
John Urbanic
Parallel Computing Scientist

Pittsburgh Supercomputing Center

Copyright 2017

Deep Learning
In An Afternoon

Deep Learning / Neural Nets
Without question the biggest thing in ML and computer science right now. Is the hype
real? Can you learn anything meaningful in an afternoon? How did we get to this point?

The ideas have been around for decades. Two components came together in the past
decade to enable astounding progress:

• Widespread parallel computing (GPUs)

• Big data training sets

Two Perspectives
There are really two common ways to view the fundaments of deep learning.

• Inspired by biological models.

• An evolution of classic ML techniques (the perceptron).

They are both fair and useful. We’ll give each a thin slice of our attention before we move on
to the actual implementation. You can decide which perspective works for you.

Modeled After The Brain

As a Highly Dimensional Non-linear Classifier

Perceptron

No Hidden Layer

Linear

Network

>1 Hidden Layers

Nonlinear

Courtesy: Chris Olah

Linear + Nonlinear
The magic formula for a neural net is that, at each layer, we apply linear operations (which
look naturally like linear algebra matrix operations) and then pipe the final result through
some kind of final nonlinear activation function. The combination of the two allows us to do
very general transforms.

Linear + Nonlinear
These are two very simple networks untangling spirals. Note that the second does not
succeed. With more substantial networks these would both be trivial.

Courtesy: Chris Olah

Width of Network
A very underappreciated fact about networks is that the width of any layer determines how
many dimensions it can work in. This is valuable even for lower dimension problems. How
about trying to classify (separate) this dataset:

Can a neural net do this with twisting and deforming? What good does it do to have more
than two dimensions with a 2D dataset?

Courtesy: Chris Olah

Working In Higher Dimensions
It takes at least 3 units wide to pull this off, regardless of depth.

Greater depth allows us to stack these operations, and can be very effective. The gains from
depth are harder to characterize.

Trying Success Success in 3D

Courtesy: Chris Olah

Basic NN Architecture

Input Layer Hidden Layer Output Layer

Synapse

Neuron

Activation Function

• Neurons apply activation function to their inputs.

• Activation functions are typically non-linear.

• The sigmoid function produces a value between 0 and 1 (so it is often used when

a probability is desired)

• The Rectified Linear activation function is zero when the input is negative and is

equal to the input when the input is positive

• Rectified Linear activation functions have become more popular because they are

faster to compute than the sigmoid or hyperbolic tangent

Inference

0.5

0.9

-0.3

H1

H2

H3

O1

O2

H1 Weights = (1.0, -2.0, 2.0)

H2 Weights = (2.0, 1.0, -4.0)

H3 Weights = (1.0, -1.0, 0.0)

O1 Weights = (-3.0, 1.0, -3.0)

O2 Weights = (0.0, 1.0, 2.0)

Inference

0.5

0.9

-0.3

.13

.96

.40

O1

O2

H1 Weights = (1.0, -2.0, 2.0)

H2 Weights = (2.0, 1.0, -4.0)

H3 Weights = (1.0, -1.0, 0.0)

O1 Weights = (-3.0, 1.0, -3.0)

O2 Weights = (0.0, 1.0, 2.0)

H1 = S(0.5 * 1.0 + 0.9 * -2.0 + -0.3 * 2.0) = S(-1.9) = .13

H2 = S(0.5 * 2.0 + 0.9 * 1.0 + -0.3 * -4.0) = S(3.1) = .96

H3 = S(0.5 * 1.0 + 0.9 * -1.0 + -0.3 * 0.0) = S(-0.4) = .40

Inference

0.5

0.9

-0.3

.13

.96

.40

.35

.85

H1 Weights = (1.0, -2.0, 2.0)

H2 Weights = (2.0, 1.0, -4.0)

H3 Weights = (1.0, -1.0, 0.0)

O1 Weights = (-3.0, 1.0, -3.0)

O2 Weights = (0.0, 1.0, 2.0)

O1 = S(.13 * -3.0 + .96 * 1.0 + .40 * -3.0) = S(-.63) = .35

O1 = S(.13 * 0.0 + .96 * 1.0 + .40 * 2.0) = S(1.76) = .85

As A Matrix Operation

H1 Weights = (1.0, -2.0, 2.0)

H2 Weights = (2.0, 1.0, -4.0)

H3 Weights = (1.0, -1.0, 0.0)

1.0 -2.0 2.0

2.0 1.0 -4.0

1.0 -1.0 0.0

0.5

0.9

-0.3

-1.9 3.1 -0.4) = S(*S() = .13 .96 0.4

Hidden Layer Weights Inputs

Hidden Layer Outputs

Now this looks like something that we can pump through a GPU.

