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Omic Technologies Record Global Signals
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The adoption of omic technologies In the cancer clinic IS giving rise to an Increasing

number of large-scale high-dimensional datasets recording multiple patient-matched

aspects of the disease.

Collins & Hamburg, N Engl J Med 369, 2369 (2013).



With new technologies permitting the observation and manipulation of single quantum
systems, the quantum theory of measurement is fast becoming a subject of experimental
investigation in laboratories worldwide. This original new work addresses open fundamental
S | | S t
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questions in quantum mechanics in light of these experimental developments.

Using a novel analytical approach developed by the authors, Quantum Measurement of a
Single System provides answers to three long-standing questions that have been debated by
such thinkers as Bohr, Einstein, Heisenberg, and Schrodinger. It establishes the quantum
theoretical limits to information obtained in the measurement of a single system on the

quantum WaV@fUHCtiOIl Of the system, the time CVO]UtiOH Of the quantum observables

Orly Alter

Yoshihisa Yamamoto

associated with the system, and the classical potentials or forces which shape this time
evolution. The technological relevance of the theory is also demonstrated through examples

from atomic physics, quantum optics, and mesoscopic physics.

Suitable for professionals, students, or readers with a general interest in quantum mechanics,
the book features recent formulations as well as humorous illustrations of the basic concepts
of quantum measurement. Researchers in physics and engineering will find Quantum
Measurement of a Single System a timely guide to one of the most stimulating fields of

science today.

ORLY AL ), is currently a postdoctoral fellow in the Department of Genetics at
Stanford University. Y( PhD, is a professor in the Departments of
Applied Physics and Electrical Engineering at Stanford University. He is currently the direc-
tor of the [ICORP Quantum Entanglement Project of the Japanese Science and Technology
(JST) Corporation. While they collaborated on the research presented in this book,
Yamamoto was the director of the ERATO Quantum Fluctuation Project of JST, and Alter

was a doctoral student at the Department of Applied Physics at Stanford. She was selected as
a finalist for the American Physical Society Award for Outstanding Doctoral Thesis Research
in Atomic, Molecular or Optical Physics for 1998 for this work.
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Global Mathematical Vocabulary for

Molecular Biological Discovery

The singular value decomposition
(SVD) underlies the theoretical
description of the physical world.

Alter & Yamamoto, Quantum Measurement

of a Sngle System. New York, NY: Wiley-
Interscience (2001);

https.//doi.org.10.1002/9783527617128



https://onlinelibrary.wiley.com/doi/book/10.1002/9783527617128

Global Mathematical Vocabulary for
M olecular Blologlcal Dlscovery

The singular value decomposition L o ““g“t:'g”g;'aﬁf;;‘:“
(SVD) underlies the theoretical TR EEREEEELE
description of the physical world, 2

and possibly also the molecular 3

biological world.

Generalizations of the SVD can be
formulated that Integrate and
compare different datatypes.

) (d) Distribution Fif[s an (c) Ei gen\{al ues.Fit a (b) _Ei genvectors Fif[ a
The computations of the SVD and M anerent ae o e e ia Pt one
- . - - Arrays Ei genval ue Fraction Arrays
ItS generalizations scale with data EEfeeecees EEEeeeee e

Sl ZEes.
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Alter & Golub, PNAS 103, 11828 (2006);
https.//alterlab.org/harmonic_oscillator/




Physics-Inspired Matrix and Tensor Models

The SVD and its generalizations are interpretable in terms of the known biology and batch
effects that underlie, 1.e., compose, the data.

|ntegrative |ntegrative
SVvD Pseudoinver se Tensor SVD
Alter, Brown & Botstein, Alter & Golub, Alter & Golub, .
PNAS 97, 10101 (2000). PNAS 101, 16577 (2004). PNAS 102, 17559 (2005). ’
i B a
“Eigengenes’ and | | |
“elgenarrays’ — cellular " Pseudoinverse correlation”| “x-" and "y-Eigengenes’ and
processes and states In — causal coordination | “elgenarrays’ — Interrelations
one dataset. between two datasets. |among the processes and states

Eigenval ue Decomposition Inverse Projection of one higher-order dataset.




Experimental Verification of a
Computationally Predicted Cellular M echanism for
DNA Replication to Affect RNA EXxpression

Omberg, Meyerson, Kobayashi, Drury, Diffley & Alter, MSB 5, 312 (2009);
https.//alterlab.org/verification of prediction/; Omberg, Golub & Alter, PNAS 104, 18371 (2007).

