square Kilometer Array

• Building now
• Exabyte of raw data/day – compressed to 10PB

• Internet of Things (IoT) / motes
• Endless streaming

Records
• GDELT (Global Database of Events, Language, and Tone) (also soon to be hosted on Bridges)

• Only about 2.5TB per year, but...
• 250M rows and 59 fields (BigTable)
• “during periods with relatively little content, maximal translation accuracy can be achieved, with accuracy linearly degraded as needed to cope with

increases in volume in order to ensure that translation always finishes within the 15 minute window…. and prioritizes the highest quality material,
accepting that lower-quality material may have a lower-quality translation to stay within the available time window.”

3 V's of Big Data
• Volume
• Velocity
• Variety

Why it wasn’t fashionable:

• Schemas set in stone:
• Need to define before we can add data
• Not a fit for agile development

"What do you mean we didn't plan to keep logs of
everyone's heartbeat?"

• Queries often require accessing multiple indexes and joining
and sorting multiple tables

• Sharding isn’t trivial

• Caching is tough
• ACID (Atomicity,Consistency,Isolation,Durability) in a transaction is costly.

Good Ol’ SQL couldn't keep up.
Oracle

SELECT NAME, NUMBER, FROM PHONEBOOK Payroll

Name Number Address

Inventory

Product Number Address

Phonebook

Name Number Address

• Certainly agile (no schema)

• Certainly scalable (linear in most ways: hardware, storage, cost)

• Good hash might deliver fast lookup

• Sharding, backup, etc. could be simple

• Often used for “session” information: online games, shopping carts

So we gave up: Key-Value
Redis, Memcached, Amazon DynamoDB, Riak, Ehcache

GET foo foo bar

2 fast

6 0

9 0

0 9

text pic

1055 stuff

bar foo

GET cart:joe:15~4~7~0723

Sure, giving up ACID buys us a lot performance, but doesn't our crude organization
cost us something? Yes, but remember these guys?

How does a pile of unorganized data solve our
problems?

This is what they
look like today.

• Value must be an object the DB can understand

• Common are: XML, JSON, Binary JSON and nested thereof

• This allows server side operations on the data

Document

GET foo

GET plant=daisy

• Can be quite complex: Linq query, JavaScript function

• Different DB’s have different update/staleness paradigms

foo

2

6 JSON

9 XML

0 Binary JSON

bar JSON
 XML

12 XML
 XML

<CATALOG>

 <PLANT>

 <COMMON>Bloodroot</COMMON>

 <BOTANICAL>Sanguinaria canadensis</BOTANICAL>

 <ZONE>4</ZONE>

 <LIGHT>Mostly Shady</LIGHT>

 <PRICE>$2.44</PRICE>

 <AVAILABILITY>031599</AVAILABILITY>

 </PLANT>

 <PLANT>

 <COMMON>Columbine</COMMON>

 <BOTANICAL>Aquilegia canadensis</BOTANICAL>

 <ZONE>3</ZONE>

 <LIGHT>Mostly Shady</LIGHT>

 <PRICE>$9.37</PRICE>

 <AVAILABILITY>030699</AVAILABILITY>

 </PLANT>

.

.

• No predefined schema

• Can think of this as a 2-D key-value store: the value may be a key-value
store itself

• Different databases
 aggregate data differently
 on disk with different
 optimizations

Wide Column Stores
Google BigTable

SELECT Name, Occupation FROM People WHERE key IN (199, 200, 207);

Key

Joe Email: joe@gmail Web: www.joe.com

Fred Phone: 412-555-3412 Email: fred@yahoo.com Address: 200 S. Main
Street

Julia Email: julia@apple.com

Mac Phone: 214-555-5847

• Great for semantic web

• Great for graphs

Graph
 Titan, GEMS

From PDX Graph Meetup

• Can be hard to visualize

• Serialization can be difficult

• Queries more complicated

SPARQL (W3C Standard)

• Uses Resource Description Framework format
• triple store

• RDF Limitations
• No named graphs
• No quantifiers or general statements

• “Every page was created by some author”
• “Cats meow”

• Requires a schema or ontology (RDFS) to define rules
• "The object of ‘homepage’ must be a

Document.“
• "Link from an actor to a movie must

connect an object of type Person to an
object of type Movie."