Training Neural Networks
(Backpropogation)

1. Originally, the weights of a neural network are assigned randomly

2. The neural network then predicts the labels for the examples in the training set using inference

3. The error between the prediction and the label is used to determine how the weights should be updated

4. The weights are slowly changed to minimize the error

5. Error minimization is achieved with Gradient Descent (or some variant)

• This routine needs to know the derivative of the error with respect to the weights

• Stochastic Gradient Descent (SGD) is a variation of Gradient Descent that uses a subset of the

training data at each time step to approximate the overall derivative to update the weights

Finding the Derivative

w
0.5

0.9

-

0.3

.13

.96

.40

.35

.85

O

I

0.9

T (Ground Truth)

For Sigmoid

MNIST
We now know enough to attempt a problem. Only because the Tensorflow framework fills in
a lot of the details that we have glossed over. That is one of its functions.

Our problem will be character recognition. We will learn to read handwritten digits by training
on a large set of 28x28 greyscale samples.

First we’ll do this with the simplest possible model just to show how the Tensorflow
framework funtions. Then we will implement a quite sophisticated and accurate convolutional
neural network for this same problem.

MNIST Data
Specifically we will have a file with 55,000 of these numbers.

The labels will be “one-hot
vectors”, which means a 1 in
the numbered slot:

6 = [0,0,0,0,0,0,1,0,0,0]

Tensorflow Startup

Make sure you are on a GPU node:

br006% interact -gpu
gpu42%

These examples assume you have the MNIST data sitting around in your current directory:

gpu42% ls
-rw-r--r-- 1 urbanic pscstaff 1648877 May 4 02:13 t10k-images-idx3-ubyte.gz
-rw-r--r-- 1 urbanic pscstaff 4542 May 4 02:13 t10k-labels-idx1-ubyte.gz
-rw-r--r-- 1 urbanic pscstaff 9912422 May 4 02:13 train-images-idx3-ubyte.gz
-rw-r--r-- 1 urbanic pscstaff 28881 May 4 02:13 train-labels-idx1-ubyte.gz

As of this week Tensorflow startup has one extra step:

gpu42% module load tensorflow/1.1.0
gpu42% source $TENSORFLOW_ENV/bin/activate
gpu42% python

$ python
Python 3.6.1 |Continuum Analytics, Inc.| (default, Mar 22 2017, 19:54:23)
[GCC 4.4.7 20120313 (Red Hat 4.4.7-1)] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>
>>> from tensorflow.examples.tutorials.mnist import input_data
>>> import tensorflow as tf
>>> mnist = input_data.read_data_sets(".", one_hot=True)
>>>
...
.....You may get some congratulatory noise here...
...........Pay it no heed................

Simple MNIST

Only “mystery” code in whole workshop!

Just reads in files as we just discussed, in
batches. Easy to do but a slight digression.

>>>>>> x , y = mnist.train.next_batch(2)
>>> y[0]
array([0., 0., 0., 0., 1., 0., 0., 0., 0., 0.])
>>> x[0]
array([0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0.02352941, 0.76470596,
0.99607849, 1. , 0.93725497, 0.1137255 , 0. ,
0. , 0. , 0. , 0. , 0. ,
...
...
...

The API is well
documented.

That is terribly
unusual.

$ python
Python 3.6.1 |Continuum Analytics, Inc.| (default, Mar 22 2017, 19:54:23)
[GCC 4.4.7 20120313 (Red Hat 4.4.7-1)] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>
>>> from tensorflow.examples.tutorials.mnist import input_data
>>> import tensorflow as tf
>>> mnist = input_data.read_data_sets(".", one_hot=True)
>>>
>>> x = tf.placeholder(tf.float32, [None, 784])
>>> W = tf.Variable(tf.zeros([784, 10]))
>>> b = tf.Variable(tf.zeros([10]))
>>> y = tf.matmul(x, W) + b
>>>
>>> y_ = tf.placeholder(tf.float32, [None, 10])
>>>

Softmax Regression MNIST

Placeholder
We will use TF placeholders for inputs and
outputs. We will use TF Variables for
persistent data that we can calculate.
NONE means this dimension can be any length.

Image is 784 vector
We have flattened our 28x28 image to a 1-D
784 vector. You will encounter this
simplification frequently.

b (Bias)
A bias is often added across all inputs to
eliminate some independent “background”.

>>> from tensorflow.examples.tutorials.mnist import input_data
>>> import tensorflow as tf
>>> mnist = input_data.read_data_sets(".", one_hot=True)
>>>
>>> x = tf.placeholder(tf.float32, [None, 784])
>>> W = tf.Variable(tf.zeros([784, 10]))
>>> b = tf.Variable(tf.zeros([10]))
>>> y = tf.matmul(x, W) + b
>>>
>>> y_ = tf.placeholder(tf.float32, [None, 10])
>>>
>>> cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y))
>>> train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
>>>
>>> sess = tf.InteractiveSession()
>>> tf.global_variables_initializer().run()
>>>
>>> for _ in range(1000):
>>> batch_xs, batch_ys = mnist.train.next_batch(100)
>>> sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
>>>
>>> correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
>>> accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
>>> print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))

Softmax Regression MNIST
Error

We need to define our error so that our
solver can minimize it. We will use “cross
entropy”, which works well comparing these
kind of 1-hot vector labels.