The  SVD and ItS ooy S
generalizations can correctly e | i s e
predict previously unknown S -
and experimentally verifiable SSSEEES  SommSRSL ) O
global mechanisms EEER S |
Replication origin licensing @
decreases the expression of g
genes with origins near their =

3 ends, revedling that § s =
downstream origins can E S ;
regulate the expression of &S = »
upstream genes. T :




Computationally Predicted Evolutionary M echanisms of

Convergence and Divergence of Substructuresin rRNA
Muralidnara, Gross, Gutell & Alter, PLoSOne 6, €18768 (2011); https://alterlab.org/rRNA/
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The tensor SVD discovers nucleotide variations across the
taxonomic groups, consistent among the 16S, 23S, and 5S
ribosomal RNAs (rRNAS), that map out known and new
Insertions and deletions of secondary substructures enriched In, L
e.g., unpaired adenosines (As) that form tertiary interactions. i




Compar ative Multi-Tensor Decompositions

Can discover novel accurate, precise, and actionable genotype-phenotype relationships,
relevant to populations based upon small cohorts, that can be validated in clinical trials.

GSVD

Alter, Brown & Botstan,
PNAS 100, 3351 (2003).

“Gendlets’ and “arraylets’
- phenomena
exclusive to one of, or
common to two, datasets.

HO GSVD

Ponnapalli, Saunders, Van Loan &
Alter, PLoSOne 6, e28072 (2011).

— phenomena exclusive to
one or more of, or common
to multiple, datasets.

Tensor GSVD

Sankaranarayanan, et int., Alter,
PL0S One 10, e0121396 (2015).
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“Subtensors’
— exclusive
Or Common
between two
higher-order
datasets,
consistent or
varying
across orders.




Retrospective Clinical Trial Experimentally Validates
Glioblastoma Genome-Wide Patter n of
DNA Copy-Number Alterations Predictor of Survival

Ponnapalli, Bradley, Devine, Bowen, Coppens, Leraas, Milash, Li, Luo, Qiu, Wu,
Yang, Wittwer, Palmer, Jensen, Gastier-Foster, Hanson, Barnholtz-Sloan & Alter, APL Bioeng 4, 026106 (2020);
https://alterlab.org/GBM retrospective clinical trial/

- For 70 years, the best indicator of a patient’s survival has been age at diagnosis.
Netsky et al., J Neurosurg 7, 269 (1950); Curran Jr., et int., Nelson, J Natl Cancer Inst 85, 704 (1993);
Gorlia, et int., Stupp, Lancet Oncol 9, 29 (2008).

- Recurring DNA copy-number alterations (CNAS) have been recognized as a hallmark

of cancer for over a century and have been observed in glioblastoma (GBM) tumors.
Boveri, Concerning the Origin of Malignant Tumours. Jena, Germany: Gustav Fischer Verlag (1914).

- Repeated previous attempts to associate a GBM tumor’'s DNA CNAs with a patient’s
outcome failed, including previous studies of data from the Cancer Genome Atlas that

(TCGA) used other methods.
Weber, et int., Cremer, Lab Invest 74, 108 (1996); Wiltshire, et int., Bigner, Neuro Oncol 2, 164 (2000);
Misra, et int., Feuerstein, Clin Cancer Res 11, 2907 (2005).



Mathematically Univer sal Blolcglcally Conastent
GenotypePhenotype

Lee, et Int.,, Alter, PLoS One 7,
e30098 (2012); Aiello & Alter, PLoS
One 11, e0164546 (2016); Aidlo,
Ponnapalll & Alter, APL Bioeng 2,
Special Topic: Bioengineering of

Cancer 031909 (2018). T
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| nvariably Uncovered by
the Generalized SVD

Like the Agilent GBM and Affymetrix
lower-grade astrocytoma patterns, the
whole-genome sequencing (WGS)
astrocytoma pattern is correlated with
a shorter, roughly one-year median
survival time.

(a) WGS Astrocytoma
P-value=8.2x10""

Hazard Ratio=8.1

(Coeff.)

Low
N=33
0=10

0.25

Fraction of Surviving Patients
from the WGS Astrocytoma Set

O 1 1 1
0 13 63

80 120
Survival Time (Months)

TCGA Research Network, Nature 455, 1061 (2008); N Engl J Med 372, 2481 (2015).

Row Basis Vector 2

(d)

and Only by
(GSVD)

(a) Agilent GBM Column Basis Vector 2 (212,696 Probes)
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(b) Affymetrix LGA Column Basis Vector 2 (933,827 Probes)
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Encodesfor Transformation via Ras, Shh, and Notch

Includes most CNAs known in GBM, e.g., In the rat sarcoma (Ras) pathway, and as many
previously unrecognized, e.g., in the

sonic hedgehog (Shh) and Notch si';r?;?ﬂg sig?gﬁng
pathways In medulloblastoma and pathway pathway _FRS2
neuroblastoma.

Some of these natural CNASs are
analogous to artificial elements that

transform human normal into tumor @

Shh
signaling
pathway

PSENEN METTL2A
DLL3 METTL2B
JAG1

P16INK4A

Notch?2

cells with grossly polyploid nuclel.