SELECT ?name ?email

WHERE {

 ?person a foaf:Person.

 ?person foaf:name ?name.

 ?person foaf:mbox ?email. }

Queries
SPARQL, Cypher

Cypher (Neo4J only)

• No longer proprietary
• Stores whole graph, not just triples
• Allows for named graphs
• …and general Property Graphs (edges
 and nodes may have values)

SMATCH (Jack:Person

 { name:‘Jack Nicolson’})-[:ACTED_IN]-(movie:Movie)

RETURN movie

Graph Databases

• These are not curiosities, but are behind some of the most high-profile pieces of Web
infrastructure.

• They are definitely big data.

Microsoft Bing Knowledge Graph Search and conversations. ~2 billion primary entries
~55 billion facts

Facebook ~50 million primary entries
~500 million assertions

Google Knowledge Graph Search and conversations. ~1 billion entries
~55 billion facts

LinkedIn graph 590 million members
30 million companies

Noy, Goa, Jain. Communications of the ACM, August 2019

What kind
of databases

are they?

Hadoop & Spark

These are both frameworks for distributing and retrieving data. Hadoop is focused on
disk based data and a basic map-reduce scheme, and Spark evolves that in several
directions that we will get in to. Both can accommodate multiple types of databases and
achieve their performance gains by using parallel workers.

Frameworks for Data

The mother of Hadoop was necessity. It is
trendy to ridicule its primitive design, but
it was the first step.

We have repurposed many of these
blocks to build a better framework.

SQL
DataFrame

D
at

a

R
e

d
u

ce

M
ap

Programming = MapReduce
D

at
a

D
at

a

D
at

a
D

at
a

D
at

a

D
at

a
D

at
a

M
ap

R
ed

u
ce

D
at

a
D

at
a

Answer

Transponder ID -> Geo Coordinates
00154301 -> 59.33, 177.60
04435354 -> 56.71, 171.73
04539340 -> 25.18, -118.89

Only keep data for Bering Sea
00154301 -> 59.33, 177.60
04435354 -> 56.71, 171.73

Find biggest change
at each transponder
in last 24h

00154301 -> 30
04435354 -> 5

Ex: Need to find any recent big
swings in Bering Sea surface
temps.

Data is a series of timestamped
temps for each transponder.

Keep any over 20
degrees

00154301 -> 30

Hadoop Ecosystem Lives On

And lots
more...

Spark Capabilities
(i.e. Hadoop shortcomings)

• Performance
• First, use RAM
• Also, be smarter

• Ease of Use
• Python, Scala, Java first class citizens

• New Paradigms
• SparkSQL
• Streaming
• MLib
• GraphX
• …more

But using Hadoop as
the backing store is a
common and sensible
option.

Same Idea (improved)

Driver
Python
Scala
Java

RAM

CPU

RAM

CPU

RAM

CPU

RAM

CPU

RAM

CPU

RAM

CPU

RDD
Resilient Distributed Dataset

Spark Formula

1. Create/Load RDD
 Webpage visitor IP address log

2. Transform RDD
 ”Filter out all non-U.S. IPs”

3. But don’t do anything yet!
 Wait until data is actually needed
 Maybe apply more transforms (“Distinct IPs")

4. Perform Actions that return data
 Count “How many unique U.S. visitors?”

>>> lines_rdd = sc.textFile("nasa_serverlog_20190404.tsv")

Simple Example

Read into RDD

Spark Context

The first thing a Spark program requires is a context, which interfaces with some kind of cluster to use. Our
pyspark shell provides us with a convenient sc, using the local filesystem, to start. Your standalone programs
will have to specify one:

from pyspark import SparkConf, SparkContext
conf = SparkConf().setMaster("local").setAppName("Test_App")
sc = SparkContext(conf = conf)

You would typically run these scripts like so:

spark-submit Test_App.py

>>> lines_rdd = sc.textFile("nasa_serverlog_20190404.tsv")

>>> HubbleLines_rdd = lines_rdd.filter(lambda line: "Hubble" in line)

>>> HubbleLines_rdd.count()
47

>>> HubbleLines_rdd.first()
'www.nasa.gov\shuttle/missions/61-c/Hubble.gif‘

Simple Example

Read into RDD

Transform

Actions

Lambdas

We’ll see a lot of these. A lambda is simply a function that is too simple to deserve its own subroutine.
Anywhere we have a lambda we could also just name a real subroutine that could go off and do anything.