We also use a “softmax” activation. It has
some nice properties when paired with cross
entropy and assures that the total outputs
sum to 1.

At this point we have defined our model.

Solver
Now we define the solver and details like
step size to minimize our error.

>>> from tensorflow.examples.tutorials.mnist import input_data
>>> import tensorflow as tf
>>> mnist = input_data.read_data_sets(".", one_hot=True)
>>>
>>> x = tf.placeholder(tf.float32, [None, 784])
>>> W = tf.Variable(tf.zeros([784, 10]))
>>> b = tf.Variable(tf.zeros([10]))
>>> y = tf.matmul(x, W) + b
>>>
>>> y_ = tf.placeholder(tf.float32, [None, 10])
>>>
>>> cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y))
>>> train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
>>>
>>> sess = tf.InteractiveSession()
>>> tf.global_variables_initializer().run()
>>>
>>> for _ in range(1000):
>>> batch_xs, batch_ys = mnist.train.next_batch(100)
>>> sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
>>>
>>> correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
>>> accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
>>> print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))

Softmax Regression MNIST

Launch
Launch the model and initialize
the variables.

Train
Do 1000 iterations with batches
of 100 images,labels instead of
whole dataset. This is
stochastic.

>>> from tensorflow.examples.tutorials.mnist import input_data
>>> import tensorflow as tf
>>> mnist = input_data.read_data_sets(".", one_hot=True)
>>>
>>> x = tf.placeholder(tf.float32, [None, 784])
>>> W = tf.Variable(tf.zeros([784, 10]))
>>> b = tf.Variable(tf.zeros([10]))
>>> y = tf.matmul(x, W) + b
>>>
>>> y_ = tf.placeholder(tf.float32, [None, 10])
>>>
>>> cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y))
>>> train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
>>>
>>> sess = tf.InteractiveSession()
>>> tf.global_variables_initializer().run()
>>>
>>> for _ in range(1000):
>>> batch_xs, batch_ys = mnist.train.next_batch(100)
>>> sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
>>>
>>> correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
>>> accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
>>> print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))
0.9183

Softmax Regression MNIST

Results

• Argmax selects index of highest value. We end up with a list of booleans showing
matches.

• Reduce that list of 0s,1s and take the mean.
• Run the graph on the test dataset to determine accuracy. No solving involved.

Result is 92%.

92%
You may be impressed. Or not. This was just a simple walkthrough of constructing a graph with
Tensorflow.

We can do much better using a real NN. We will even jump quite close to the state-of-the-art and use a
Convolutional Neural Net.

This will have a multi-layer structure like the deep networks we considered earlier.

It will also take advantage of the actual 2D structure of the image that we ditched so cavalierly earlier.

It will include dropout! A surprising optimization to many.

It will also be cleaner in many ways than the example we just did. So if I didn’t tell you not to dwell too
much on that intro example, unless you already really understand softmax regression:

Don’t dwell too much on that intro example!

Convolutional Net

Convolution

Convolution
Boundary and Index Accounting!

Straight Convolution

+ =

Edge Detector

Images: Wikipedia

Simplest Convolution Net

Courtesy: Chris Olah

Stacking Convolutions

Courtesy: Chris Olah

Pooling

Courtesy: Chris Olah

Multiple Filters

These are the filters from one convolution on one layer (from
Krizehvsky et al. (2012)). Each filter has learned to detect a different type
of feature.

Convolution Math

Each Convolutional Layer:

Inputs a volume of size WI×HI×DI (D is depth)

Requires four hyperparameters:

Number of filters K

their spatial extent N

the stride S

the amount of padding P

Produces a volume of size WO×HO×DO

WO = (WI − N + 2P) / S+1

HO = (HI −F +2P) / S+1

DO = K

This requires N⋅N⋅DI weights per filter, for a total of N⋅N⋅DI⋅K weights and K biases

In the output volume, the d-th depth slice (of size WO × HO) is the result of performing a convolution of the d-

th filter over the input volume with a stride of S, and then offset by d-th bias.

from tensorflow.examples.tutorials.mnist import input_data

import tensorflow as tf

mnist = input_data.read_data_sets(".", one_hot=True)

x = tf.placeholder(tf.float32, [None, 784])
y_ = tf.placeholder(tf.float32, [None, 10])

x_image = tf.reshape(x, [-1,28,28,1])

W_conv1 = tf.Variable(tf.truncated_normal([5, 5, 1, 32], stddev=0.1))
b_conv1 = tf.Variable(tf.constant(0.1,shape=[32]))
h_conv1 = tf.nn.relu(tf.nn.conv2d(x_image, W_conv1,strides=[1, 1, 1, 1], padding='SAME') + b_conv1)
h_pool1 = tf.nn.max_pool(h_conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')