Notch2nl
Waldman, e int., Vogelstein, w0
Nature 381, 713  (1396) CSNK1E SUFU NBPF14
Hahn, et int.. Weinberg, (CSNKIE [ [ SUFU_[7] | NBPF14. ° e

Nature 400, 464 (1999); oL -

Irianto, et int., Discher, Curr m" TLK2
Biol 27, 210 (2017);
Mukherjee, et int., Fonkem, J Gli cell cycle Gli cell cycle -I Cell cycle arrest,
Neuropathol Exp Neurol 79, transcriptional transcriptional apoptosis, and

562 (2020). repressors activators senescence



SVD Blind Separation of WGS Batch Effects

Relative DNA Copy Number

Relative DNA Copy Number

Guanine-cytosine (GC) content effects vary In
Roberts, Carnelro & Schatz, Genome Biol 14, 405 (2013).
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GSVD Blind Separation of Microarray Batch Effects
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WGS with Affymetrix single-nucleotide polymorphism (SNP) and Agilent comparative
genomic hybridization (CGH) microarrays represent the man genomic profiling
technologies.



GSVD Blind Separation of Normal Variations

Row Basis Vector 82
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The normal male-specific X chromosome deletion Is conserved in the tumors.

TCGA gender |abels were corrected.
https.//grants.nih.gov/grants/guide/notice-filessNOT-HG-11-021.html



The Utah set of 79 Patientsis Statistically

Representative of the U.S. Adult GBM Population

(a) Patient Set (b) Patient Set (c) Patient Set
P-value=8.4x10"1 P-value=8.2x10"1 P-value=3.7x107°
Hazard Ratio=1.2
1F C
B -3 SEER Utah SEER CWRU SEER TCGA
5 2 N=8001 N=79 N=8001 N=28 N-8001 N=443
e 0-6761 0=74 0=6761 0-18 0-6761 0=360
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H .
wmn o
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o Z 0.25F -
SE
-5 = Ll
0 9 11 20 40 60 0 9 11 20 40 60 0 9 14 20 40 60
Survival Time (Months) Survival Time (Months) Survival Time (Months)
Phenotype Group Utah | CWRU | TCGA ||SEER||Utah vs. SEER|CWRU vs. SEER|TCGA vs. SEER
Set | Set Set Set x? P-Value x> P-Value Y P-Value
Normal | Sex Female 27 12 169|| 3331([1.8x10~" 9.0x10~ " 1.5x10~"
Male 52 16 27411 4670
Race Not White 5 3 40| 9591[1.2x10~" 8.4x1071 1.1x1071
White 74 25 380 || 7042
Ethnicity |Hispanic 2 0 11 5071 1.7x10~* 1.7x10~1 4.4x107°
Not Hispanic 7 28 382|| 7494
Disease | Age (Years)|<50 10 3 117( 1164(/6.4x10~" 5.7x10* 1.2x10~ 1
>50 69 29 320|| 6837




Profiling Technology and Reference Human

Genome Affect

Experimental batch effects
normally reduce the
reproducibility, I.e., precision,

Relative
. Copy Number
=
h
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of classfications based upon =
between one to afew hundred
genomic loci by >30%.

Pinto, et Int.,, Feuk, Nat Biotechnol
29, 512 (2011).
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With a 2.25-year Kaplan—Meier (KM) median survival difference, a 3.5 univariate Cox
hazard ratio, and a 0.78 concordance index, I.e., accuracy.

Statistically Better Than and Independent
of the Best Other |ndicator, I.e., Age

(a) GBM Pattern (Corr. CWRU Age (Years) (c) GBM Pattern/Age
P-value=2. 5><1O3 P-value=3.7x1073 P-value=5.2x10"73
Hazard Ratio=3.5 Hazard Ratio=3.3 Hazard Ratios=2.6/2.4
1F . n
n
-lé High Low High/>50 Low/<50
() N=70 N=9 N=64 N=4
i 0=68 0=6 0-63 0=1
A |
_w 0-75}
m Q
CRE High/<50
g <
m% N:6
Sa» 0=5
oD
2 0.5p——o0
S 0]
=
— +
o
o8
0.25
a
0
i Low/=50
g N=5
G —1, 0=5
E“ O -I ] ] ] ] ] ] ] ] ] ] [ ] ] ] ] ]
0 8 20 35 40 60 O 8 19 40 60 0 8 14 20 40 60
Survival Time (Months) Survival Time (Months) Survival Time (Months)

In general as well asin patients who receive treatments, 1.e., chemotherapy and radiation.
Independent of chemotherapy and radiation and the post-surgical resection metrics, 1.e.,
the Karnofsky performance score and the percent primary tumor resection.