When all you want to do is see if “given an input variable line, is “stanford” in there?”, it isn’t worth the
digression.

Most modern languages have adopted this nicety.

Common Transformations
Transformation Result

map(func) Return a new RDD by passing each element through func.

filter(func) Return a new RDD by selecting the elements for which func
returns true.

flatMap(func) func can return multiple items, and generate a sequence,
allowing us to “flatten” nested entries (JSON) into a list.

distinct() Return an RDD with only distinct entries.

sample(…) Various options to create a subset of the RDD.

union(RDD) Return a union of the RDDs.

intersection(RDD) Return an intersection of the RDDs.

subtract(RDD) Remove argument RDD from other.

cartesian(RDD) Cartesian product of the RDDs.

parallelize(list) Create an RDD from this (Python) list (using a spark context).

Full list at http://spark.apache.org/docs/latest/api/python/reference/api/pyspark.RDD.html#pyspark.RDD

Same Size

Fewer
Elements

More
Elements

Common Actions

Action Result

collect() Return all the elements from the RDD.

count() Number of elements in RDD.

countByValue() List of times each value occurs in the RDD.

reduce(func) Aggregate the elements of the RDD by providing a function
which combines any two into one (sum, min, max, …).

first(), take(n) Return the first, or first n elements.

top(n) Return the n highest valued elements of the RDDs.

takeSample(…) Various options to return a subset of the RDD..

saveAsTextFile(path) Write the elements as a text file.

foreach(func) Run the func on each element. Used for side-effects (updating
accumulator variables) or interacting with external systems.

Full list at http://spark.apache.org/docs/latest/api/python/reference/api/pyspark.RDD.html#pyspark.RDD

Transformations vs. Actions

Transformations go from one RDD to another1.

Actions bring some data back from the RDD.

Transformations are where the Spark machinery can do its magic with lazy evaluation and
clever algorithms to minimize communication and parallelize the processing. You want to
keep your data in the RDDs as much as possible.

Actions are mostly used either at the end of the analysis when the data has been distilled
down (collect), or along the way to "peek" at the process (count, take).

1 Yes, some of them also create an RDD (parallelize), but you get the idea.

Pair RDDs

• Key/Value organization is a simple, but often very efficient schema, as we mentioned
in our NoSQL discussion.

• Spark provides special operations on RDDs that contain key/value pairs. They are
similar to the general ones that we have seen.

• On the language (Python, Scala, Java) side key/values are simply tuples. If you have an
RDD all of whose elements happen to be tuples of two items, it is a Pair RDD and you
can use the key/value operations that follow.

Pair RDD Transformations

Transformation Result

reduceByKey(func) Reduce values using func, but on a key by key basis. That is,
combine values with the same key.

groupByKey() Combine values with same key. Each key ends up with a list.

sortByKey() Return an RDD sorted by key.

mapValues(func) Use func to change values, but not key.

keys() Return an RDD of only keys.

values() Return an RDD of only values.

Note that all of the regular transformations are available as well.

Pair RDD Actions

Action Result

countByKey() Count the number of elements for each key.

lookup(key) Return all the values for this key.

As with transformations, all of the regular actions are available to Pair RDDs, and there
are some additional ones that can take advantage of key/value structure.

Two Pair RDD Transformations

Transformation Result

subtractByKey(otherRDD) Remove elements with a key present in other RDD.

join(otherRDD) Inner join: Return an RDD containing all pairs of elements with
matching keys in self and other. Each pair of elements will be
returned as a (k, (v1, v2)) tuple, where (k, v1) is in self and (k,
v2) is in other.

leftOuterJoin(otherRDD) For each element (k, v) in self, the resulting RDD will either
contain all pairs (k, (v, w)) for w in other, or the pair (k, (v,
None)) if no elements in other have key k.

rightOuterJoin(otherRDD) For each element (k, w) in other, the resulting RDD will either
contain all pairs (k, (v, w)) for v in this, or the pair (k, (None, w))
if no elements in self have key k.

cogroup(otherRDD) Group data from both RDDs by key.