W_conv2 = tf.Variable(tf.truncated_normal([5, 5, 32, 64], stddev=0.1))
b_conv2 = tf.Variable(tf.constant(0.1,shape=[64]))
h_conv2 = tf.nn.relu(tf.nn.conv2d(h_pool1, W_conv2,strides=[1, 1, 1, 1], padding='SAME') + b_conv2)
h_pool2 = tf.nn.max_pool(h_conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')

W_fc1 = tf.Variable(tf.truncated_normal([7 * 7 * 64, 1024], stddev=0.1))
b_fc1 = tf.Variable(tf.constant(0.1,shape=[1024]))
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

W_fc2 = tf.Variable(tf.truncated_normal([1024, 10], stddev=0.1))
b_fc2 = tf.Variable(tf.constant(0.1,shape=[10]))
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2

cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

sess = tf.InteractiveSession()

sess.run(tf.global_variables_initializer())
for i in range(20000):
batch = mnist.train.next_batch(50)
if i%100 == 0:
train_accuracy = accuracy.eval(feed_dict={x:batch[0], y_: batch[1], keep_prob: 1.0})
print("step %d, training accuracy %g"%(i, train_accuracy))

train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})

print("test accuracy %g"%accuracy.eval(feed_dict={ x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))

Convolutional MNIST
Complete Code

>>> from tensorflow.examples.tutorials.mnist import input_data
>>>
>>> import tensorflow as tf
>>>
>>> mnist = input_data.read_data_sets(".", one_hot=True)
>>>
>>> x = tf.placeholder(tf.float32, [None, 784])
>>> y_ = tf.placeholder(tf.float32, [None, 10])
>>>
>>> x_image = tf.reshape(x, [-1,28,28,1])
>>>

Convolutional MNIST
Loading 2D Images

[batch, height, width, channels]
-1 is TF for “unknown”

>>> from tensorflow.examples.tutorials.mnist import input_data
>>>
>>> import tensorflow as tf
>>>
>>> mnist = input_data.read_data_sets(".", one_hot=True)
>>>
>>> x = tf.placeholder(tf.float32, [None, 784])
>>> y_ = tf.placeholder(tf.float32, [None, 10])
>>>
>>> x_image = tf.reshape(x, [-1,28,28,1])
>>>
>>> W_conv1 = tf.Variable(tf.truncated_normal([5, 5, 1, 32], stddev=0.1))
>>> b_conv1 = tf.Variable(tf.constant(0.1,shape=[32]))
>>> h_conv1 = tf.nn.relu(tf.nn.conv2d(x_image, W_conv1,strides=[1, 1, 1, 1], padding='SAME') + b_conv1)
>>> h_pool1 = tf.nn.max_pool(h_conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
>>>

Convolutional MNIST
The First Layer

>>> from tensorflow.examples.tutorials.mnist import input_data
>>>
>>> import tensorflow as tf
>>>
>>> mnist = input_data.read_data_sets(".", one_hot=True)
>>>
>>> x = tf.placeholder(tf.float32, [None, 784])
>>> y_ = tf.placeholder(tf.float32, [None, 10])
>>>
>>> x_image = tf.reshape(x, [-1,28,28,1])
>>>

>>> W_conv1 = tf.Variable(tf.truncated_normal([5, 5, 1, 32], stddev=0.1))
>>> b_conv1 = tf.Variable(tf.constant(0.1,shape=[32]))

Convolutional MNIST
The First Layer

We will have 32 5x5 filers in this layer
What values to initialize?

Small random positive for weights
Small constant for bias

>>> from tensorflow.examples.tutorials.mnist import input_data
>>>
>>> import tensorflow as tf
>>>
>>> mnist = input_data.read_data_sets(".", one_hot=True)
>>>
>>> x = tf.placeholder(tf.float32, [None, 784])
>>> y_ = tf.placeholder(tf.float32, [None, 10])
>>>
>>> x_image = tf.reshape(x, [-1,28,28,1])
>>>
>>> W_conv1 = tf.Variable(tf.truncated_normal([5, 5, 1, 32], stddev=0.1))
>>> b_conv1 = tf.Variable(tf.constant(0.1,shape=[32]))

>>> h_conv1 = tf.nn.relu(tf.nn.conv2d(x_image, W_conv1, strides=[1, 1, 1, 1], padding='SAME') + b_conv1)

Convolutional MNIST
The First Layer

TF will handle padding
More explicit in cuDNN and Caffe

Stride of 1x1
Must be same dims as X (just set depth/batch=1)

>>> from tensorflow.examples.tutorials.mnist import input_data
>>>
>>> import tensorflow as tf
>>>
>>> mnist = input_data.read_data_sets(".", one_hot=True)
>>>
>>> x = tf.placeholder(tf.float32, [None, 784])
>>> y_ = tf.placeholder(tf.float32, [None, 10])
>>>
>>> x_image = tf.reshape(x, [-1,28,28,1])
>>>
>>> W_conv1 = tf.Variable(tf.truncated_normal([5, 5, 1, 32], stddev=0.1))
>>> b_conv1 = tf.Variable(tf.constant(0.1,shape=[32]))

>>> h_conv1 = tf.nn.relu(tf.nn.conv2d(x_image, W_conv1, strides=[1, 1, 1, 1], padding='SAME') + b_conv1)

Convolutional MNIST
The First Layer

Add bias and apply our ReLU

Widely adopted around 2010!