Statistically Better Than and Independent
of the Best Other Indicator, I.e., Age

Greater median survival differences,
univariate hazard ratios and concordance
Indices, 1.e., accuracies, and lower |og-
rank and Wald P-values as well as Akalke
Information criterion (AlC) values.

Bivariate hazard ratios within 95%
confidence intervals of univariate ratios.

Patients |Predictor KM Median |Log-Rank || Cox Hazard |95% Confidence | Wald Concordance
(Number) Group (Months) | P-Value Model Ratio |Interval P-Value |Index
79 GBM Pattern (Corr.) Low 35[2.5x10-3 ||Univariate]| 3.5 15 82[4.3x10° 3 0.78
High 8
CWRU Age (Years) <50 19]3.7x1073 3.3 1.4- 7.5[6.1x1073 0.78
>50 8
GBM Pattern (Corr.) Low /<50 5.2x10~3 || Bivariate 2.6 1.1- 6.3|3.4x10~2 0.76
CWRU Age (Years) Low/>50 20 2.4 1.0~ 5.7|5.0x10~2
High /<50 14
High/>50 8
47 GBM Pattern (Corr.) Low 36[4.8x107° || Univariate 4.1 1.4- 11.8]8.7x1073 0.86
High 14
CWRU Age (Years) <50 28[7.0x10 3 3.7 1.3- 10.5|1.3x10 2 0.81
>50 14
59 GBM Pattern (Corr.) Low 36[2.0x1073 4.6 1.6- 13.0]4.3x10~3 0.88
High 12
CWRU Age (Years) <50 19[1.7x10" 2 2.7 12— 6.4]|2.2x10 2 0.72
>50 13
75 GBM Pattern (Corr.) Low 35[2.1x10 3 1.0 1.6- 10.1]4.0x10 3 0.79
High 8
CWRU Chemotherapy Yes 14[1.0x10~ 12 6.0 3.5- 10.4|7.0x10~ 11 0.93
No 4
CWRU Radiation Yes 13[4.4x10~1° 10.8 5.3- 22.1]7.6x10~ 1! 0.93
No 2
74/75 GBM Pattern (Corr.) Low/Yes 36|1.5x10~ % || Bivariate 3.8 1.3— 10.8]1.4x10~2 0.91
CWRU Chemotherapy High/Yes 14 5.0 2.9- 8.6/9.0x10~?
High/No 4
GBM Pattern (Corr.) Low/Yes 36[4.2x10~° 4.6 1.6— 13.0{4.4x10~3 0.92
CWRU Radiation High/Yes 12 9.3 4.5- 19.3[1.6x10~7
High/No 3
52 GBM Pattern (Corr.) Low 35[8.1x10~3 || Univariate 3.2 1.3- 7.9[1.1x10~2 0.74
High 12
CWRU Karnofsky Score || >60 16|7.3x10~" 5.8 2.7- 12.4]8.0x10~6 0.87
<60 5
51/52 GBM Pattern (Corr.) Low />60 35[1.3x10~°% ||Bivariate 3.5 1.3- 9.4]1.3x10~2 0.83
CWRU Karnofsky Score ||High/>60 14 4.5 2.0- 9.9/2.0x10~%
High /<60 5
28 GBM Pattern (Corr.) Low 35[6.1x10~7 || Univariate 10.6 1.4— 80.9(|2.3x10~2 0.97
High 6
CWRU Percent Resection || >30 12]3.0x10~2 2.8 1.1- 7.6/3.9x10~2 0.73
<30 5
GBM Pattern (Corr.) Low/>30 35[4.5x10~7 ||Bivariate 9.8 1.3— 76.2|2.9x10~2 0.80
CWRU Percent Resection ||High/>30 8
High/<30 5




Statistically Better Than and I ndependent
of the Best Other Indicator, I.e., Age

INn the TCGA Set of 443 Patients

Better than and Independent of the existing
pathology l|aboratory tests, 1.e, for MGMT
promoter methylation and IDH1 mutation, as well
as better than TERT gene expression.

Before progressing to GBM standard of care,
MGMT, IDH1, and TERT, have already been used
as Indicators of survival and MGMT also as an
Indicator of response to alkalyting agents in other
types of cancer.

Hegl et a., NEJM 352, 997 (2005); Hotta, et int., Ikenaga, J
Neurooncol 21, 135 (1994); Parsons, et int., Kinzler, Science
321, 1807 (2008); Nguyen, €t int., Lai, Neuro Oncol 19, 394
(2017); Batchelor & Louis, in UpToDate, eds. Loeffler & Wen.
Waltham, MA: Wolters Kluwer (2018).