>>> best_customers_rdd = sc.parallelize([("Joe", "$103"), ("Alice", "$2000"), ("Bob", "$1200")])

Joins Are Quite Useful

Any database designer can tell you how common joins are. Let's look at a simple
example. We have (here we create it) an RDD of our top purchasing customers.

And an RDD with all of our customers' addresses.

>>> customer_addresses_rdd = sc.parallelize([("Joe", "23 State St."), ("Frank", "555 Timer Lane"), ("Sally", "44
Forest Rd."), ("Alice", "3 Elm Road"), ("Bob", "88 West Oak")])

To create a mailing list of special coupons for those favored customers we can use a
join on the two datasets.

>>> promotion_mail_rdd = best_customers_rdd.join(customer_addresses_rdd)

>>> promotion_mail_rdd.collect()
[('Bob', ('$1200', '88 West Oak')), ('Joe', ('$103', '23 State St.')), ('Alice', ('$2000', '3 Elm Road'))]

If you are coming from a Pandas DataFrame
background, joins are congruent with the
Merge functions. If you've used them, you may
have noticed that they can take some time with
even small datasets. They do not scale well.

Shakespeare, a Data Analytics Favorite
Applying data analytics to the works of Shakespeare has become all the rage. Whether determining the legitimacy of
his authorship (it wasn’t Marlowe) or if Othello is actually a comedy (perhaps), or which word makes Macbeth so
creepy ("the", yes) it is amazing how much publishable research has sprung from the recent analysis of 400 year old
text.

We’re going to do some exercises here using a text file containing all of his works.

This was our exercise.
We have an input file, Complete _Shakespeare.txt, that you can also find at http://www.gutenberg.org/ebooks/100.
You might find it useful to have http://spark.apache.org/docs/latest/api/python/reference/api/pyspark.RDD.html#pyspark.RDD in a browser
window.

If you are starting from scratch on the login node:
0) Copy all of the hands-on exercises and datasets into your home directory: cp ~training/BigData .
1) interact 2) cd BigData/Shakespeare 3) module load spark 4) pyspark
...

>>> rdd = sc.textFile("Complete_Shakespeare.txt")

Let’s try a few simple exercises.

1) Count the number of lines

2) Count the number of words (hint: Python "split" is a workhorse)

3) Count unique words

4) Count the occurrence of each word

5) Show the top 5 most frequent words

These last two are a bit more challenging. One approach is
to think “key/value”. If you go that way, think about which
data should be the key and don’t be afraid to swap it
about with value. This is a very common manipulation
when dealing with key/value organized data.

http://www.gutenberg.org/ebooks/100

>>> lines_rdd = sc.textFile("Complete_Shakespeare.txt")
>>>
>>> lines_rdd.count()
124787
>>>
>>> words_rdd = lines_rdd.flatMap(lambda x: x.split())
>>> words_rdd.count()
904061
>>>
>>> words_rdd.distinct().count()
67779
>>>

Some Simple Answers

Next, I know I'd like to end up with a pair RDD of sorted word/count pairs:

(23407, 'the'), (19540,'I'), (15682, 'to'), (15649, 'of') ...

Why not just words_rdd.countByValue()? It is an action that gives us a massive Python
unsorted dictionary of results:

... 1, 'precious-princely': 1, 'christenings?': 1, 'empire': 11, 'vaunts': 2, 'Lubber's': 1,
'poet.': 2, 'Toad!': 1, 'leaden': 15, 'captains': 1, 'leaf': 9, 'Barnes,': 1, 'lead': 101, 'Hell':
1, 'wheat,': 3, 'lean': 28, 'Toad,': 1, 'trencher!': 2, '1.F.2.': 1, 'leas': 2, 'leap': 17, ...

Where to go next? Sort this in Python or try to get back into an RDD? If this is truly BIG

data, we want to remain as an RDD until we reach our final results. So, no.