>>> from tensorflow.examples.tutorials.mnist import input_data
>>>
>>> import tensorflow as tf
>>>
>>> mnist = input_data.read_data_sets(".", one_hot=True)
>>>
>>> x = tf.placeholder(tf.float32, [None, 784])
>>> y_ = tf.placeholder(tf.float32, [None, 10])
>>>
>>> x_image = tf.reshape(x, [-1,28,28,1])
>>>
>>> W_conv1 = tf.Variable(tf.truncated_normal([5, 5, 1, 32], stddev=0.1))
>>> b_conv1 = tf.Variable(tf.constant(0.1,shape=[32]))
>>> h_conv1 = tf.nn.relu(tf.nn.conv2d(x_image, W_conv1,strides=[1, 1, 1, 1], padding='SAME') + b_conv1)

>>> h_pool1 = tf.nn.max_pool(h_conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')

Convolutional MNIST
The First Layer

[batch, height, width, channels]
For window size and stride.

The image we will pass to the next layer is now 14x14.

>>> from tensorflow.examples.tutorials.mnist import input_data
>>>
>>> import tensorflow as tf
>>>
>>> mnist = input_data.read_data_sets(".", one_hot=True)
>>>
>>> x = tf.placeholder(tf.float32, [None, 784])
>>> y_ = tf.placeholder(tf.float32, [None, 10])
>>>
>>> x_image = tf.reshape(x, [-1,28,28,1])
>>>
>>> W_conv1 = tf.Variable(tf.truncated_normal([5, 5, 1, 32], stddev=0.1))
>>> b_conv1 = tf.Variable(tf.constant(0.1,shape=[32]))
>>> h_conv1 = tf.nn.relu(tf.nn.conv2d(x_image, W_conv1,strides=[1, 1, 1, 1], padding='SAME') + b_conv1)
>>> h_pool1 = tf.nn.max_pool(h_conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
>>>

Convolutional MNIST
The First Layer

>>> from tensorflow.examples.tutorials.mnist import input_data
>>>
>>> import tensorflow as tf
>>>
>>> mnist = input_data.read_data_sets(".", one_hot=True)
>>>
>>> x = tf.placeholder(tf.float32, [None, 784])
>>> y_ = tf.placeholder(tf.float32, [None, 10])
>>>
>>> x_image = tf.reshape(x, [-1,28,28,1])
>>>
>>> W_conv1 = tf.Variable(tf.truncated_normal([5, 5, 1, 32], stddev=0.1))
>>> b_conv1 = tf.Variable(tf.constant(0.1,shape=[32]))
>>> h_conv1 = tf.nn.relu(tf.nn.conv2d(x_image, W_conv1,strides=[1, 1, 1, 1], padding='SAME') + b_conv1)
>>> h_pool1 = tf.nn.max_pool(h_conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
>>>

>>> W_conv2 = tf.Variable(tf.truncated_normal([5, 5, 32, 64], stddev=0.1))
>>> b_conv2 = tf.Variable(tf.constant(0.1,shape=[64]))
>>> h_conv2 = tf.nn.relu(tf.nn.conv2d(h_pool1, W_conv2,strides=[1, 1, 1, 1], padding='SAME') + b_conv2)
>>> h_pool2 = tf.nn.max_pool(h_conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')

Convolutional MNIST
Second Layer

Now we have 32 features coming in, and we will
use 64 on this layer.

The next layer will be getting a 7x7 image.

>>> from tensorflow.examples.tutorials.mnist import input_data
>>>
>>> import tensorflow as tf
>>>
>>> mnist = input_data.read_data_sets(".", one_hot=True)
>>>
>>> x = tf.placeholder(tf.float32, [None, 784])
>>> y_ = tf.placeholder(tf.float32, [None, 10])
>>>
>>> x_image = tf.reshape(x, [-1,28,28,1])
>>>
>>> W_conv1 = tf.Variable(tf.truncated_normal([5, 5, 1, 32], stddev=0.1))
>>> b_conv1 = tf.Variable(tf.constant(0.1,shape=[32]))
>>> h_conv1 = tf.nn.relu(tf.nn.conv2d(x_image, W_conv1,strides=[1, 1, 1, 1], padding='SAME') + b_conv1)
>>> h_pool1 = tf.nn.max_pool(h_conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
>>>
>>> W_conv2 = tf.Variable(tf.truncated_normal([5, 5, 32, 64], stddev=0.1))
>>> b_conv2 = tf.Variable(tf.constant(0.1,shape=[64]))
>>> h_conv2 = tf.nn.relu(tf.nn.conv2d(h_pool1, W_conv2,strides=[1, 1, 1, 1], padding='SAME') + b_conv2)
>>> h_pool2 = tf.nn.max_pool(h_conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
>>>

>>> W_fc1 = tf.Variable(tf.truncated_normal([7 * 7 * 64, 1024], stddev=0.1))
>>> b_fc1 = tf.Variable(tf.constant(0.1,shape=[1024]))
>>> h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
>>> h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

Convolutional MNIST
Fully Connected Layer

Now we can just flatten our 64 7x7 images into
one big vector for the FC layer to analyze.