Patients

Predictor

Median

Log-Rank

rd |95% Confidence

Wald

(Number G oup (Months) | P-Value io |Interval P-Value
443 GBM Pattern (Corr.) Low 29(1.4x10-° 1.7- 3.6/2.9x10°° 0.75
High 13
TCGA Age (Years) <50 21[4.9x10~10 1.7— 2.8[1.1x107° 0.72
>50 12
GBM Pattern (Corr.) Low /<50 39(2.1x10~ V][ Bivariate 1.3— 2.8[1.7x1073 0.71
TCGA Age (Years) High /<50 18 1.4- 2.4[1.9x107°
Low/>50 16
High/>50 12
284 GBM Pattern (Corr.) Low 50[3.2x10~% 1.5— 4.1[4.9x10~% 0.73
High 15
TCGA Age (Years) <50 22(3.3x107° 1.4- 2.6[4.3x107° 0.64
>50 15
GBM Pattern (Corr.) Low /<50 50(5.5x10~° 1.1- 3.2[2.9x107? 0.64
TCGA Age (Years) High/<50 18 1.1- 2.2[6.8x1073
High/>50 15
Low/>50 6
327 GBM Pattern (Corr.) Low 39]2.8x10~° 1.6— 3.8[4.8x107° 0.73
High 15
TCGA Age (Years) <50 23(6.7x107° 1.4- 2.5[8.9x107° 0.66
>50 15
GBM Pattern (Corr.) Low /<50 47]2.7x10=6 1.3- 3.1/3.0x1073 0.65
TCGA Age (Years) High /<50 20 1.2— 2.1[1.7x1073
Low/>50 16
High/>50 15
255 GBM Pattern (Corr.) Low 34(3.2x1074 1.5— 4.2[5.0x10~% 0.73
High 13
TCGA MGMT Methylation || Yes 18(4.7x1073 1.1- 2.0/5.0x10~3 0.58
No 13
GBM Pattern (Corr.) Low/Yes 39[3.0x10~% 1.4- 4.0[1.1x103 0.61
TCGA MGMT Methylation || Low/No 16 1.1- 1.9[1.7x10~?
High/Yes 16
High/No 12
329 GBM Pattern (Corr.) Low 34]5.5x107° 1.6- 3.8/9.2x107° 0.77
High 14
TCGA IDHI Mutation Yes 35[2.6x10~% 1.5- 3.9[4.0x10~% 0.78
No 14
GBM Pattern (Corr.) Low/Yes 39[9.6x10~° 1.2- 3.1[/8.4x103 0.77
TCGA IDHI Mutation Low/No 25 1.0- 3.0{4.1x10~?
High/Yes 24
High/No 14
107 GBM Pattern (Corr.) Low 34[1.8x10~2 1.2- 12.1]2.7x10~? 0.90
High 13
TCGA TERT Expression |[No 25(9.5x10~3 1.2- 5.1[1.2x10~2 0.77
Yes 13
GBM Pattern (Corr.) Low/No 34[2.4x10~7 0.80
TCGA TERT Expression Low/Yes 25
High/No 24
High/Yes 12
335 GBM Pattern (Corr.) Low 34[3.0x107° 1.6- 3.6[4.9x107° 0.72
High 14
TCGA Karnofsky Score >60 15[1.0x10=° 2.1- 8.1[4.7x107° 0.81
<60 5
GBM Pattern (Corr.) Low/>60 34[1.6x1078 1.5— 3.5[6.9x107° 0.74
TCGA Karnofsky Score High/>60 15 1.9- 7.6[1.1x10~4
High/<60 5




A Patient’s Survival Isthe Outcomeof Thelr Tumor’s
Whole Genome, 1.e., Genetic Background

(a) GBM Pattern (a) GBM Pattern
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(b) hg38 Utah GBM Profile lst Most Correlated with the GBM Pattern (b) hgl9 Utah GBM Profile Corresponding to hg38 Profile lst Most Correlated with the GBM Pattern
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(¢) hg38 Utah GBM Profile 2nd Most Correlated with the GBM Pattern
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(d) hg38 Utah GBM Profile 3rd Most Correlated with the GBM Pattern (d) hgl9 Utah GBM Profile Corresponding to hg38 Profile 3rd Most Correlated with the GBM Pattern
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(g) hyg38 Utah GBM Profile 72nd Most Correlated with the GBM Pattern (g) hygl9 Utah GBM Profile Corresponding to hg38 Profile 72nd Most Correlated with the GBM Pattern
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hg38 Chromosomes hgl9 Chromosomes

Chromosome 10 deletion, chromosome 7 amplification, and chromosome arm 9p deletion,
pear in the tumor genomes of some but not all 70 patients with high and, separatédly,
some but not all nine patients with low correlations of thelr tumor profiles with the pattern.



Per sonalized Prognostics, Diagnostics, and T herapeutics
with a Genome-Wide Predictor of Survival

Thisisthefirst predictor that encompasses the whole tumor genome.