>>> lines_rdd = sc.textFile("Complete_Shakespeare.txt")
>>>
>>> lines_rdd.count()
124787
>>>
>>> words_rdd = lines_rdd.flatMap(lambda x: x.split())
>>> words_rdd.count()
904061
>>>
>>> words_rdd.distinct().count()
67779
>>>
>>> key_value_rdd = words_rdd.map(lambda x: (x,1))
>>>
>>> key_value_rdd.take(5)
[('The', 1), ('Project', 1), ('Gutenberg', 1), ('EBook', 1), ('of', 1)]
>>>
>>> word_counts_rdd = key_value_rdd.reduceByKey(lambda x,y: x+y)
>>> word_counts_rdd.take(5)
[('fawn', 11), ('considered-', 1), ('Fame,', 3), ('mustachio', 1), ('protested,', 1)]
>>>
>>> flipped_rdd = word_counts_rdd.map(lambda x: (x[1],x[0]))
>>> flipped_rdd.take(5)
[(11, 'fawn'), (1, 'considered-'), (3, 'Fame,'), (1, 'mustachio'), (1, 'protested,')]
>>>
>>> results_rdd = flipped_rdd.sortByKey(False)
>>> results_rdd.take(5)
[(23407, 'the'), (19540, 'I'), (18358, 'and'), (15682, 'to'), (15649, 'of')]
>>>

Some Harder Answers

Turn these into k/v pairs

Reduce to get words counts

Flip keys and values

so we can sort on

wordcount instead of

words.

results_rdd = lines_rdd.flatMap(lambda x: x.split()).map(lambda x: (x,1)).reduceByKey(lambda x,y: x+y).map(lambda x: (x[1],x[0])).sortByKey(False)

Things data
scientists do.

for loops, collect in middle of analysis, large data structures

...

intermediate_results = data_rdd.collect()

python_data = []

for datapoint in intermediate_results:
 python_data.append(modify_datapoint(datapoint))

next_rdd = sc.parallelize(python_data)

...

Spark Anti-Patterns

Here are a couple code clues that you are not working with Spark, but probably against it.

Ask yourself, "would this work with billions of elements?". And likely anything you are doing with a for is something
that Spark will gladly parallelize for you, if you let it.

Some Homework Problems for the ambitious.

To do research-level text analysis, we generally want to clean up our input. Here are some of the kinds of things you
could do to get a more meaningful distinct word count.

1) Remove punctuation. Often punctuation is just noise, and it is here. Do a Map and/or Filter (some punctuation is
attached to words, and some is not) to eliminate all punctuation from our Shakespeare data. Note that if you are
familiar with regular expressions, Python has a ready method to use those.

2) Remove stop words. Stop words are common words that are also often uninteresting ("I", "the", "a"). You can
remove many obvious stop words with a list of your own, and the MLlib that we are about to investigate has a
convenient StopWordsRemover() method with default lists for various languages.

3) Stemming. Recognizing that various different words share the same root ("run", "running") is important, but not so
easy to do simply. Once again, Spark brings powerful libraries into the mix to help. A popular one is the Natural
Language Tool Kit. You should look at the docs, but you can give it a quick test quite easily:

import nltk
from nltk.stem.porter import *
stemmer = PorterStemmer()
stems_rdd = words_rdd.map(lambda x: stemmer.stem(x))

Who needs this Spark stuff?
As we do our first Spark exercises, you might think of several ways to accomplish these tasks that you already know. For example, Python
Pandas is a fine way to do our following problem, and it will probably work on your laptop reasonably well. But they do not scale well*.

However we are learning how to leverage scalable techniques that work on very big data. Shortly, we will encounter problems that are
considerable in size, and you will leave this workshop knowing how to harness very large resources.

Searching the Complete Works of William Shakespeare for patterns is a lot different from searching the entire Web (perhaps as the 800TB
Common Crawl dataset).

So everywhere you see an RDD, realize that it is a actually a parallel databank that could scale to PBs.