We will choose 1024 neurons for this layer.

>>> from tensorflow.examples.tutorials.mnist import input_data
>>>
>>> import tensorflow as tf
>>>
>>> mnist = input_data.read_data_sets(".", one_hot=True)
>>>
>>> x = tf.placeholder(tf.float32, [None, 784])
>>> y_ = tf.placeholder(tf.float32, [None, 10])
>>>
>>> x_image = tf.reshape(x, [-1,28,28,1])
>>>
>>> W_conv1 = tf.Variable(tf.truncated_normal([5, 5, 1, 32], stddev=0.1))
>>> b_conv1 = tf.Variable(tf.constant(0.1,shape=[32]))
>>> h_conv1 = tf.nn.relu(tf.nn.conv2d(x_image, W_conv1,strides=[1, 1, 1, 1], padding='SAME') + b_conv1)
>>> h_pool1 = tf.nn.max_pool(h_conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
>>>
>>> W_conv2 = tf.Variable(tf.truncated_normal([5, 5, 32, 64], stddev=0.1))
>>> b_conv2 = tf.Variable(tf.constant(0.1,shape=[64]))
>>> h_conv2 = tf.nn.relu(tf.nn.conv2d(h_pool1, W_conv2,strides=[1, 1, 1, 1], padding='SAME') + b_conv2)
>>> h_pool2 = tf.nn.max_pool(h_conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
>>>
>>> W_fc1 = tf.Variable(tf.truncated_normal([7 * 7 * 64, 1024], stddev=0.1))
>>> b_fc1 = tf.Variable(tf.constant(0.1,shape=[1024]))
>>> h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
>>> h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
>>>

>>> W_fc2 = tf.Variable(tf.truncated_normal([1024, 10], stddev=0.1))
>>> b_fc2 = tf.Variable(tf.constant(0.1,shape=[10]))
>>> keep_prob = tf.placeholder(tf.float32)
>>> h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
>>> y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2

Convolutional MNIST
Dropout

We will have a final FC layer that gets us
from 1024 neurons down to our 10
possible outputs.

However now we will use a fairly new but
rapidly adopted, and surprisingly
effective, method of combatting
overfitting: we will simply drop some
proportion of connections randomly each
step (only during training).

This is called dropout. The TF routines
handle some scaling details for us as well.

>>> from tensorflow.examples.tutorials.mnist import input_data
>>>
>>> import tensorflow as tf
>>>
>>> mnist = input_data.read_data_sets(".", one_hot=True)
>>>
>>> x = tf.placeholder(tf.float32, [None, 784])
>>> y_ = tf.placeholder(tf.float32, [None, 10])
>>>
>>> x_image = tf.reshape(x, [-1,28,28,1])
>>>
>>> W_conv1 = tf.Variable(tf.truncated_normal([5, 5, 1, 32], stddev=0.1))
>>> b_conv1 = tf.Variable(tf.constant(0.1,shape=[32]))
>>> h_conv1 = tf.nn.relu(tf.nn.conv2d(x_image, W_conv1,strides=[1, 1, 1, 1], padding='SAME') + b_conv1)
>>> h_pool1 = tf.nn.max_pool(h_conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
>>>
>>> W_conv2 = tf.Variable(tf.truncated_normal([5, 5, 32, 64], stddev=0.1))
>>> b_conv2 = tf.Variable(tf.constant(0.1,shape=[64]))
>>> h_conv2 = tf.nn.relu(tf.nn.conv2d(h_pool1, W_conv2,strides=[1, 1, 1, 1], padding='SAME') + b_conv2)
>>> h_pool2 = tf.nn.max_pool(h_conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
>>>
>>> W_fc1 = tf.Variable(tf.truncated_normal([7 * 7 * 64, 1024], stddev=0.1))
>>> b_fc1 = tf.Variable(tf.constant(0.1,shape=[1024]))
>>> h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
>>> h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
>>>
>>> W_fc2 = tf.Variable(tf.truncated_normal([1024, 10], stddev=0.1))
>>> b_fc2 = tf.Variable(tf.constant(0.1,shape=[10]))
>>> keep_prob = tf.placeholder(tf.float32)
>>> h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
>>> y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
>>>

>>> cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv))
>>> train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
>>> correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
>>> accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

Convolutional MNIST
Last Steps Before Training

Just like the regression model, we will
define error as cross entropy and count
our correct predictions.