- The prognostic classification can help manage, e.qg., GBM pseudoprogression: validate
Clinical Laboratory I mprovement Amendments (CLI1A) -certified and College of

American Pathologists (CAP) -accredited, i.e., technical clinical WGS,
Patel, et int., Ellingson, J Neurooncol 139, 399 (2018); Walter, et int., Czernin, J Nucl Med 53, 393 (2012);
Rehm, et int., Lyon, Genet Med 15, 733 (2013).

- The diagnostic classification could help therapies progress to regulatory approval.
Even If a drug targets just one gene, the patient’s response depends on the whole
genome. Only one new drug has advanced from trials to care in 40 years. Predict long

survivorsin a personalized vaccinetrial that are not explained by other factors.
Threadgill, et int., Magnuson, Science 269, 230 (1995); Rich, et int., Friedman, J Clin Oncol 22, 133 (2004);
Grossman & Ellsworth, J Clin Oncol 34, e13522 (2016); Liau, et int., Bosch, J Transl Med 16, 142 (2018).

—> The therapeutic predictions, of previously unrecognized targets that are correlated with

survival, e.qg., the druggable METLL2A/B and TLK2, could lead to new drugs.

Preclinically test in GBM.
Kim, et int., Wang, Mol Cancer Res 14, 920 (2016); Zhang, Guo & Boulianne, Gene 280, 135 (2001);
Hayden Gephart, et int., Scott, J Neurooncol 115, 61 (2013).



Proof of Principlethat the Multi-Tensor Decompositions
are Uniquely Suited for Discovering Accur ate, Precise,
and Actionable Genotype-Phenotype Relationships
Relevant to the Population Based upon Small Cohorts

They have overcome three distinct challenges that other methods had not.

- They found consistent patterns across whole genomes, which have 3B nucleotides.
Minimally preprocessed datasets with no feature engineering account for robustness to
perturbations and are possible because of the computational scalability.

- They did that acrossthetumor and the matching normal genomes ssmultaneously.
By using the complex structure of the datasets rather than ssmplifying or standardizing
them as Is commonly done, they can separate patterns which occur only In the tumor
genomes from those that occur in the genomes of normal cells in the body and
variations caused by experimental inconsistencies.

- They did soin small cohorts of patients, ~100, that aretypical in clinical trials.
The structure of the datasets accounts for sensitivity to relationships in small discovery
sets and Imbalanced validation sets of large genomic profiles, and Is possible because
of the mathematical formulation as frameworks of blind source separation (BSS).



High-Per for mance Computing

Protected cloud environments facilitate this work by providing on-demand access to
stor age and compute.

- This enables implementing numerical analysis algorithms at scale on massive and
dense datasets. The size of the astrocytoma WGS raw binary alignment map (BAM)
files, e.q., 1IS>20T bytes.

- This enables testing the robustness of the results to hundreds or more perturbations to
the datasets, e.g., due to changes in the preprocessing of the BAM files. In generating
the astrocytoma read-count profiles, the changes to the preprocessing of the raw BAM
files included varying the bin sizes in the range of 100-2.5K nucleotides.

To generate the profiles at the 3B nucleotide-level resolution, a 5T-byte random-access
memory (RAM) may be needed.

— Thisin turn enables us to prognostically and diagnostically classify, e.g., GBM patients
based upon the genome-wide pattern of DNA CNAs with >99% reproducibility, I.e.,
precision, among profiling technologies, and with =75% concordance, I.e., accuracy,
and therapeutically predict previously unrecognized GBM drug targets.



Higher-Order GSVD for Comparative Analysis of
Multiple Second-Order Datasets

Ponnapalli, Golub & Alter, in Sanford University and Yahoo! Research Workshop on Algorithms for Modern
Massive Datasets (Stanford, CA, June 2124, 2006).

Arrayl e Y
(7))
E\-
o
c
8

Di — UiZiVT, Ez — diag(ai,k),
SV = VA,
1 algell —1 ~1
S = Nn-D) ;::1 ].;L.(AiAj +4;4;7);
A;=D;D;, i=1,2,...,N.

The matrix V, identical in all factorizations, Is obtained
from the balanced eigensystem of S which does not
= depend upon the ordering of Di.




Higher-Order GSVD for Comparative Analysis of
Multiple Second-Order Datasets

Ponnapalli, Saunders, Van Loan & Alter, PLoS One 6, 28072 (2011); https.//alterlab.org/HO GSVD/

The exact HO GSVD directly extends to multiple matrices all mathematical properties of
the GSVD except for complete orthogonality of U; for all 1.

Supplementary Theorems 1-5:

For N=2, the HO GSVD algebraically leads to the GSVD.

Theorem 1. Shasn independent eigenvectors, and its eigenvalues are redl.