* See Panda's creator Wes McKinney's "10 Things I Hate About Pandas" at
 https://wesmckinney.com/blog/apache-arrow-pandas-internals/

Optimizations
We said one of the advantages of Spark is that we can control things for better
performance. There are a multitude of optimization, performance, tuning and
programmatic features to enable better control. We quickly look at a few of the most
important.

• Persistence

• Partitioning

• Parallel Programming Capabilities

• Performance and Debugging Tools

Performance & Debugging

We will give unfortunately short shrift to performance and debugging, which are both
important. Mostly, this is because they are very configuration and application
dependent.

Here are a few things to at least be aware of:

• SparkConf() class. A lot of options can be tweaked here.

• Spark Web UI. A very friendly way to explore all of these issues.

IO Formats
Spark has an impressive, and growing, list of input/output formats it supports. Some important
ones:

• Text
• CSV
• SQL type Query/Load

• JSON (can infer schema)
• Parquet
• Hive
• XML
• Sequence (Hadoopy key/value)
• Databases: JDBC, Cassandra, HBase, MongoDB, etc.

• Compression (gzip…)

And it can interface directly with a variety of filesystems: local, HDFS, Lustre, Amazon S3,...

Spark Streaming

Spark addresses the need for streaming processing of data with a API that divides the
data into batches, which are then processed as RDDs.

There are features to enable:

• Fast recovery from failures or timeouts
• Load balancing
• Integration with static data and interactive queries
• Integration with other components (SQL, Machine Learning)

15% of the "global datasphere"
(quantification of the amount of data
created, captured, and replicated across
the world) is currently real-time. That
number is growing quickly both in
absolute terms and as a percentage.

A Few Words About DataFrames

As mentioned earlier, an appreciation for having some defined structure to your data has come back
into vogue. For one, because it simply makes sense and naturally emerges in many applications. Often
even more importantly, it can greatly aid optimization, especially with the Java VM that Spark uses.

For both of these reasons, you will see that the newest set of APIs to Spark are DataFrame based. This is
simply SQL type columns. Very similar to Python pandas DataFrames (but based on RDDs, so not
exactly).

We haven't prioritized them here because they aren't necessary, and require a little more code to line
up the types properly. But some of the latest features use them.

And while they would just complicate our basic examples, they are often simpler for real research
problems. So don't shy away from using them.

Creating DataFrames

It is very pretty intuitive to utilize DataFrames. Your elements just have labeled columns.

A row RDD is the basic way to go from RDD to DataFrame, and back, if necessary. A "row" is just a tuple.

>>> row_rdd = sc.parallelize([("Joe","Pine St.","PA",12543), ("Sally","Fir Dr.","WA",78456),
 ("Jose","Elm Pl.","ND",45698)])
>>>
>>> aDataFrameFromRDD = spark.createDataFrame(row_rdd, ["name", "street", "state", "zip"])
>>> aDataFrameFromRDD.show()
+-----+--------+-----+-----+
| name| street|state| zip|
+-----+--------+-----+-----+
| Joe|Pine St.| PA|12543|
|Sally| Fir Dr.| WA|78456|
| Jose| Elm Pl.| ND|45698|
+-----+--------+-----+-----+

Just Spark DataFrames making life easier...

Data from https://github.com/spark-examples/pyspark-examples/raw/master/resources/zipcodes.json

{"RecordNumber":1,"Zipcode":704,"ZipCodeType":"STANDARD","City":"PARC PARQUE","State":"PR","LocationType":"NOT ACCEPTABLE","Lat":17.96,"Long":-66.22,"Xaxis":0.38,"Yaxis":-0.87,"Zaxis":0.3,"WorldRegion":"NA","Country":"US",
{"RecordNumber":2,"Zipcode":704,"ZipCodeType":"STANDARD","City":"PASEO COSTA DEL SUR","State":"PR","LocationType":"NOT ACCEPTABLE","Lat":17.96,"Long":-66.22,"Xaxis":0.38,"Yaxis":-0.87,"Zaxis":0.3,"WorldRegion":"NA","Country":"US","LocationT
{"RecordNumber":10,"Zipcode":709,"ZipCodeType":"STANDARD","City":"BDA SAN LUIS","State":"PR","LocationType":"NOT ACCEPTABLE","Lat":18.14,"Long":-66.26,"Xaxis":0.38,"Yaxis":-0.86,"Zaxis":0.31,"WorldRegion":"NA","Country":"US","Location