However this time we will use a sophisticated newer (2015) optimizer called ADAM. It is
as simple as dropping it in.

>>> from tensorflow.examples.tutorials.mnist import input_data
>>>
>>> import tensorflow as tf
>>>
>>> mnist = input_data.read_data_sets(".", one_hot=True)
>>>
>>> x = tf.placeholder(tf.float32, [None, 784])
>>> y_ = tf.placeholder(tf.float32, [None, 10])
>>>
>>> x_image = tf.reshape(x, [-1,28,28,1])
>>>
>>> W_conv1 = tf.Variable(tf.truncated_normal([5, 5, 1, 32], stddev=0.1))
>>> b_conv1 = tf.Variable(tf.constant(0.1,shape=[32]))
>>> h_conv1 = tf.nn.relu(tf.nn.conv2d(x_image, W_conv1,strides=[1, 1, 1, 1], padding='SAME') + b_conv1)
>>> h_pool1 = tf.nn.max_pool(h_conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
>>>
>>> W_conv2 = tf.Variable(tf.truncated_normal([5, 5, 32, 64], stddev=0.1))
>>> b_conv2 = tf.Variable(tf.constant(0.1,shape=[64]))
>>> h_conv2 = tf.nn.relu(tf.nn.conv2d(h_pool1, W_conv2,strides=[1, 1, 1, 1], padding='SAME') + b_conv2)
>>> h_pool2 = tf.nn.max_pool(h_conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
>>>
>>> W_fc1 = tf.Variable(tf.truncated_normal([7 * 7 * 64, 1024], stddev=0.1))
>>> b_fc1 = tf.Variable(tf.constant(0.1,shape=[1024]))
>>> h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
>>> h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
>>>
>>> W_fc2 = tf.Variable(tf.truncated_normal([1024, 10], stddev=0.1))
>>> b_fc2 = tf.Variable(tf.constant(0.1,shape=[10]))
>>> keep_prob = tf.placeholder(tf.float32)
>>> h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
>>> y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
>>>
>>> cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv))
>>> train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
>>> correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
>>> accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
>>>
>>> sess = tf.InteractiveSession()
>>>
>>> sess.run(tf.global_variables_initializer())
>>> for i in range(20000):
>>> batch = mnist.train.next_batch(50)
>>> if i%100 == 0:
>>> train_accuracy = accuracy.eval(feed_dict={x:batch[0], y_: batch[1], keep_prob: 1.0})
>>> print("step %d, training accuracy %g"%(i, train_accuracy))
>>> train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
>>>
>>> print("test accuracy %g"%accuracy.eval(feed_dict={ x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))
test accuracy 0.9915

Convolutional MNIST
Training

Train away for 20,000 steps in batches of
50. Notice how we turn the dropout off
when we periodically check our
accuracy.

>>> from tensorflow.examples.tutorials.mnist import input_data
>>>
>>> import tensorflow as tf
>>>
>>> mnist = input_data.read_data_sets(".", one_hot=True)
>>>
>>> x = tf.placeholder(tf.float32, [None, 784])
>>> y_ = tf.placeholder(tf.float32, [None, 10])
>>>
>>> x_image = tf.reshape(x, [-1,28,28,1])
>>>
>>> W_conv1 = tf.Variable(tf.truncated_normal([5, 5, 1, 32], stddev=0.1))
>>> b_conv1 = tf.Variable(tf.constant(0.1,shape=[32]))
>>> h_conv1 = tf.nn.relu(tf.nn.conv2d(x_image, W_conv1,strides=[1, 1, 1, 1], padding='SAME') + b_conv1)
>>> h_pool1 = tf.nn.max_pool(h_conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
>>>
>>> W_conv2 = tf.Variable(tf.truncated_normal([5, 5, 32, 64], stddev=0.1))
>>> b_conv2 = tf.Variable(tf.constant(0.1,shape=[64]))
>>> h_conv2 = tf.nn.relu(tf.nn.conv2d(h_pool1, W_conv2,strides=[1, 1, 1, 1], padding='SAME') + b_conv2)
>>> h_pool2 = tf.nn.max_pool(h_conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
>>>
>>> W_fc1 = tf.Variable(tf.truncated_normal([7 * 7 * 64, 1024], stddev=0.1))
>>> b_fc1 = tf.Variable(tf.constant(0.1,shape=[1024]))
>>> h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
>>> h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
>>>
>>> W_fc2 = tf.Variable(tf.truncated_normal([1024, 10], stddev=0.1))
>>> b_fc2 = tf.Variable(tf.constant(0.1,shape=[10]))
>>> keep_prob = tf.placeholder(tf.float32)
>>> h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
>>> y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
>>>
>>> cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv))
>>> train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
>>> correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
>>> accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
>>>
>>> sess = tf.InteractiveSession()
>>>
>>> sess.run(tf.global_variables_initializer())
>>> for i in range(20000):
>>> batch = mnist.train.next_batch(50)
>>> if i%100 == 0:
>>> train_accuracy = accuracy.eval(feed_dict={x:batch[0], y_: batch[1], keep_prob: 1.0})
>>> print("step %d, training accuracy %g"%(i, train_accuracy))
>>> train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
>>>
>>> print("test accuracy %g"%accuracy.eval(feed_dict={ x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))
test accuracy 0.9915

Convolutional MNIST
Testing

We finally test against a whole difference
set of test data (that is what mnist.test
returns) and find that we are:

99.15% Accurate!