Theorem 2: The eigenvalues of Ssatisfy Ak=1.

Theorem 3: The common HO GSVD subspace. An eilgenvalue satisfies Ak=1 if and only
If the corresponding right basis vector vk IS of equal significance in all
matrices Di and D;, i.e., oik /ojx=1 for al | and |, and the corresponding |eft
basis vector ui k IS orthonormal to all other left basis vectorsin U; for all 1.

Corollary 1: Ak=1 if and only If the corresponding right basis vector vk Is a generalized
singular vector of all pairwise GSVD factorizations of the matrices D; and D;
with equal corresponding generalized singular valuesfor all for all 1 and |.

Supplementary Theorem 6 and Conjecture 1.

A rolen iterative approximation algorithms.



Mathematically Univer sal
Biologically Consistent
Global Genotype-Phenotype

Bradley, Alello, Ponnapalli,” Hanson* & Alter, APL Bioeng 3, 036104
(2019); https.//alterlab.org/adenocarcinomas_genotype-phenotype/

New tumors, e.g., metastasis, are the leading cause of death
from lung, uterine, and ovarian adenocarcinomas, where
most patients experience progression-free survival after the

primary treatment.

Yet, no Indicator existed that predicts the benefit of
platinum In terms of overall survival past the primary
treatment.

6p+12p primary tumor’'s genotypes predictive of the
patient’s overall survival phenotypes, In general as well as
following platinum treatment of the primary tumor, and
throughout the course of the disease, were discovered by
the GSVD and tensor GSVD.




Tensor HO GSVD for Comparative Analysis of
Multiple Higher-Order Datasets

Ponnapalli & Alter (in preparation);
Ponnapalli, Saunders, Van Loan & Alter, PLoS One 6, 28072 (2011). i

D13,

Basis

DZIRZ Xa Uz Xb Vaf; XCVy7 _./
Di:(--°7D’i,:lm7"') _
— U’izivTa

R; = D; X, U; Xp Vo X, Vy_T,
U;Ul = D;D] #1,
U;U!D; = D;D!D; = D,
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i=1,2....N. _/




Correlationsto Causal Coordination:

Global Patterns Underlie Principles of Nature

Alter, PNAS 103, 16063 (2006);
Alter, in Microarray Data Analysis. Methods and Applications. New York, NY: Humana Press (2007).

Kepler's discovery of his first
law of planetary motion from
mathematical modeling

Brahe's astronomical data.
Kepler, Astronomia Nova. Heldelberg, Germany: Voegelinus (1609).




Statistics to Processes:.

Global Patterns Underlie Principles of Nature
Bertagnolli, Drake, Tennessen & Alter, PLoSOne 8, /8913 (2013); https://alterlab.org/GBM metabolism/

Drake & Alter, In Rao Conference at the Interface between Satistics and the Sciences (Hyderabad, India,
December 30, 2009 — January 2, 2010), Rao Best Poster Prize;

Alter & Golub, PNAS 103, 11828 (2006); https://alterlab.org/harmonic_oscillator/

— Brownian motion.
Einstein, Ann Phys 17, 549 (1905).

- Bacterial sensitivity and resistance to viruses.
Luria & Delbrick, Genetics 28, 491 (1943).



Computationally Predicted Physical M echanism for
Cellsto Differentially Regulate M etabolism in a
Transcript Length Dependent Manner

Nor mal unor Nor mal Nor mal M Tunor Nor mal or Tunor

BertagnOI I I ; Drake TenneS%n & |< preSS| on Sub N |< expre ion Subse N |<()/ Xpressi on Subse - |<C)/er expressi on Subsets -
Alter, PLOS One 8 978913 (2013) (a) Arrays (b) Arrays (c) Arrays (d) Arrays

HHHHHHHHHH
\\\\\\\\\\\\\\\\\\

https://alterlab.org/GBI\/I metabolism/ = EEfeeeeeee EEREeeereee EEEereeEeEe EEEEEEEECECE

GBM tumors maintain normal
brain overexpression of short
transcripts, involved In protein &
synthesl's and mitochondrial
metabolism, but suppress

ectors
Rel ati ve nRNA Abundance Leve
= N w NN (@)]

\

(e) Arrays (f) Arrays (g) Arrays (h) Arrays

|0ﬂger, normally EEEeeeeeee EEEeeepseee EEEcceeeeee  EEEcEEEceoEocE
overexpressed transcripts, x|, * % % EEE R
Involved In glucose ::

metabolism and brain activity. ;&

Oh et a., Nat Sruct Mol Biol 24, 993
(2017). 5 ¢




d obal Set Sel ected Transcripts

Computationally Predicted

EEEEEEEEEE EEEEEEEEEE

Physical M echanisms for
Asymmetric Broadening of a
Moving Transcript Band In
Gel Electrophoresis and
Asymmetric Evolutionary

Restoring-Like Forces

Acting on Transcript Length - ceEeffE: EEEEEEEEE

Alter & Golub, PNAS 103, 11828 (2006);
https.//alterlab.org/harmonic_oscillator/

- The distribution of the peaks of the

transcript profiles fits an asymmetric
Gaussian.