>>> df = spark.read.json("zipcodes.json")
>>> df.printSchema()
root
 |-- City: string (nullable = true)
 |-- Country: string (nullable = true)
 |-- Decommisioned: boolean (nullable = true)
 |-- EstimatedPopulation: long (nullable = true)
 |-- Lat: double (nullable = true)
 |-- Location: string (nullable = true)
 |-- LocationText: string (nullable = true)
 |-- LocationType: string (nullable = true)
 |-- Long: double (nullable = true)
 |-- Notes: string (nullable = true)
 |-- RecordNumber: long (nullable = true)
 |-- State: string (nullable = true)
 |-- TaxReturnsFiled: long (nullable = true)
 |-- TotalWages: long (nullable = true)
 |-- WorldRegion: string (nullable = true)
 |-- Xaxis: double (nullable = true)
 |-- Yaxis: double (nullable = true)
 |-- Zaxis: double (nullable = true)
 |-- ZipCodeType: string (nullable = true)
 |-- Zipcode: long (nullable = true)

>>> df.show()
+-------------------+-------+-------------+-------------------+-----+--------------------
| City|Country|Decommisioned|EstimatedPopulation| Lat| Location
+-------------------+-------+-------------+-------------------+-----+--------------------
| PARC PARQUE| US| false| null|17.96|NA-US-PR-PARC PARQUE
|PASEO COSTA DEL SUR| US| false| null|17.96|NA-US-PR-PASEO CO...
| BDA SAN LUIS| US| false| null|18.14|NA-US-PR-BDA SAN ...
| CINGULAR WIRELESS| US| false| null|32.72|NA-US-TX-CINGULAR...
| FORT WORTH| US| false| 4053|32.75| NA-US-TX-FORT WORTH
| FT WORTH| US| false| 4053|32.75| NA-US-TX-FT WORTH
| URB EUGENE RICE| US| false| null|17.96|NA-US-PR-URB EUGE...
| MESA| US| false| 26883|33.37| NA-US-AZ-MESA
| MESA| US| false| 25446|33.38| NA-US-AZ-MESA
| HILLIARD| US| false| 7443|30.69| NA-US-FL-HILLIARD
| HOLDER| US| false| null|28.96| NA-US-FL-HOLDER
| HOLT| US| false| 2190|30.72| NA-US-FL-HOLT
| HOMOSASSA| US| false| null|28.78| NA-US-FL-HOMOSASSA
| BDA SAN LUIS| US| false| null|18.14|NA-US-PR-BDA SAN ...
| SECT LANAUSSE| US| false| null|17.96|NA-US-PR-SECT LAN...
| SPRING GARDEN| US| false| null|33.97|NA-US-AL-SPRING G...
| SPRINGVILLE| US| false| 7845|33.77|NA-US-AL-SPRINGVILLE
| SPRUCE PINE| US| false| 1209|34.37|NA-US-AL-SPRUCE PINE
| ASH HILL| US| false| 1666| 36.4| NA-US-NC-ASH HILL
| ASHEBORO| US| false| 15228|35.71| NA-US-NC-ASHEBORO
+-------------------+-------+-------------+-------------------+-----+--------------------

And Sometime DataFrames Are Limiting

DataFrames are not as flexible as plain RDDs, and it isn't uncommon to find yourself fighting to do something that
would be simple with a map, for example. In that case, don't hesitate to flip back into a plain RDD.

>>> row_rdd = sc.parallelize([("Joe","Pine St.","PA",12543), ("Sally","Fir Dr.","WA",78456),
 ("Jose","Elm Pl.","ND",45698)])

>>> aDataFrameFromRDD = spark.createDataFrame(row_rdd, ["name", "street", "state", "zip"])

>>> another_row_rdd = aDataFrameFromRDD.rdd

Notice that this is not even a method, it is just a property. This is a clue that behind the scenes we are always working
with RDDs.