Other Significant Architectures

Recurrent Neural Net
Cycles back previous inputs (feedback)
Like short term memory
Adds context (like for language processing)
Current advancement is Long Short Term Memory

bit more complex
very effective for certain tasks

Courtesy: Chris Olah

Residual Neural Net
Helps preserve reasonable gradients for very deep networks
Very effective at imagery

Very Deep Neural Net
100s of layers, Pushing 1000

“Theoretician’s Nightmare”

That is paraphrasing Yann LeCun, the godfather of Deep Learning.

If it feels like this is an oddly empirical branch of computer science, you are spot on.

Many of these techniques were developed through experimentation, and many of them are not amenable to classical
analysis. A theoretician would suggest that non-convex loss functions are at the heart of the matter, and that
situation isn’t getting better as many of the latest techniques have made this much worse.

You may also have noticed that many of the techniques we have used today have very recent provenance. This is true
throughout the field. Rarely is the undergraduate researcher so reliant upon results groundbreaking papers of a few
years ago.

You now have a Toolbox

The reason that we have attempted this ridiculously ambitious workshop is that the field has reached a level of
maturity where the tools can encapsulate much of the complexity in black boxes.

One should not be ashamed to use a well-designed black box. Indeed it would be foolish for you to write you own FFT
or eigensolver math routines. Besides wasting time, you won’t reach the efficiency of a professionally tuned tool.

On the other hand, most programmers using those tools have been exposed to the basics of the theory, and could dig
out their old textbook explanation of how to cook up an FFT. This provides some baseline level of judgement in using
tools provided by others.

You are treading on newer ground. However this means there are still major discoveries to be made using these tools
in fresh applications.

Any one particularly exciting dimension to this whole situation is that exploring hyperparameters has been very
fruitful. The toolbox allows you to do just that.

Other Toolboxes

You have a plethora of alternatives available as well. You are now in a position to appreciate some comparisons.

Package Applications Language Strengths

Tensorflow Neural Nets Python, C++ Very popular.

Caffe Neural Nets Python, C++ Many research projects and
publications.

Spark MLLIB Classification, Regression,
Clustering, etc.

Python, Scala, Java, R Very scalable. Widely used in
serious applications.

Scikit-Learn Classification, Regression,
Clustering

Python

cuDNN Neural Nets C++, GPU-based Used in many other frameworks:
TF, Caffe, etc.

Theano Neural Nets Python Lower level numerical routines.
NumPy-esque.

Torch Neural Nets Lua (PyTorch=Python) Dynamic graphs (variable length
input/output) good for RNN.

Keras Neural Nets Python (on top of TF, Theano) Higher level approach.

Digits Neural Nets “Caffe”, GPU-based Used with other frameworks
(only Caffe at moment).

Applications

Deep Learning has had so many recent successes that this is more a discussion starter than a comprehensive list.
Open up a newspaper for new and exciting applications. Here are some commercially significant applications:

• Handwriting Recognition
• Language Translation
• Speech Recognition
• Image Classification
• Medical Diagnosis

• Classification: which pixel tumor, which is not?

• Autonomous Driving
• Classification: which pixel is road, which is pedestrian?

Exercises

We are going to leave you with a few substantial problems that you are now equipped to tackle. Feel free to use your
extended workshop access to work on these, and remember that additional time is an easy Startup Allocation away.
Of course everything we have done is standard and you can work on these problems in any reasonable environment.

CIFAR
The CIFAR-10 dataset consists of 60,000 32x32 colour images in 10 classes (airplane, auto, bird, cat, dog, ship, etc.)
with 6,000 images per class. There are 50,000 training images and 10000 test images.

ImageNet
150,000 photographs, collected from flickr and other search engines, hand labeled with the presence or absence of
1000 object categories. Competition: http://image-net.org/challenges/LSVRC/2017/

Kaggle Challenge
Many datasets of great diversity (crime, plants, sports, stocks, etc). https://www.kaggle.com/datasets
There are always multiple currently running competitions you can enter. Competitions:
https://www.kaggle.com/competitions

Credits

This talk has benefited from the generous use of materials from NVIDIA and Christopher Olah in particular.

The NVIDIA materials were drawn from their excellent Deep Learning Institute

https://developer.nvidia.com/teaching-kits

Christopher Olah’s blog is insightful and not to be missed if you are interested in this field.

http://colah.github.io/

Other materials used as credited.

Any code examples used were substantially modified from the original.

Anything not otherwise mentioned follows Apache License 2.0.