- The profile of a single transcript fits an
asymmetric Gaussian.




Multi-Tensor Decompositions for
Per sonalized
M edicine

? Scale up mathematics.
Edelman & Wang, SIMAX 41, 1826 (2020).

? Scale up modeling.
Palacios-Flores, et int., Palacios, PNAS 118, 2025192118 (2021).

? Scale up experiments.

Durbin, et int., QI, AACR Soecial Conference on Advances in Pediatric Cancer Research (Montreal, Canada,
September 17-20, 2019). Philadelphia, PA: AACR (2020).



The interplay between mathematical modeling and experimental measurement Is at

the basis of the “ effectiveness of mathematics’ in physics.
Wigner, Commun Pure Appl Math 13, 1 (1960).

Collins, NASA Apollo 11 (1969).



Mathematical modeling of large-scale molecular biological data can lead beyond
classification of genes and cellular samples to the discovery and ultimately also

control of mechanismsthat govern the activity of DNA and RNA.
Alter, PNAS 103, 16063 (2006).

Andrews & Swedlow, Nikon Small World (2002).

Our models bring physicians a step closer to one day being able to predict and
control the progression of cancers as readily as NASA engineers plot the trajectories

of spacecr aft today.
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Physics-Inspired Multi-Tensor Decompositions

Create a single coherent model from multiple high-dimensional diverse datasets at
once. By using the complex structure of the datasets, rather than ssmplifying them as iIs
commonly done, the multi-tensor decompositions can:

- blindly detect and remove experimental artifacts or batch effects,

- blindly identify and separate the biologically ssmilar from the dissimilar;

— discover previously unknown phenomena.

Directly generalize the SVD from a single two-dimensional dataset to multiple three-
and higher-dimensional datasets. The SVD underlies:

— theoretical physics,

- recommendation systems, e.g., PageRank and the Netflix challenge.



Physics-Inspired Multi-Tensor Decompositions

Find what other methods miss, and outperform methods that:

—> reguire large amounts of training data (e.g., deep learning);

= reguiretraining and are sensitive to Imbalanced class representations (e.g., supervised
learning);

—> reguire data quantization and are sensitive to cutoff selections (e.g., Bayesian statistics
and topological data analysis);

- vary the one-dataset SVD and are, therefore, not exact or unique, rather than use the
complex structure of the data (e.g., Independent component analysis, sparse and
nonnegative factorizations, and randomized decompositions);

—> are unsupervised but reguire data cleaning and are sensitive to artifacts and batch
effects (e.g., hierarchical clustering);

—> are supervised and require a-priori knowledge (e.g., analysis of variance).

Nielsen, West, Linn, Alter et al., Lancet 359, 1301 (2002).



The SVD Isused for the stable computation of principal component analysis (PCA).
Ringnér, Nat Biotechnol 26, 303 (2008).

The SVD i1s Different Than PCA

— PCA assumes preprocessing of the data, which limits the data interpretation (e.g.,
the SVD of a dataset can identify the probability distribution function that is sampled
by the dataset with no a-priori assumptions, PCA cannot).

Cadima & Jolliffe, Pak J Satist 25, 473 (2009);
Muralidhara, Gross, Gutell & Alter, PLoSOne 6, e18768 (2011); https.//alterlab.org/rRNA/

- PCA identifies patterns across the columns separately from patterns across the rows;
the SVD smultaneously computes the corresponding sets of patterns across the
rows and columns, ensuring consistent data inter pretation.

Alter et al., in Microarrays. Optical Technologies and Informatics. Bellingham, WA International Society
for Optics and Photonics (SPIE) (2001); https://aterlab.org/SVD/
Fellenberg, et int., Vingron, PNAS 98, 10781 (2001).

- PCA, asit Is programmed In most computational packages, I1s limited to classifying the
data based upon the two or three patterns that capture most of the information in the
data (e.g., variance In the case of column centering); the SVD maintains all data
patterns, and not just for data classification.



There are nontrivial connections between the GSVD and canonical correations
analysis (CCA).

The GSVD i1sDifferent Than CCA

Ewerbring & Luk, J Comput Appl Math 27, 37 (1989).

De Clercg et d., IEEE Trans Biomed Eng 53, 2583 (2006);

Rustandi, Just & Mitchell, in MICCAI 2009 (London, UK, September 20—24, 2009);
Tenenhaus & Tenenhaus, Psychometrika 76, 257 (2011).