A minor technicality here is that the returned object is actually a "Row" type. You may not care. If you want it be the
original tuple type then

>>> tuple_rdd = aDataFrameFromRDD.rdd.map(tuple)

Note that when our map function is a function that already exists, there is no need for a lambda.

Speaking of pandas, or SciPy, or...

Some of you may have experience with the many Python libraries that accomplish some of
these tasks. Immediately relevant to today, pandas allows us to sort and query data, and SciPy
provides some nice clustering algorithms. So why not just use them?

The answer is that Spark does these things in the context of having potentially huge, parallel
resources at hand. We don't notice it as Spark is also convenient, but behind every Spark call:

• every RDD could be many TB in size

• every transform could use many thousands of cores and TB of memory

• every algorithm could also use those thousands of cores

So don't think of Spark as just a data analytics library because our exercises are modest. You
are learning how to cope with Big Data.

Other Scalable Alternatives: Dask

Of the many alternatives to play with data on
your laptop, there are only a few that aspire to
scale up to big data. The only one, besides Spark,
that seems to have any traction is Dask.

Numpy like operations

import dask.array as da
a = da.random.random(size=(10000, 10000),
 chunks=(1000, 1000))
a + a.T - a.mean(axis=0)

Dataframes implement Pandas

import dask.dataframe as dd
df = dd.read_csv('/.../2020-*-*.csv')
df.groupby(df.account_id).balance.sum()

Pieces of Scikit-Learn

from dask_ml.linear_model import \
LogisticRegression
lr = LogisticRegression()
lr.fit(train, test)

It attempts to retain more of the "laptop feel" of
your toy codes, making for an easier port. The
tradeoff is that the scalability is a lot more
mysterious. If it doesn't work - or someone hasn't
scaled the piece you need - your options are
limited.

At this time, I'd say it is riskier, but academic
projects can often entertain more risk than industry.

Drill Down?

	Slide 1: Big Data Science
	Slide 2: Who am I?
	Slide 3: The Journey Ahead
	Slide 4
	Slide 5: Once there was only small data...
	Slide 6: Less sophisticated is sometimes better…
	Slide 7: The culmination of centuries...
	Slide 8: Then data started to grow.
	Slide 9: And finally got BIG.
	Slide 10: A better sense of biggish
	Slide 11: Good Ol’ SQL couldn't keep up. Oracle
	Slide 12: So we gave up: Key-Value Redis, Memcached, Amazon DynamoDB, Riak, Ehcache
	Slide 13: How does a pile of unorganized data solve our problems?
	Slide 14: Document
	Slide 15: Wide Column Stores Google BigTable
	Slide 16: Graph Titan, GEMS
	Slide 17: Queries SPARQL, Cypher
	Slide 18: Graph Databases
	Slide 19: Hadoop & Spark
	Slide 20: Frameworks for Data
	Slide 21
	Slide 22: Hadoop Ecosystem Lives On
	Slide 23: Spark Capabilities (i.e. Hadoop shortcomings)
	Slide 24: Same Idea (improved)
	Slide 25: Spark Formula
	Slide 26: Simple Example
	Slide 27: Simple Example
	Slide 28: Common Transformations
	Slide 29: Common Actions
	Slide 30: Transformations vs. Actions
	Slide 31: Pair RDDs
	Slide 32: Pair RDD Transformations
	Slide 33: Pair RDD Actions
	Slide 34: Two Pair RDD Transformations
	Slide 35: Joins Are Quite Useful
	Slide 36: Shakespeare, a Data Analytics Favorite
	Slide 37: This was our exercise.
	Slide 38: Some Simple Answers
	Slide 39: Some Harder Answers
	Slide 40: Spark Anti-Patterns
	Slide 41: Some Homework Problems for the ambitious.
	Slide 42: Who needs this Spark stuff?
	Slide 43: Optimizations
	Slide 44: Performance & Debugging
	Slide 45: IO Formats
	Slide 46: Spark Streaming
	Slide 47: A Few Words About DataFrames
	Slide 48: Creating DataFrames
	Slide 49: Just Spark DataFrames making life easier...
	Slide 50: And Sometime DataFrames Are Limiting
	Slide 51: Speaking of pandas, or SciPy, or...
	Slide 52: Other Scalable Alternatives: Dask

